|
|
|
@ -0,0 +1,380 @@
|
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
|
|
|
* Atlanta, Georgia 30332-0415
|
|
|
|
|
* All Rights Reserved
|
|
|
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
|
|
|
|
|
|
* See LICENSE for the license information
|
|
|
|
|
|
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @file testQPSolver.cpp
|
|
|
|
|
* @brief Test simple QP solver for a linear inequality constraint
|
|
|
|
|
* @date Apr 10, 2014
|
|
|
|
|
* @author Duy-Nguyen Ta
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
|
#include <gtsam/linear/NoiseModel.h>
|
|
|
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
|
|
|
#include <gtsam/linear/VectorValues.h>
|
|
|
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
using namespace gtsam;
|
|
|
|
|
using namespace gtsam::symbol_shorthand;
|
|
|
|
|
|
|
|
|
|
#ifdef __CDT_PARSER__
|
|
|
|
|
#undef BOOST_FOREACH
|
|
|
|
|
#define BOOST_FOREACH(a, b) for(a; ; )
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
class QPSolver {
|
|
|
|
|
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
|
|
|
|
|
GaussianFactorGraph workingGraph_; //!< working set
|
|
|
|
|
VectorValues currentSolution_;
|
|
|
|
|
FastVector<size_t> constraintIndices_; //!< Indices of constrained factors in the original graph
|
|
|
|
|
GaussianFactorGraph::shared_ptr freeHessians_;
|
|
|
|
|
VariableIndex freeHessianVarIndex_;
|
|
|
|
|
VariableIndex fullFactorIndices_; //!< indices of factors involving each variable.
|
|
|
|
|
// gtsam calls it "VariableIndex", but I think FactorIndex
|
|
|
|
|
// makes more sense, because it really stores factor indices.
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
/// Constructor
|
|
|
|
|
QPSolver(const GaussianFactorGraph& graph, const VectorValues& initials) :
|
|
|
|
|
graph_(graph), workingGraph_(graph.clone()), currentSolution_(initials),
|
|
|
|
|
fullFactorIndices_(graph) {
|
|
|
|
|
|
|
|
|
|
// Split the original graph into unconstrained and constrained part
|
|
|
|
|
// and collect indices of constrained factors
|
|
|
|
|
for (size_t i = 0; i < graph.nrFactors(); ++i) {
|
|
|
|
|
// obtain the factor and its noise model
|
|
|
|
|
JacobianFactor::shared_ptr jacobian = toJacobian(graph.at(i));
|
|
|
|
|
if (jacobian && jacobian->get_model()
|
|
|
|
|
&& jacobian->get_model()->isConstrained()) {
|
|
|
|
|
constraintIndices_.push_back(i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Collect constrained variable keys
|
|
|
|
|
KeySet constrainedVars;
|
|
|
|
|
BOOST_FOREACH(size_t index, constraintIndices_) {
|
|
|
|
|
KeyVector keys = graph[index]->keys();
|
|
|
|
|
constrainedVars.insert(keys.begin(), keys.end());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Collect unconstrained hessians of constrained vars to build dual graph
|
|
|
|
|
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph, constrainedVars);
|
|
|
|
|
freeHessianVarIndex_ = VariableIndex(*freeHessians_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Return indices of all constrained factors
|
|
|
|
|
FastVector<size_t> constraintIndices() const { return constraintIndices_; }
|
|
|
|
|
|
|
|
|
|
/// Convert a Gaussian factor to a jacobian. return empty shared ptr if failed
|
|
|
|
|
JacobianFactor::shared_ptr toJacobian(const GaussianFactor::shared_ptr& factor) const {
|
|
|
|
|
JacobianFactor::shared_ptr jacobian(
|
|
|
|
|
boost::dynamic_pointer_cast<JacobianFactor>(factor));
|
|
|
|
|
return jacobian;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Convert a Gaussian factor to a Hessian. Return empty shared ptr if failed
|
|
|
|
|
HessianFactor::shared_ptr toHessian(const GaussianFactor::shared_ptr factor) const {
|
|
|
|
|
HessianFactor::shared_ptr hessian(boost::dynamic_pointer_cast<HessianFactor>(factor));
|
|
|
|
|
return hessian;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Return the Hessian factor graph of constrained variables
|
|
|
|
|
GaussianFactorGraph::shared_ptr freeHessiansOfConstrainedVars() const {
|
|
|
|
|
return freeHessians_;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
|
|
|
GaussianFactorGraph::shared_ptr unconstrainedHessiansOfConstrainedVars(
|
|
|
|
|
const GaussianFactorGraph& graph, const KeySet& constrainedVars) const {
|
|
|
|
|
VariableIndex variableIndex(graph);
|
|
|
|
|
GaussianFactorGraph::shared_ptr hfg = boost::make_shared<GaussianFactorGraph>();
|
|
|
|
|
|
|
|
|
|
// Collect all factors involving constrained vars
|
|
|
|
|
FastSet<size_t> factors;
|
|
|
|
|
BOOST_FOREACH(Key key, constrainedVars) {
|
|
|
|
|
VariableIndex::Factors factorsOfThisVar = variableIndex[key];
|
|
|
|
|
BOOST_FOREACH(size_t factorIndex, factorsOfThisVar) {
|
|
|
|
|
factors.insert(factorIndex);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Convert each factor into Hessian
|
|
|
|
|
BOOST_FOREACH(size_t factorIndex, factors) {
|
|
|
|
|
if (!graph[factorIndex]) continue;
|
|
|
|
|
// See if this is a Jacobian factor
|
|
|
|
|
JacobianFactor::shared_ptr jf = toJacobian(graph[factorIndex]);
|
|
|
|
|
if (jf) {
|
|
|
|
|
// Dealing with mixed constrained factor
|
|
|
|
|
if (jf->get_model() && jf->isConstrained()) {
|
|
|
|
|
// Turn a mixed-constrained factor into a factor with 0 information on the constrained part
|
|
|
|
|
Vector sigmas = jf->get_model()->sigmas();
|
|
|
|
|
Vector newPrecisions(sigmas.size());
|
|
|
|
|
bool mixed = false;
|
|
|
|
|
for (size_t s=0; s<sigmas.size(); ++s) {
|
|
|
|
|
if (sigmas[s] <= 1e-9) newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
|
|
|
|
|
else {
|
|
|
|
|
newPrecisions[s] = 1.0/sigmas[s];
|
|
|
|
|
mixed = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (mixed) { // only add free hessians if it's mixed
|
|
|
|
|
JacobianFactor::shared_ptr newJacobian = toJacobian(jf->clone());
|
|
|
|
|
newJacobian->setModel(noiseModel::Diagonal::Precisions(newPrecisions));
|
|
|
|
|
hfg->push_back(HessianFactor(*newJacobian));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { // unconstrained Jacobian
|
|
|
|
|
// Convert the original linear factor to Hessian factor
|
|
|
|
|
hfg->push_back(HessianFactor(*graph[factorIndex]));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { // If it's not a Jacobian, it should be a hessian factor. Just add!
|
|
|
|
|
hfg->push_back(graph[factorIndex]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
return hfg;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
|
|
|
/**
|
|
|
|
|
* Build the dual graph to solve for the Lagrange multipliers.
|
|
|
|
|
*
|
|
|
|
|
* The Lagrangian function is:
|
|
|
|
|
* L(X,lambdas) = f(X) - \sum_k lambda_k * c_k(X),
|
|
|
|
|
* where the unconstrained part is
|
|
|
|
|
* f(X) = 0.5*X'*G*X - X'*g + 0.5*f0
|
|
|
|
|
* and the linear equality constraints are
|
|
|
|
|
* c1(X), c2(X), ..., cm(X)
|
|
|
|
|
*
|
|
|
|
|
* Take the derivative of L wrt X at the solution and set it to 0, we have
|
|
|
|
|
* \grad f(X) = \sum_k lambda_k * \grad c_k(X) (*)
|
|
|
|
|
*
|
|
|
|
|
* For each set of rows of (*) corresponding to a variable xi involving in some constraints
|
|
|
|
|
* we have:
|
|
|
|
|
* \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
|
|
|
|
|
* \grad c_k(xi) = \frac{\partial c_k}{\partial xi}'
|
|
|
|
|
*
|
|
|
|
|
* Note: If xi does not involve in any constraint, we have the trivial condition
|
|
|
|
|
* \grad f(Xi) = 0, which should be satisfied as a usual condition for unconstrained variables.
|
|
|
|
|
*
|
|
|
|
|
* So each variable xi involving in some constraints becomes a linear factor A*lambdas - b = 0
|
|
|
|
|
* on the constraints' lambda multipliers, as follows:
|
|
|
|
|
* - The jacobian term A_k for each lambda_k is \grad c_k(xi)
|
|
|
|
|
* - The constant term b is \grad f(xi), which can be computed from all unconstrained
|
|
|
|
|
* Hessian factors connecting to xi: \grad f(xi) = \sum_j G_ij*xj - gi
|
|
|
|
|
*/
|
|
|
|
|
GaussianFactorGraph::shared_ptr buildDualGraph(const VectorValues& x0) const {
|
|
|
|
|
// The dual graph to return
|
|
|
|
|
GaussianFactorGraph::shared_ptr dualGraph = boost::make_shared<GaussianFactorGraph>();
|
|
|
|
|
|
|
|
|
|
// For each variable xi involving in some constraint, compute the unconstrained gradient
|
|
|
|
|
// wrt xi from the prebuilt freeHessian graph
|
|
|
|
|
// \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
|
|
|
|
|
BOOST_FOREACH(const VariableIndex::value_type& xiKey_factors, freeHessianVarIndex_) {
|
|
|
|
|
Key xiKey = xiKey_factors.first;
|
|
|
|
|
VariableIndex::Factors xiFactors = xiKey_factors.second;
|
|
|
|
|
|
|
|
|
|
// Find xi's dim from the first factor on xi
|
|
|
|
|
if (xiFactors.size() == 0) continue;
|
|
|
|
|
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(0);
|
|
|
|
|
size_t xiDim = xiFactor0->getDim(xiFactor0->find(xiKey));
|
|
|
|
|
|
|
|
|
|
// Compute gradf(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
|
|
|
|
|
Vector gradf_xi = zero(xiDim);
|
|
|
|
|
BOOST_FOREACH(size_t factorIx, xiFactors) {
|
|
|
|
|
HessianFactor::shared_ptr factor = toHessian(freeHessians_->at(factorIx));
|
|
|
|
|
Factor::const_iterator xi = factor->find(xiKey);
|
|
|
|
|
// Sum over Gij*xj for all xj connecting to xi
|
|
|
|
|
for (Factor::const_iterator xj = factor->begin(); xj != factor->end();
|
|
|
|
|
++xj) {
|
|
|
|
|
// Obtain Gij from the Hessian factor
|
|
|
|
|
// Hessian factor only stores an upper triangular matrix, so be careful when i>j
|
|
|
|
|
Matrix Gij;
|
|
|
|
|
if (xi > xj) {
|
|
|
|
|
Matrix Gji = factor->info(xj, xi);
|
|
|
|
|
Gij = Gji.transpose();
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
Gij = factor->info(xi, xj);
|
|
|
|
|
}
|
|
|
|
|
// Accumulate Gij*xj to gradf
|
|
|
|
|
Vector x0_j = x0.at(*xj);
|
|
|
|
|
gradf_xi += Gij * x0_j;
|
|
|
|
|
}
|
|
|
|
|
// Subtract the linear term gi
|
|
|
|
|
gradf_xi += -factor->linearTerm(xi);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Obtain the jacobians for lambda variables from their corresponding constraints
|
|
|
|
|
// gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
|
|
|
|
|
std::vector<std::pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
|
|
|
|
|
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
|
|
|
|
|
JacobianFactor::shared_ptr factor = toJacobian(workingGraph_.at(factorIndex));
|
|
|
|
|
if (!factor || !factor->isConstrained()) continue;
|
|
|
|
|
// Gradient is the transpose of the Jacobian: A_k = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
|
|
|
|
|
// Each column for each lambda_k corresponds to [the transpose of] each constrained row factor
|
|
|
|
|
Matrix A_k = factor->getA(factor->find(xiKey)).transpose();
|
|
|
|
|
// Deal with mixed sigmas: no information if sigma != 0
|
|
|
|
|
Vector sigmas = factor->get_model()->sigmas();
|
|
|
|
|
for (size_t sigmaIx = 0; sigmaIx<sigmas.size(); ++sigmaIx) {
|
|
|
|
|
if (fabs(sigmas[sigmaIx]) > 1e-9) { // if it's either ineq (sigma<0) or unconstrained (sigma>0)
|
|
|
|
|
A_k.col(sigmaIx) = zero(A_k.rows());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Use factorIndex as the lambda's key.
|
|
|
|
|
lambdaTerms.push_back(make_pair(factorIndex, A_k));
|
|
|
|
|
}
|
|
|
|
|
// Enforce constrained noise model so lambda is solved with QR and exactly satisfies all the equation
|
|
|
|
|
dualGraph->push_back(JacobianFactor(lambdaTerms, gradf_xi, noiseModel::Constrained::All(gradf_xi.size())));
|
|
|
|
|
}
|
|
|
|
|
return dualGraph;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Find max lambda element
|
|
|
|
|
std::pair<int, int> findMostViolatedIneqConstraint(const VectorValues& lambdas) {
|
|
|
|
|
int worstFactorIx = -1, worstSigmaIx = -1;
|
|
|
|
|
double maxLambda = 0.0;
|
|
|
|
|
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
|
|
|
|
|
Vector lambda = lambdas.at(factorIx);
|
|
|
|
|
Vector orgSigmas = toJacobian(graph_.at(factorIx))->get_model()->sigmas();
|
|
|
|
|
for (size_t j = 0; j<lambda.size(); ++j)
|
|
|
|
|
// If it is an active inequality, and lambda is larger than the current max
|
|
|
|
|
if (orgSigmas[j]<0 && lambda[j]>maxLambda) {
|
|
|
|
|
worstFactorIx = factorIx;
|
|
|
|
|
worstSigmaIx = j;
|
|
|
|
|
maxLambda = lambda[j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return make_pair(worstFactorIx, worstSigmaIx);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Iterate 1 step */
|
|
|
|
|
// bool iterate() {
|
|
|
|
|
// // Obtain the solution from the current working graph
|
|
|
|
|
// VectorValues newSolution = workingGraph_.optimize();
|
|
|
|
|
//
|
|
|
|
|
// // If we CAN'T move further
|
|
|
|
|
// if (newSolution == currentSolution) {
|
|
|
|
|
// // Compute lambda from the dual graph
|
|
|
|
|
// GaussianFactorGraph dualGraph = buildDualGraph(graph, newSolution);
|
|
|
|
|
// VectorValues lambdas = dualGraph.optimize();
|
|
|
|
|
//
|
|
|
|
|
// int factorIx, sigmaIx;
|
|
|
|
|
// boost::tie(factorIx, sigmaIx) = findMostViolatedIneqConstraint(lambdas);
|
|
|
|
|
// // If all constraints are satisfied: We have found the solution!!
|
|
|
|
|
// if (factorIx < 0) {
|
|
|
|
|
// return true;
|
|
|
|
|
// }
|
|
|
|
|
// else {
|
|
|
|
|
// // If some constraints are violated!
|
|
|
|
|
// Vector sigmas = toJacobian(workingGraph.at(factorIx))->get_model()->sigmas();
|
|
|
|
|
// sigmas[sigmaIx] = 0.0;
|
|
|
|
|
// toJacobian()->setModel(true, sigmas);
|
|
|
|
|
// // No need to update the currentSolution, since we haven't moved anywhere
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// else {
|
|
|
|
|
// // If we CAN make some progress
|
|
|
|
|
// // Adapt stepsize if some inactive inequality constraints complain about this move
|
|
|
|
|
// // also add to the working set the one that complains the most
|
|
|
|
|
// VectorValues alpha = updateWorkingSetInplace();
|
|
|
|
|
// currentSolution_ = (1 - alpha) * currentSolution_ + alpha * newSolution;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// return false;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// VectorValues optimize() const {
|
|
|
|
|
// bool converged = false;
|
|
|
|
|
// while (!converged) {
|
|
|
|
|
// converged = iterate();
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
|
|
|
// Create test graph according to Forst10book_pg171Ex5
|
|
|
|
|
std::pair<GaussianFactorGraph, VectorValues> createTestCase() {
|
|
|
|
|
GaussianFactorGraph graph;
|
|
|
|
|
|
|
|
|
|
// Objective functions x1^2 - x1*x2 + x2^2 - 3*x1
|
|
|
|
|
// Note the Hessian encodes:
|
|
|
|
|
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
|
|
|
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 0
|
|
|
|
|
graph.push_back(
|
|
|
|
|
HessianFactor(X(1), X(2), 2.0*ones(1, 1), -ones(1, 1), 3.0*ones(1),
|
|
|
|
|
2.0*ones(1, 1), zero(1), 1.0));
|
|
|
|
|
|
|
|
|
|
// Inequality constraints
|
|
|
|
|
// x1 + x2 <= 2 --> x1 + x2 -2 <= 0, hence we negate the b vector
|
|
|
|
|
Matrix A1 = (Matrix(4, 1)<<1, -1, 0, 1);
|
|
|
|
|
Matrix A2 = (Matrix(4, 1)<<1, 0, -1, 0);
|
|
|
|
|
Vector b = -(Vector(4)<<2, 0, 0, 1.5);
|
|
|
|
|
// Special constrained noise model denoting <= inequalities with negative sigmas
|
|
|
|
|
noiseModel::Constrained::shared_ptr noise =
|
|
|
|
|
noiseModel::Constrained::MixedSigmas((Vector(4)<<-1, -1, -1, -1));
|
|
|
|
|
graph.push_back(JacobianFactor(X(1), A1, X(2), A2, b, noise));
|
|
|
|
|
|
|
|
|
|
// Initials values
|
|
|
|
|
VectorValues initials;
|
|
|
|
|
initials.insert(X(1), ones(1));
|
|
|
|
|
initials.insert(X(2), ones(1));
|
|
|
|
|
|
|
|
|
|
return make_pair(graph, initials);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(QPSolver, constraintsAux) {
|
|
|
|
|
GaussianFactorGraph graph;
|
|
|
|
|
VectorValues initials;
|
|
|
|
|
boost::tie(graph, initials)= createTestCase();
|
|
|
|
|
QPSolver solver(graph, initials);
|
|
|
|
|
FastVector<size_t> constraintIx = solver.constraintIndices();
|
|
|
|
|
LONGS_EQUAL(1, constraintIx.size());
|
|
|
|
|
LONGS_EQUAL(1, constraintIx[0]);
|
|
|
|
|
|
|
|
|
|
VectorValues lambdas;
|
|
|
|
|
lambdas.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, 0.3, 0.1));
|
|
|
|
|
int factorIx, lambdaIx;
|
|
|
|
|
boost::tie(factorIx, lambdaIx) = solver.findMostViolatedIneqConstraint(lambdas);
|
|
|
|
|
LONGS_EQUAL(1, factorIx);
|
|
|
|
|
LONGS_EQUAL(2, lambdaIx);
|
|
|
|
|
|
|
|
|
|
VectorValues lambdas2;
|
|
|
|
|
lambdas2.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, -0.3, -0.1));
|
|
|
|
|
int factorIx2, lambdaIx2;
|
|
|
|
|
boost::tie(factorIx2, lambdaIx2) = solver.findMostViolatedIneqConstraint(lambdas2);
|
|
|
|
|
LONGS_EQUAL(-1, factorIx2);
|
|
|
|
|
LONGS_EQUAL(-1, lambdaIx2);
|
|
|
|
|
|
|
|
|
|
GaussianFactorGraph::shared_ptr freeHessian = solver.freeHessiansOfConstrainedVars();
|
|
|
|
|
GaussianFactorGraph expectedFreeHessian;
|
|
|
|
|
expectedFreeHessian.push_back(
|
|
|
|
|
HessianFactor(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
|
|
|
|
2.0 * ones(1, 1), zero(1), 1.0));
|
|
|
|
|
EXPECT(expectedFreeHessian.equals(*freeHessian));
|
|
|
|
|
|
|
|
|
|
GaussianFactorGraph::shared_ptr dualGraph = solver.buildDualGraph(initials);
|
|
|
|
|
dualGraph->print("Dual graph: ");
|
|
|
|
|
VectorValues dual = dualGraph->optimize();
|
|
|
|
|
dual.print("Dual: ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
|
|
|
int main() {
|
|
|
|
|
TestResult tr;
|
|
|
|
|
return TestRegistry::runAllTests(tr);
|
|
|
|
|
}
|
|
|
|
|
/* ************************************************************************* */
|
|
|
|
|
|