Noisemodel works in PriorFactor
							parent
							
								
									8967027198
								
							
						
					
					
						commit
						a3fa194ca1
					
				|  | @ -5,6 +5,7 @@ | ||||||
| #pragma once | #pragma once | ||||||
| 
 | 
 | ||||||
| #include <ostream> | #include <ostream> | ||||||
|  | #include "NoiseModel.h" | ||||||
| #include "NonlinearFactor.h" | #include "NonlinearFactor.h" | ||||||
| #include "Pose2.h" | #include "Pose2.h" | ||||||
| 
 | 
 | ||||||
|  | @ -22,7 +23,7 @@ namespace gtsam { | ||||||
| 		typedef NonlinearFactor1<Config, Key, T> Base; | 		typedef NonlinearFactor1<Config, Key, T> Base; | ||||||
| 
 | 
 | ||||||
| 		T prior_; /** The measurement */ | 		T prior_; /** The measurement */ | ||||||
| 		Matrix square_root_inverse_covariance_; /** sqrt(inv(covariance)) */ | 		boost::shared_ptr<GaussianNoiseModel> noiseModel_; | ||||||
| 
 | 
 | ||||||
| 	public: | 	public: | ||||||
| 
 | 
 | ||||||
|  | @ -30,9 +31,14 @@ namespace gtsam { | ||||||
| 		typedef typename boost::shared_ptr<PriorFactor> shared_ptr; | 		typedef typename boost::shared_ptr<PriorFactor> shared_ptr; | ||||||
| 
 | 
 | ||||||
| 		/** Constructor */ | 		/** Constructor */ | ||||||
| 		PriorFactor(const Key& key, const T& prior, const Matrix& covariance) : | 		PriorFactor(const Key& key, const T& prior, | ||||||
| 			Base(1.0, key), prior_(prior) { | 				const boost::shared_ptr<GaussianNoiseModel>& model) : | ||||||
| 			square_root_inverse_covariance_ = inverse_square_root(covariance); | 			Base(1.0, key), prior_(prior), noiseModel_(model) { | ||||||
|  | 		} | ||||||
|  | 
 | ||||||
|  | 		/** Constructor */ | ||||||
|  | 		PriorFactor(const Key& key, const T& prior, const Matrix& cov) : | ||||||
|  | 			Base(1.0, key), prior_(prior), noiseModel_(new FullCovariance(cov)) { | ||||||
| 		} | 		} | ||||||
| 
 | 
 | ||||||
| 		/** implement functions needed for Testable */ | 		/** implement functions needed for Testable */ | ||||||
|  | @ -41,8 +47,7 @@ namespace gtsam { | ||||||
| 		void print(const std::string& s) const { | 		void print(const std::string& s) const { | ||||||
| 			Base::print(s); | 			Base::print(s); | ||||||
| 			prior_.print("prior"); | 			prior_.print("prior"); | ||||||
| 			gtsam::print(square_root_inverse_covariance_, | 			// Todo print NoiseModel
 | ||||||
| 					"Square Root Inverse Covariance"); |  | ||||||
| 		} | 		} | ||||||
| 
 | 
 | ||||||
| 		/** equals */ | 		/** equals */ | ||||||
|  | @ -51,15 +56,16 @@ namespace gtsam { | ||||||
| 					Config, Key, T>*> (&expected); | 					Config, Key, T>*> (&expected); | ||||||
| 			return e != NULL && Base::equals(expected) && this->prior_.equals( | 			return e != NULL && Base::equals(expected) && this->prior_.equals( | ||||||
| 					e->prior_, tol); | 					e->prior_, tol); | ||||||
|  | 			// Todo check NoiseModel
 | ||||||
| 		} | 		} | ||||||
| 
 | 
 | ||||||
| 		/** implement functions needed to derive from Factor */ | 		/** implement functions needed to derive from Factor */ | ||||||
| 
 | 
 | ||||||
| 		/** vector of errors */ | 		/** vector of errors */ | ||||||
| 		Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const { | 		Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const { | ||||||
| 			if (H) (*H) = square_root_inverse_covariance_; | 			if (H) (*H) = noiseModel_->R(); | ||||||
| 			// manifold equivalent of h(x)-z -> log(z,h(x))
 | 			// manifold equivalent of h(x)-z -> log(z,h(x))
 | ||||||
| 			return square_root_inverse_covariance_ * logmap(prior_, p); | 			return noiseModel_->whiten(logmap(prior_, p)); | ||||||
| 		} | 		} | ||||||
| 	}; | 	}; | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -13,11 +13,7 @@ using namespace gtsam; | ||||||
| 
 | 
 | ||||||
| // Common measurement covariance
 | // Common measurement covariance
 | ||||||
| static double sx=0.5, sy=0.5,st=0.1; | static double sx=0.5, sy=0.5,st=0.1; | ||||||
| static Matrix covariance = Matrix_(3,3, | static boost::shared_ptr<GaussianNoiseModel> model(new Sigmas(Vector_(3,sx,sy,st))); | ||||||
| 		sx*sx, 0.0, 0.0, |  | ||||||
| 		0.0, sy*sy, 0.0, |  | ||||||
| 		0.0, 0.0, st*st |  | ||||||
| 		); |  | ||||||
| 
 | 
 | ||||||
| /* ************************************************************************* */ | /* ************************************************************************* */ | ||||||
| // Very simple test establishing Ax-b \approx z-h(x)
 | // Very simple test establishing Ax-b \approx z-h(x)
 | ||||||
|  | @ -29,7 +25,7 @@ TEST( Pose2Prior, error ) | ||||||
| 	x0.insert(1, p1); | 	x0.insert(1, p1); | ||||||
| 
 | 
 | ||||||
| 	// Create factor
 | 	// Create factor
 | ||||||
| 	Pose2Prior factor(1, p1, covariance); | 	Pose2Prior factor(1, p1, model); | ||||||
| 
 | 
 | ||||||
| 	// Actual linearization
 | 	// Actual linearization
 | ||||||
| 	boost::shared_ptr<GaussianFactor> linear = factor.linearize(x0); | 	boost::shared_ptr<GaussianFactor> linear = factor.linearize(x0); | ||||||
|  | @ -52,7 +48,7 @@ TEST( Pose2Prior, error ) | ||||||
| /* ************************************************************************* */ | /* ************************************************************************* */ | ||||||
| // common Pose2Prior for tests below
 | // common Pose2Prior for tests below
 | ||||||
| static Pose2 prior(2,2,M_PI_2); | static Pose2 prior(2,2,M_PI_2); | ||||||
| static Pose2Prior factor(1,prior, covariance); | static Pose2Prior factor(1,prior, model); | ||||||
| 
 | 
 | ||||||
| /* ************************************************************************* */ | /* ************************************************************************* */ | ||||||
| // The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector
 | // The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue