QPSolver in progress. Finish building dual graph, but not tested.

Use mixed constrained noise with sigma < 0 to denote inequalities.
Working set implements the active set method, turning inactive inequalities
to active one as equality constraints by setting their corresponding sigmas to 0
and vice versa. Dual graph now has to deal with mixed sigmas.
release/4.3a0
thduynguyen 2014-04-14 22:57:55 -04:00
parent bcab483574
commit a31e9568a1
5 changed files with 421 additions and 3 deletions

View File

@ -327,12 +327,21 @@ double weightedPseudoinverse(const Vector& a, const Vector& weights,
vector<bool> isZero;
for (size_t i = 0; i < m; ++i) isZero.push_back(fabs(a[i]) < 1e-9);
// If there is a valid (a!=0) constraint (sigma==0) return the first one
for (size_t i = 0; i < m; ++i)
for (size_t i = 0; i < m; ++i) {
// If there is a valid (a!=0) constraint (sigma==0) return the first one
if (weights[i] == inf && !isZero[i]) {
// Basically, instead of doing a normal QR step with the weighted
// pseudoinverse, we enforce the constraint by turning
// ax + AS = b into x + (A/a)S = b/a, for the first row where a!=0
pseudo = delta(m, i, 1 / a[i]);
return inf;
}
// If there is a valid (a!=0) inequality constraint (sigma<0), ignore it by returning 0
else if (weights[i] < 0 && !isZero[i]) {
pseudo = zero(m);
return 0;
}
}
// Form psuedo-inverse inv(a'inv(Sigma)a)a'inv(Sigma)
// For diagonal Sigma, inv(Sigma) = diag(precisions)

View File

@ -642,6 +642,13 @@ void JacobianFactor::setModel(bool anyConstrained, const Vector& sigmas) {
model_ = noiseModel::Diagonal::Sigmas(sigmas);
}
/* ************************************************************************* */
void JacobianFactor::setModel(const noiseModel::Diagonal::shared_ptr& model) {
if ((size_t) model->dim() != this->rows())
throw InvalidNoiseModel(this->rows(), model->dim());
model_ = model;
}
/* ************************************************************************* */
std::pair<boost::shared_ptr<GaussianConditional>,
boost::shared_ptr<JacobianFactor> > EliminateQR(

View File

@ -298,6 +298,7 @@ namespace gtsam {
/** set noiseModel correctly */
void setModel(bool anyConstrained, const Vector& sigmas);
void setModel(const noiseModel::Diagonal::shared_ptr& model);
/**
* Densely partially eliminate with QR factorization, this is usually provided as an argument to

View File

@ -428,20 +428,35 @@ SharedDiagonal Constrained::QR(Matrix& Ab) const {
Vector pseudo(m); // allocate storage for pseudo-inverse
Vector invsigmas = reciprocal(sigmas_);
// Obtain the signs of each elements.
// We use negative signs to denote inequality constraints
// TODO: might be slow!
Vector signs = ediv(sigmas_, sigmas_.cwiseAbs());
gtsam::print(invsigmas, "invsigmas: ");
Vector weights = emul(invsigmas,invsigmas); // calculate weights once
// We use negative signs to denote inequality constraints
weights = emul(weights, signs);
gtsam::print(weights, "weights: ");
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
gtsam::print(Ab, "Ab = ");
cout << " n = " << n << endl;
for (size_t j=0; j<n; ++j) {
cout << "--------------------" << endl;
cout << "j: " << j << endl;
// extract the first column of A
Vector a = Ab.col(j);
gtsam::print(a, "a = ");
// Calculate weighted pseudo-inverse and corresponding precision
gttic(constrained_QR_weightedPseudoinverse);
double precision = weightedPseudoinverse(a, weights, pseudo);
gttoc(constrained_QR_weightedPseudoinverse);
cout << "precision: " << precision << endl;
gtsam::print(pseudo, "pseudo: ");
// If precision is zero, no information on this column
// This is actually not limited to constraints, could happen in Gaussian::QR
@ -452,12 +467,16 @@ SharedDiagonal Constrained::QR(Matrix& Ab) const {
// create solution [r d], rhs is automatically r(n)
Vector rd(n+1); // uninitialized !
rd(j)=1.0; // put 1 on diagonal
for (size_t j2=j+1; j2<n+1; ++j2) // and fill in remainder with dot-products
for (size_t j2=j+1; j2<n+1; ++j2) { // and fill in remainder with dot-products
Vector Abj2 = Ab.col(j2);
gtsam::print(Abj2, "Ab.col(j2): ");
rd(j2) = pseudo.dot(Ab.col(j2));
}
gttoc(constrained_QR_create_rd);
// construct solution (r, d, sigma)
Rd.push_back(boost::make_tuple(j, rd, precision));
gtsam::print(rd, "rd = ");
// exit after rank exhausted
if (Rd.size()>=maxRank) break;
@ -466,6 +485,8 @@ SharedDiagonal Constrained::QR(Matrix& Ab) const {
gttic(constrained_QR_update_Ab);
Ab.middleCols(j+1,n-j) -= a * rd.segment(j+1, n-j).transpose();
gttoc(constrained_QR_update_Ab);
gtsam::print(Ab, "Updated Ab = ");
}
// Create storage for precisions

View File

@ -0,0 +1,380 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testQPSolver.cpp
* @brief Test simple QP solver for a linear inequality constraint
* @date Apr 10, 2014
* @author Duy-Nguyen Ta
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using namespace gtsam::symbol_shorthand;
#ifdef __CDT_PARSER__
#undef BOOST_FOREACH
#define BOOST_FOREACH(a, b) for(a; ; )
#endif
class QPSolver {
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
GaussianFactorGraph workingGraph_; //!< working set
VectorValues currentSolution_;
FastVector<size_t> constraintIndices_; //!< Indices of constrained factors in the original graph
GaussianFactorGraph::shared_ptr freeHessians_;
VariableIndex freeHessianVarIndex_;
VariableIndex fullFactorIndices_; //!< indices of factors involving each variable.
// gtsam calls it "VariableIndex", but I think FactorIndex
// makes more sense, because it really stores factor indices.
public:
/// Constructor
QPSolver(const GaussianFactorGraph& graph, const VectorValues& initials) :
graph_(graph), workingGraph_(graph.clone()), currentSolution_(initials),
fullFactorIndices_(graph) {
// Split the original graph into unconstrained and constrained part
// and collect indices of constrained factors
for (size_t i = 0; i < graph.nrFactors(); ++i) {
// obtain the factor and its noise model
JacobianFactor::shared_ptr jacobian = toJacobian(graph.at(i));
if (jacobian && jacobian->get_model()
&& jacobian->get_model()->isConstrained()) {
constraintIndices_.push_back(i);
}
}
// Collect constrained variable keys
KeySet constrainedVars;
BOOST_FOREACH(size_t index, constraintIndices_) {
KeyVector keys = graph[index]->keys();
constrainedVars.insert(keys.begin(), keys.end());
}
// Collect unconstrained hessians of constrained vars to build dual graph
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph, constrainedVars);
freeHessianVarIndex_ = VariableIndex(*freeHessians_);
}
/// Return indices of all constrained factors
FastVector<size_t> constraintIndices() const { return constraintIndices_; }
/// Convert a Gaussian factor to a jacobian. return empty shared ptr if failed
JacobianFactor::shared_ptr toJacobian(const GaussianFactor::shared_ptr& factor) const {
JacobianFactor::shared_ptr jacobian(
boost::dynamic_pointer_cast<JacobianFactor>(factor));
return jacobian;
}
/// Convert a Gaussian factor to a Hessian. Return empty shared ptr if failed
HessianFactor::shared_ptr toHessian(const GaussianFactor::shared_ptr factor) const {
HessianFactor::shared_ptr hessian(boost::dynamic_pointer_cast<HessianFactor>(factor));
return hessian;
}
/// Return the Hessian factor graph of constrained variables
GaussianFactorGraph::shared_ptr freeHessiansOfConstrainedVars() const {
return freeHessians_;
}
/* ************************************************************************* */
GaussianFactorGraph::shared_ptr unconstrainedHessiansOfConstrainedVars(
const GaussianFactorGraph& graph, const KeySet& constrainedVars) const {
VariableIndex variableIndex(graph);
GaussianFactorGraph::shared_ptr hfg = boost::make_shared<GaussianFactorGraph>();
// Collect all factors involving constrained vars
FastSet<size_t> factors;
BOOST_FOREACH(Key key, constrainedVars) {
VariableIndex::Factors factorsOfThisVar = variableIndex[key];
BOOST_FOREACH(size_t factorIndex, factorsOfThisVar) {
factors.insert(factorIndex);
}
}
// Convert each factor into Hessian
BOOST_FOREACH(size_t factorIndex, factors) {
if (!graph[factorIndex]) continue;
// See if this is a Jacobian factor
JacobianFactor::shared_ptr jf = toJacobian(graph[factorIndex]);
if (jf) {
// Dealing with mixed constrained factor
if (jf->get_model() && jf->isConstrained()) {
// Turn a mixed-constrained factor into a factor with 0 information on the constrained part
Vector sigmas = jf->get_model()->sigmas();
Vector newPrecisions(sigmas.size());
bool mixed = false;
for (size_t s=0; s<sigmas.size(); ++s) {
if (sigmas[s] <= 1e-9) newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
else {
newPrecisions[s] = 1.0/sigmas[s];
mixed = true;
}
}
if (mixed) { // only add free hessians if it's mixed
JacobianFactor::shared_ptr newJacobian = toJacobian(jf->clone());
newJacobian->setModel(noiseModel::Diagonal::Precisions(newPrecisions));
hfg->push_back(HessianFactor(*newJacobian));
}
}
else { // unconstrained Jacobian
// Convert the original linear factor to Hessian factor
hfg->push_back(HessianFactor(*graph[factorIndex]));
}
}
else { // If it's not a Jacobian, it should be a hessian factor. Just add!
hfg->push_back(graph[factorIndex]);
}
}
return hfg;
}
/* ************************************************************************* */
/**
* Build the dual graph to solve for the Lagrange multipliers.
*
* The Lagrangian function is:
* L(X,lambdas) = f(X) - \sum_k lambda_k * c_k(X),
* where the unconstrained part is
* f(X) = 0.5*X'*G*X - X'*g + 0.5*f0
* and the linear equality constraints are
* c1(X), c2(X), ..., cm(X)
*
* Take the derivative of L wrt X at the solution and set it to 0, we have
* \grad f(X) = \sum_k lambda_k * \grad c_k(X) (*)
*
* For each set of rows of (*) corresponding to a variable xi involving in some constraints
* we have:
* \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
* \grad c_k(xi) = \frac{\partial c_k}{\partial xi}'
*
* Note: If xi does not involve in any constraint, we have the trivial condition
* \grad f(Xi) = 0, which should be satisfied as a usual condition for unconstrained variables.
*
* So each variable xi involving in some constraints becomes a linear factor A*lambdas - b = 0
* on the constraints' lambda multipliers, as follows:
* - The jacobian term A_k for each lambda_k is \grad c_k(xi)
* - The constant term b is \grad f(xi), which can be computed from all unconstrained
* Hessian factors connecting to xi: \grad f(xi) = \sum_j G_ij*xj - gi
*/
GaussianFactorGraph::shared_ptr buildDualGraph(const VectorValues& x0) const {
// The dual graph to return
GaussianFactorGraph::shared_ptr dualGraph = boost::make_shared<GaussianFactorGraph>();
// For each variable xi involving in some constraint, compute the unconstrained gradient
// wrt xi from the prebuilt freeHessian graph
// \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
BOOST_FOREACH(const VariableIndex::value_type& xiKey_factors, freeHessianVarIndex_) {
Key xiKey = xiKey_factors.first;
VariableIndex::Factors xiFactors = xiKey_factors.second;
// Find xi's dim from the first factor on xi
if (xiFactors.size() == 0) continue;
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(0);
size_t xiDim = xiFactor0->getDim(xiFactor0->find(xiKey));
// Compute gradf(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
Vector gradf_xi = zero(xiDim);
BOOST_FOREACH(size_t factorIx, xiFactors) {
HessianFactor::shared_ptr factor = toHessian(freeHessians_->at(factorIx));
Factor::const_iterator xi = factor->find(xiKey);
// Sum over Gij*xj for all xj connecting to xi
for (Factor::const_iterator xj = factor->begin(); xj != factor->end();
++xj) {
// Obtain Gij from the Hessian factor
// Hessian factor only stores an upper triangular matrix, so be careful when i>j
Matrix Gij;
if (xi > xj) {
Matrix Gji = factor->info(xj, xi);
Gij = Gji.transpose();
}
else {
Gij = factor->info(xi, xj);
}
// Accumulate Gij*xj to gradf
Vector x0_j = x0.at(*xj);
gradf_xi += Gij * x0_j;
}
// Subtract the linear term gi
gradf_xi += -factor->linearTerm(xi);
}
// Obtain the jacobians for lambda variables from their corresponding constraints
// gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
std::vector<std::pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
JacobianFactor::shared_ptr factor = toJacobian(workingGraph_.at(factorIndex));
if (!factor || !factor->isConstrained()) continue;
// Gradient is the transpose of the Jacobian: A_k = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
// Each column for each lambda_k corresponds to [the transpose of] each constrained row factor
Matrix A_k = factor->getA(factor->find(xiKey)).transpose();
// Deal with mixed sigmas: no information if sigma != 0
Vector sigmas = factor->get_model()->sigmas();
for (size_t sigmaIx = 0; sigmaIx<sigmas.size(); ++sigmaIx) {
if (fabs(sigmas[sigmaIx]) > 1e-9) { // if it's either ineq (sigma<0) or unconstrained (sigma>0)
A_k.col(sigmaIx) = zero(A_k.rows());
}
}
// Use factorIndex as the lambda's key.
lambdaTerms.push_back(make_pair(factorIndex, A_k));
}
// Enforce constrained noise model so lambda is solved with QR and exactly satisfies all the equation
dualGraph->push_back(JacobianFactor(lambdaTerms, gradf_xi, noiseModel::Constrained::All(gradf_xi.size())));
}
return dualGraph;
}
/// Find max lambda element
std::pair<int, int> findMostViolatedIneqConstraint(const VectorValues& lambdas) {
int worstFactorIx = -1, worstSigmaIx = -1;
double maxLambda = 0.0;
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
Vector lambda = lambdas.at(factorIx);
Vector orgSigmas = toJacobian(graph_.at(factorIx))->get_model()->sigmas();
for (size_t j = 0; j<lambda.size(); ++j)
// If it is an active inequality, and lambda is larger than the current max
if (orgSigmas[j]<0 && lambda[j]>maxLambda) {
worstFactorIx = factorIx;
worstSigmaIx = j;
maxLambda = lambda[j];
}
}
return make_pair(worstFactorIx, worstSigmaIx);
}
/** Iterate 1 step */
// bool iterate() {
// // Obtain the solution from the current working graph
// VectorValues newSolution = workingGraph_.optimize();
//
// // If we CAN'T move further
// if (newSolution == currentSolution) {
// // Compute lambda from the dual graph
// GaussianFactorGraph dualGraph = buildDualGraph(graph, newSolution);
// VectorValues lambdas = dualGraph.optimize();
//
// int factorIx, sigmaIx;
// boost::tie(factorIx, sigmaIx) = findMostViolatedIneqConstraint(lambdas);
// // If all constraints are satisfied: We have found the solution!!
// if (factorIx < 0) {
// return true;
// }
// else {
// // If some constraints are violated!
// Vector sigmas = toJacobian(workingGraph.at(factorIx))->get_model()->sigmas();
// sigmas[sigmaIx] = 0.0;
// toJacobian()->setModel(true, sigmas);
// // No need to update the currentSolution, since we haven't moved anywhere
// }
// }
// else {
// // If we CAN make some progress
// // Adapt stepsize if some inactive inequality constraints complain about this move
// // also add to the working set the one that complains the most
// VectorValues alpha = updateWorkingSetInplace();
// currentSolution_ = (1 - alpha) * currentSolution_ + alpha * newSolution;
// }
//
// return false;
// }
//
// VectorValues optimize() const {
// bool converged = false;
// while (!converged) {
// converged = iterate();
// }
// }
};
/* ************************************************************************* */
// Create test graph according to Forst10book_pg171Ex5
std::pair<GaussianFactorGraph, VectorValues> createTestCase() {
GaussianFactorGraph graph;
// Objective functions x1^2 - x1*x2 + x2^2 - 3*x1
// Note the Hessian encodes:
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 0
graph.push_back(
HessianFactor(X(1), X(2), 2.0*ones(1, 1), -ones(1, 1), 3.0*ones(1),
2.0*ones(1, 1), zero(1), 1.0));
// Inequality constraints
// x1 + x2 <= 2 --> x1 + x2 -2 <= 0, hence we negate the b vector
Matrix A1 = (Matrix(4, 1)<<1, -1, 0, 1);
Matrix A2 = (Matrix(4, 1)<<1, 0, -1, 0);
Vector b = -(Vector(4)<<2, 0, 0, 1.5);
// Special constrained noise model denoting <= inequalities with negative sigmas
noiseModel::Constrained::shared_ptr noise =
noiseModel::Constrained::MixedSigmas((Vector(4)<<-1, -1, -1, -1));
graph.push_back(JacobianFactor(X(1), A1, X(2), A2, b, noise));
// Initials values
VectorValues initials;
initials.insert(X(1), ones(1));
initials.insert(X(2), ones(1));
return make_pair(graph, initials);
}
TEST(QPSolver, constraintsAux) {
GaussianFactorGraph graph;
VectorValues initials;
boost::tie(graph, initials)= createTestCase();
QPSolver solver(graph, initials);
FastVector<size_t> constraintIx = solver.constraintIndices();
LONGS_EQUAL(1, constraintIx.size());
LONGS_EQUAL(1, constraintIx[0]);
VectorValues lambdas;
lambdas.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, 0.3, 0.1));
int factorIx, lambdaIx;
boost::tie(factorIx, lambdaIx) = solver.findMostViolatedIneqConstraint(lambdas);
LONGS_EQUAL(1, factorIx);
LONGS_EQUAL(2, lambdaIx);
VectorValues lambdas2;
lambdas2.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, -0.3, -0.1));
int factorIx2, lambdaIx2;
boost::tie(factorIx2, lambdaIx2) = solver.findMostViolatedIneqConstraint(lambdas2);
LONGS_EQUAL(-1, factorIx2);
LONGS_EQUAL(-1, lambdaIx2);
GaussianFactorGraph::shared_ptr freeHessian = solver.freeHessiansOfConstrainedVars();
GaussianFactorGraph expectedFreeHessian;
expectedFreeHessian.push_back(
HessianFactor(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
2.0 * ones(1, 1), zero(1), 1.0));
EXPECT(expectedFreeHessian.equals(*freeHessian));
GaussianFactorGraph::shared_ptr dualGraph = solver.buildDualGraph(initials);
dualGraph->print("Dual graph: ");
VectorValues dual = dualGraph->optimize();
dual.print("Dual: ");
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */