Test DirectProduct by constructing dihedral group Dih6
parent
6c6abe0b6c
commit
9fc9e70dd6
|
|
@ -16,36 +16,56 @@
|
|||
**/
|
||||
|
||||
#include <gtsam/base/Group.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <Eigen/Core>
|
||||
#include <iostream>
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/// Symmetric group
|
||||
template<int N>
|
||||
class Permutation: public Eigen::PermutationMatrix<N> {
|
||||
public:
|
||||
Permutation() {
|
||||
Eigen::PermutationMatrix<N>::setIdentity();
|
||||
}
|
||||
Permutation(const Eigen::PermutationMatrix<N>& P) :
|
||||
class Symmetric: private Eigen::PermutationMatrix<N> {
|
||||
Symmetric(const Eigen::PermutationMatrix<N>& P) :
|
||||
Eigen::PermutationMatrix<N>(P) {
|
||||
}
|
||||
Permutation inverse() const {
|
||||
public:
|
||||
Symmetric() {
|
||||
Eigen::PermutationMatrix<N>::setIdentity();
|
||||
}
|
||||
static Symmetric Transposition(int i, int j) {
|
||||
Symmetric g;
|
||||
return g.applyTranspositionOnTheRight(i, j);
|
||||
}
|
||||
Symmetric operator*(const Symmetric& other) const {
|
||||
return Eigen::PermutationMatrix<N>::operator*(other);
|
||||
}
|
||||
bool operator==(const Symmetric& other) const {
|
||||
for (size_t i = 0; i < N; i++)
|
||||
if (this->indices()[i] != other.indices()[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
Symmetric inverse() const {
|
||||
return Eigen::PermutationMatrix<N>(Eigen::PermutationMatrix<N>::inverse());
|
||||
}
|
||||
friend std::ostream &operator<<(std::ostream &os, const Symmetric& m) {
|
||||
for (size_t i = 0; i < N; i++)
|
||||
os << m.indices()[i] << " ";
|
||||
return os;
|
||||
}
|
||||
void print(const std::string& s = "") const {
|
||||
std::cout << s << *this << std::endl;
|
||||
}
|
||||
bool equals(const Symmetric<N>& other, double tol = 0) const {
|
||||
return this->indices() == other.indices();
|
||||
}
|
||||
};
|
||||
|
||||
/// Define permutation group traits to be a model of the Multiplicative Group concept
|
||||
template<int N>
|
||||
struct traits<Permutation<N> > : internal::MultiplicativeGroupTraits<
|
||||
Permutation<N> > {
|
||||
static void Print(const Permutation<N>& m, const std::string& str = "") {
|
||||
std::cout << m << std::endl;
|
||||
}
|
||||
static bool Equals(const Permutation<N>& m1, const Permutation<N>& m2,
|
||||
double tol = 1e-8) {
|
||||
return m1.indices() == m2.indices();
|
||||
}
|
||||
struct traits<Symmetric<N> > : internal::MultiplicativeGroupTraits<Symmetric<N> >,
|
||||
Testable<Symmetric<N> > {
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
@ -56,17 +76,61 @@ struct traits<Permutation<N> > : internal::MultiplicativeGroupTraits<
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
typedef Permutation<3> G; // Let's use the permutation group of order 3
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Group, Concept) {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<G>));
|
||||
typedef Symmetric<2> S2;
|
||||
TEST(Group, S2) {
|
||||
S2 e, s1 = S2::Transposition(0, 1);
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<S2>));
|
||||
EXPECT(check_group_invariants(e, s1));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Group , Invariants) {
|
||||
G g, h;
|
||||
EXPECT(check_group_invariants(g, h));
|
||||
typedef Symmetric<3> S3;
|
||||
TEST(Group, S3) {
|
||||
S3 e, s1 = S3::Transposition(0, 1), s2 = S3::Transposition(1, 2);
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<S3>));
|
||||
EXPECT(check_group_invariants(e, s1));
|
||||
EXPECT(assert_equal(s1, s1 * e));
|
||||
EXPECT(assert_equal(s1, e * s1));
|
||||
EXPECT(assert_equal(e, s1 * s1));
|
||||
S3 g = s1 * s2; // 1 2 0
|
||||
EXPECT(assert_equal(s1, g * s2));
|
||||
EXPECT(assert_equal(e, compose_pow(g, 0)));
|
||||
EXPECT(assert_equal(g, compose_pow(g, 1)));
|
||||
EXPECT(assert_equal(e, compose_pow(g, 3))); // g is generator of Z3 subgroup
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
// The direct product of S2=Z2 and S3 is the symmetry group of a hexagon,
|
||||
// i.e., the dihedral group of order 12 (denoted Dih6 because 6-sided polygon)
|
||||
typedef DirectProduct<S2, S3> Dih6;
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const Dih6& m) {
|
||||
os << "( " << m.first << ", " << m.second << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
// Provide traits with Testable
|
||||
namespace gtsam {
|
||||
template<>
|
||||
struct traits<Dih6> : internal::MultiplicativeGroupTraits<Dih6> {
|
||||
static void Print(const Dih6& m, const string& s = "") {
|
||||
cout << s << m << endl;
|
||||
}
|
||||
static bool Equals(const Dih6& m1, const Dih6& m2, double tol = 1e-8) {
|
||||
return m1 == m2;
|
||||
}
|
||||
};
|
||||
} // namespace gtsam
|
||||
|
||||
TEST(Group, Dih6) {
|
||||
Dih6 e, g(S2::Transposition(0, 1),
|
||||
S3::Transposition(0, 1) * S3::Transposition(1, 2));
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<Dih6>));
|
||||
EXPECT(check_group_invariants(e, g));
|
||||
EXPECT(assert_equal(e, compose_pow(g, 0)));
|
||||
EXPECT(assert_equal(g, compose_pow(g, 1)));
|
||||
EXPECT(assert_equal(e, compose_pow(g, 6))); // g is generator of Z6 subgroup
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
|
|||
Loading…
Reference in New Issue