Cleaned up plot
parent
85e231bea5
commit
9dbe61a05e
|
|
@ -1 +1 @@
|
|||
from ._plot import *
|
||||
from .plot import *
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
import numpy as _np
|
||||
import matplotlib.pyplot as _plt
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D as _Axes3D
|
||||
|
||||
def plotPoint3(fignum, point, linespec):
|
||||
fig = _plt.figure(fignum)
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
ax.plot([point.x()],[point.y()],[point.z()], linespec)
|
||||
ax.plot([point.x()], [point.y()], [point.z()], linespec)
|
||||
|
||||
|
||||
def plot3DPoints(fignum, values, linespec, marginals=None):
|
||||
|
|
@ -19,7 +19,7 @@ def plot3DPoints(fignum, values, linespec, marginals=None):
|
|||
# Plot points and covariance matrices
|
||||
for key in keys:
|
||||
try:
|
||||
p = values.point3_at(key);
|
||||
p = values.atPoint3(key);
|
||||
# if haveMarginals
|
||||
# P = marginals.marginalCovariance(key);
|
||||
# gtsam.plotPoint3(p, linespec, P);
|
||||
|
|
@ -27,11 +27,11 @@ def plot3DPoints(fignum, values, linespec, marginals=None):
|
|||
plotPoint3(fignum, p, linespec);
|
||||
except RuntimeError:
|
||||
continue
|
||||
#I guess it's not a Point3
|
||||
# I guess it's not a Point3
|
||||
|
||||
def plotPose3(fignum, pose, axisLength=0.1):
|
||||
# get figure object
|
||||
fig = _plt.figure(fignum)
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
|
||||
# get rotation and translation (center)
|
||||
|
|
@ -39,17 +39,17 @@ def plotPose3(fignum, pose, axisLength=0.1):
|
|||
C = pose.translation().vector()
|
||||
|
||||
# draw the camera axes
|
||||
xAxis = C+gRp[:,0]*axisLength
|
||||
L = _np.append(C[_np.newaxis], xAxis[_np.newaxis], axis=0)
|
||||
ax.plot(L[:,0],L[:,1],L[:,2],'r-')
|
||||
xAxis = C + gRp[:, 0] * axisLength
|
||||
L = np.append(C[np.newaxis], xAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'r-')
|
||||
|
||||
yAxis = C+gRp[:,1]*axisLength
|
||||
L = _np.append(C[_np.newaxis], yAxis[_np.newaxis], axis=0)
|
||||
ax.plot(L[:,0],L[:,1],L[:,2],'g-')
|
||||
yAxis = C + gRp[:, 1] * axisLength
|
||||
L = np.append(C[np.newaxis], yAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'g-')
|
||||
|
||||
zAxis = C+gRp[:,2]*axisLength
|
||||
L = _np.append(C[_np.newaxis], zAxis[_np.newaxis], axis=0)
|
||||
ax.plot(L[:,0],L[:,1],L[:,2],'b-')
|
||||
zAxis = C + gRp[:, 2] * axisLength
|
||||
L = np.append(C[np.newaxis], zAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'b-')
|
||||
|
||||
# # plot the covariance
|
||||
# if (nargin>2) && (~isempty(P))
|
||||
Loading…
Reference in New Issue