Cleaned up comments and headers in examples
							parent
							
								
									5e568bc29d
								
							
						
					
					
						commit
						9f51aad0fc
					
				| 
						 | 
				
			
			@ -14,20 +14,18 @@
 | 
			
		|||
 * @brief Expressions version of Pose2SLAMExample.cpp
 | 
			
		||||
 * @date Oct 2, 2014
 | 
			
		||||
 * @author Frank Dellaert
 | 
			
		||||
 * @author Yong Dian Jian
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// The two new headers that allow using our Automatic Differentiation Expression framework
 | 
			
		||||
#include <gtsam/slam/expressions.h>
 | 
			
		||||
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
 | 
			
		||||
 | 
			
		||||
// Header order is close to far
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
			
		||||
// For an explanation of headers below, please see Pose2SLAMExample.cpp
 | 
			
		||||
#include <gtsam/slam/PriorFactor.h>
 | 
			
		||||
#include <gtsam/slam/BetweenFactor.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | 
			
		||||
#include <gtsam/nonlinear/Marginals.h>
 | 
			
		||||
#include <gtsam/nonlinear/Values.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/inference/Key.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -16,11 +16,14 @@
 | 
			
		|||
 * @author Frank Dellaert
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam/slam/dataset.h>
 | 
			
		||||
// For an explanation of headers below, please see Pose2SLAMExample.cpp
 | 
			
		||||
#include <gtsam/slam/PriorFactor.h>
 | 
			
		||||
#include <gtsam/nonlinear/Marginals.h>
 | 
			
		||||
#include <gtsam/slam/BetweenFactor.h>
 | 
			
		||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/nonlinear/Marginals.h>
 | 
			
		||||
 | 
			
		||||
// This new header allows us to read examples easily from .graph files
 | 
			
		||||
#include <gtsam/slam/dataset.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -16,11 +16,11 @@
 | 
			
		|||
 * @author Frank Dellaert
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// For an explanation of headers below, please see Pose2SLAMExample.cpp
 | 
			
		||||
#include <gtsam/slam/PriorFactor.h>
 | 
			
		||||
#include <gtsam/slam/BetweenFactor.h>
 | 
			
		||||
#include <gtsam/nonlinear/Marginals.h>
 | 
			
		||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -16,47 +16,15 @@
 | 
			
		|||
 * @date June 2, 2012
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * A simple 2D pose slam example solved using a Conjugate-Gradient method
 | 
			
		||||
 *  - The robot moves in a 2 meter square
 | 
			
		||||
 *  - The robot moves 2 meters each step, turning 90 degrees after each step
 | 
			
		||||
 *  - The robot initially faces along the X axis (horizontal, to the right in 2D)
 | 
			
		||||
 *  - We have full odometry between pose
 | 
			
		||||
 *  - We have a loop closure constraint when the robot returns to the first position
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
 | 
			
		||||
// the robot positions
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/geometry/Point2.h>
 | 
			
		||||
 | 
			
		||||
// Each variable in the system (poses) must be identified with a unique key.
 | 
			
		||||
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
			
		||||
// Here we will use simple integer keys
 | 
			
		||||
#include <gtsam/inference/Key.h>
 | 
			
		||||
 | 
			
		||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
			
		||||
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
			
		||||
// Here we will use Between factors for the relative motion described by odometry measurements.
 | 
			
		||||
// We will also use a Between Factor to encode the loop closure constraint
 | 
			
		||||
// Also, we will initialize the robot at the origin using a Prior factor.
 | 
			
		||||
// For an explanation of headers below, please see Pose2SLAMExample.cpp
 | 
			
		||||
#include <gtsam/slam/PriorFactor.h>
 | 
			
		||||
#include <gtsam/slam/BetweenFactor.h>
 | 
			
		||||
 | 
			
		||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
			
		||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
			
		||||
 | 
			
		||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
			
		||||
// nonlinear functions around an initial linearization point, then solve the linear system
 | 
			
		||||
// to update the linearization point. This happens repeatedly until the solver converges
 | 
			
		||||
// to a consistent set of variable values. This requires us to specify an initial guess
 | 
			
		||||
// for each variable, held in a Values container.
 | 
			
		||||
#include <gtsam/nonlinear/Values.h>
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/SubgraphSolver.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
			
		||||
 | 
			
		||||
// In contrast to that example, however, we will use a PCG solver here
 | 
			
		||||
#include <gtsam/linear/SubgraphSolver.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -66,32 +34,24 @@ int main(int argc, char** argv) {
 | 
			
		|||
  NonlinearFactorGraph graph;
 | 
			
		||||
 | 
			
		||||
  // 2a. Add a prior on the first pose, setting it to the origin
 | 
			
		||||
  // A prior factor consists of a mean and a noise model (covariance matrix)
 | 
			
		||||
  Pose2 prior(0.0, 0.0, 0.0); // prior at origin
 | 
			
		||||
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
 | 
			
		||||
  graph.push_back(PriorFactor<Pose2>(1, prior, priorNoise));
 | 
			
		||||
 | 
			
		||||
  // 2b. Add odometry factors
 | 
			
		||||
  // For simplicity, we will use the same noise model for each odometry factor
 | 
			
		||||
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | 
			
		||||
  // Create odometry (Between) factors between consecutive poses
 | 
			
		||||
  graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise));
 | 
			
		||||
  graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
			
		||||
  graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
			
		||||
  graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
			
		||||
 | 
			
		||||
  // 2c. Add the loop closure constraint
 | 
			
		||||
  // This factor encodes the fact that we have returned to the same pose. In real systems,
 | 
			
		||||
  // these constraints may be identified in many ways, such as appearance-based techniques
 | 
			
		||||
  // with camera images.
 | 
			
		||||
  // We will use another Between Factor to enforce this constraint, with the distance set to zero,
 | 
			
		||||
  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | 
			
		||||
  graph.push_back(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
 | 
			
		||||
  graph.print("\nFactor Graph:\n"); // print
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
			
		||||
  // For illustrative purposes, these have been deliberately set to incorrect values
 | 
			
		||||
  Values initialEstimate;
 | 
			
		||||
  initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
 | 
			
		||||
  initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
 | 
			
		||||
| 
						 | 
				
			
			@ -104,15 +64,18 @@ int main(int argc, char** argv) {
 | 
			
		|||
  LevenbergMarquardtParams parameters;
 | 
			
		||||
  parameters.verbosity = NonlinearOptimizerParams::ERROR;
 | 
			
		||||
  parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
 | 
			
		||||
  parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
 | 
			
		||||
 | 
			
		||||
  {
 | 
			
		||||
  // LM is still the outer optimization loop, but by specifying "Iterative" below
 | 
			
		||||
  // We indicate that an iterative linear solver should be used.
 | 
			
		||||
  // In addition, the *type* of the iterativeParams decides on the type of
 | 
			
		||||
  // iterative solver, in this case the SPCG (subgraph PCG)
 | 
			
		||||
  parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
 | 
			
		||||
  parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
 | 
			
		||||
 | 
			
		||||
  LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
 | 
			
		||||
  Values result = optimizer.optimize();
 | 
			
		||||
  result.print("Final Result:\n");
 | 
			
		||||
  cout << "subgraph solver final error = " << graph.error(result) << endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -15,13 +15,7 @@
 | 
			
		|||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * A structure-from-motion example with landmarks
 | 
			
		||||
 *  - The landmarks form a 10 meter cube
 | 
			
		||||
 *  - The robot rotates around the landmarks, always facing towards the cube
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// For loading the data
 | 
			
		||||
// For loading the data, see the comments therein for scenario (camera rotates around cube)
 | 
			
		||||
#include "SFMdata.h"
 | 
			
		||||
 | 
			
		||||
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -17,46 +17,17 @@
 | 
			
		|||
 * @author  Frank Dellaert
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * A structure-from-motion example with landmarks
 | 
			
		||||
 *  - The landmarks form a 10 meter cube
 | 
			
		||||
 *  - The robot rotates around the landmarks, always facing towards the cube
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
// For loading the data
 | 
			
		||||
#include "SFMdata.h"
 | 
			
		||||
 | 
			
		||||
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
			
		||||
#include <gtsam/geometry/Point2.h>
 | 
			
		||||
 | 
			
		||||
// In GTSAM, measurement functions are represented as 'factors'.
 | 
			
		||||
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
 | 
			
		||||
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
 | 
			
		||||
// The calibration should be known.
 | 
			
		||||
// The factor we used here is SmartProjectionPoseFactor.
 | 
			
		||||
// Every smart factor represent a single landmark, seen from multiple cameras.
 | 
			
		||||
// The SmartProjectionPoseFactor only optimizes for the poses of a camera,
 | 
			
		||||
// not the calibration, which is assumed known.
 | 
			
		||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
 | 
			
		||||
 | 
			
		||||
// Also, we will initialize the robot at some location using a Prior factor.
 | 
			
		||||
#include <gtsam/slam/PriorFactor.h>
 | 
			
		||||
 | 
			
		||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
			
		||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
			
		||||
 | 
			
		||||
// Finally, once all of the factors have been added to our factor graph, we will want to
 | 
			
		||||
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | 
			
		||||
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | 
			
		||||
// trust-region method known as Powell's Degleg
 | 
			
		||||
// For an explanation of these headers, see SFMExample.cpp
 | 
			
		||||
#include "SFMdata.h"
 | 
			
		||||
#include <gtsam/nonlinear/DoglegOptimizer.h>
 | 
			
		||||
 | 
			
		||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
			
		||||
// nonlinear functions around an initial linearization point, then solve the linear system
 | 
			
		||||
// to update the linearization point. This happens repeatedly until the solver converges
 | 
			
		||||
// to a consistent set of variable values. This requires us to specify an initial guess
 | 
			
		||||
// for each variable, held in a Values container.
 | 
			
		||||
#include <gtsam/nonlinear/Values.h>
 | 
			
		||||
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue