rename X1 to X0 and X2 to X1
							parent
							
								
									dce56417bd
								
							
						
					
					
						commit
						9e77eba916
					
				| 
						 | 
				
			
			@ -224,27 +224,27 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
 | 
			
		|||
  auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
 | 
			
		||||
 | 
			
		||||
  // GaussianMixtureFactor component factors
 | 
			
		||||
  auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), mus[0], model0);
 | 
			
		||||
  auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), mus[1], model1);
 | 
			
		||||
  auto f0 = std::make_shared<BetweenFactor<double>>(X(0), X(1), mus[0], model0);
 | 
			
		||||
  auto f1 = std::make_shared<BetweenFactor<double>>(X(0), X(1), mus[1], model1);
 | 
			
		||||
  // std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
 | 
			
		||||
 | 
			
		||||
  /// Get terms for each p^m(z1 | x1, x2)
 | 
			
		||||
  Matrix H0_1, H0_2, H1_1, H1_2;
 | 
			
		||||
  double x1 = values.at<double>(X(1)), x2 = values.at<double>(X(2));
 | 
			
		||||
  double x1 = values.at<double>(X(0)), x2 = values.at<double>(X(1));
 | 
			
		||||
  Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
 | 
			
		||||
  std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
 | 
			
		||||
                                                //
 | 
			
		||||
                                                {X(1), H0_1 /*Sp1*/},
 | 
			
		||||
                                                {X(2), H0_2 /*Tp2*/}};
 | 
			
		||||
                                                {X(0), H0_1 /*Sp1*/},
 | 
			
		||||
                                                {X(1), H0_2 /*Tp2*/}};
 | 
			
		||||
 | 
			
		||||
  Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
 | 
			
		||||
  std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
 | 
			
		||||
                                                //
 | 
			
		||||
                                                {X(1), H1_1 /*Sp1*/},
 | 
			
		||||
                                                {X(2), H1_2 /*Tp2*/}};
 | 
			
		||||
                                                {X(0), H1_1 /*Sp1*/},
 | 
			
		||||
                                                {X(1), H1_2 /*Tp2*/}};
 | 
			
		||||
  // Create conditional P(Z1 | X1, X2, M1)
 | 
			
		||||
  auto gm = new gtsam::GaussianMixture(
 | 
			
		||||
      {Z(1)}, {X(1), X(2)}, {m1},
 | 
			
		||||
      {Z(1)}, {X(0), X(1)}, {m1},
 | 
			
		||||
      {std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
 | 
			
		||||
       std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
 | 
			
		||||
  gtsam::HybridBayesNet bn;
 | 
			
		||||
| 
						 | 
				
			
			@ -257,7 +257,7 @@ HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
 | 
			
		|||
  HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
 | 
			
		||||
 | 
			
		||||
  // Linearized prior factor on X1
 | 
			
		||||
  auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
 | 
			
		||||
  auto prior = PriorFactor<double>(X(0), x1, prior_noise).linearize(values);
 | 
			
		||||
  mixture_fg.push_back(prior);
 | 
			
		||||
 | 
			
		||||
  return mixture_fg;
 | 
			
		||||
| 
						 | 
				
			
			@ -278,8 +278,8 @@ TEST(GaussianMixtureFactor, DifferentMeans) {
 | 
			
		|||
 | 
			
		||||
  Values values;
 | 
			
		||||
  double x1 = 0.0, x2 = 1.75;
 | 
			
		||||
  values.insert(X(1), x1);
 | 
			
		||||
  values.insert(X(2), x2);
 | 
			
		||||
  values.insert(X(0), x1);
 | 
			
		||||
  values.insert(X(1), x2);
 | 
			
		||||
 | 
			
		||||
  // Different means, same sigma
 | 
			
		||||
  std::vector<double> means{0.0, 2.0}, sigmas{1e-0, 1e-0};
 | 
			
		||||
| 
						 | 
				
			
			@ -293,7 +293,7 @@ TEST(GaussianMixtureFactor, DifferentMeans) {
 | 
			
		|||
    HybridValues actual = bn->optimize();
 | 
			
		||||
 | 
			
		||||
    HybridValues expected(
 | 
			
		||||
        VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(-1.75)}},
 | 
			
		||||
        VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(-1.75)}},
 | 
			
		||||
        DiscreteValues{{M(1), 0}});
 | 
			
		||||
 | 
			
		||||
    EXPECT(assert_equal(expected, actual));
 | 
			
		||||
| 
						 | 
				
			
			@ -317,7 +317,7 @@ TEST(GaussianMixtureFactor, DifferentMeans) {
 | 
			
		|||
    // If we add a measurement on X2, we have more information to work with.
 | 
			
		||||
    // Add a measurement on X2
 | 
			
		||||
    auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
 | 
			
		||||
    GaussianConditional meas_z2(Z(2), Vector1(2.0), I_1x1, X(2), I_1x1,
 | 
			
		||||
    GaussianConditional meas_z2(Z(2), Vector1(2.0), I_1x1, X(1), I_1x1,
 | 
			
		||||
                                prior_noise);
 | 
			
		||||
    auto prior_x2 = meas_z2.likelihood(Vector1(x2));
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -327,7 +327,7 @@ TEST(GaussianMixtureFactor, DifferentMeans) {
 | 
			
		|||
    HybridValues actual = bn->optimize();
 | 
			
		||||
 | 
			
		||||
    HybridValues expected(
 | 
			
		||||
        VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}},
 | 
			
		||||
        VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(0.25)}},
 | 
			
		||||
        DiscreteValues{{M(1), 1}});
 | 
			
		||||
 | 
			
		||||
    EXPECT(assert_equal(expected, actual));
 | 
			
		||||
| 
						 | 
				
			
			@ -359,8 +359,8 @@ TEST(GaussianMixtureFactor, DifferentCovariances) {
 | 
			
		|||
 | 
			
		||||
  Values values;
 | 
			
		||||
  double x1 = 1.0, x2 = 1.0;
 | 
			
		||||
  values.insert(X(1), x1);
 | 
			
		||||
  values.insert(X(2), x2);
 | 
			
		||||
  values.insert(X(0), x1);
 | 
			
		||||
  values.insert(X(1), x2);
 | 
			
		||||
 | 
			
		||||
  std::vector<double> means{0.0, 0.0}, sigmas{1e2, 1e-2};
 | 
			
		||||
  HybridGaussianFactorGraph mixture_fg =
 | 
			
		||||
| 
						 | 
				
			
			@ -369,8 +369,8 @@ TEST(GaussianMixtureFactor, DifferentCovariances) {
 | 
			
		|||
  auto hbn = mixture_fg.eliminateSequential();
 | 
			
		||||
 | 
			
		||||
  VectorValues cv;
 | 
			
		||||
  cv.insert(X(0), Vector1(0.0));
 | 
			
		||||
  cv.insert(X(1), Vector1(0.0));
 | 
			
		||||
  cv.insert(X(2), Vector1(0.0));
 | 
			
		||||
 | 
			
		||||
  // Check that the error values at the MLE point μ.
 | 
			
		||||
  AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue