make header functions as inline
parent
e01f7e7456
commit
9e7fcc81cd
|
@ -34,7 +34,7 @@ const DiscreteKey mode{M(0), 2};
|
|||
* Create a tiny two variable hybrid model which represents
|
||||
* the generative probability P(z,x,mode) = P(z|x,mode)P(x)P(mode).
|
||||
*/
|
||||
HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
|
||||
inline HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
|
||||
HybridBayesNet bayesNet;
|
||||
|
||||
// Create Gaussian mixture z_i = x0 + noise for each measurement.
|
||||
|
@ -61,8 +61,8 @@ HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
|
|||
/**
|
||||
* Convert a hybrid Bayes net to a hybrid Gaussian factor graph.
|
||||
*/
|
||||
HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
|
||||
const VectorValues& measurements) {
|
||||
inline HybridGaussianFactorGraph convertBayesNet(
|
||||
const HybridBayesNet& bayesNet, const VectorValues& measurements) {
|
||||
HybridGaussianFactorGraph fg;
|
||||
int num_measurements = bayesNet.size() - 2;
|
||||
for (int i = 0; i < num_measurements; i++) {
|
||||
|
@ -81,7 +81,7 @@ HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
|
|||
* continuous variable x0. If no measurements are given, they are sampled from
|
||||
* the generative Bayes net model HybridBayesNet::Example(num_measurements)
|
||||
*/
|
||||
HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
||||
inline HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
||||
int num_measurements = 1,
|
||||
boost::optional<VectorValues> measurements = boost::none) {
|
||||
auto bayesNet = createHybridBayesNet(num_measurements);
|
||||
|
|
Loading…
Reference in New Issue