diff --git a/gtsam/hybrid/tests/testHybridGaussianFactor.cpp b/gtsam/hybrid/tests/testHybridGaussianFactor.cpp index c89e5d260..dff120855 100644 --- a/gtsam/hybrid/tests/testHybridGaussianFactor.cpp +++ b/gtsam/hybrid/tests/testHybridGaussianFactor.cpp @@ -221,9 +221,8 @@ double prob_m_z(double mu0, double mu1, double sigma0, double sigma1, return 1 / (1 + e); }; -static HybridBayesNet GetHybridGaussianConditionalModel(double mu0, double mu1, - double sigma0, - double sigma1) { +static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1, + double sigma0, double sigma1) { DiscreteKey m(M(0), 2); Key z = Z(0); @@ -258,7 +257,7 @@ static HybridBayesNet GetHybridGaussianConditionalModel(double mu0, double mu1, * The resulting factor graph should eliminate to a Bayes net * which represents a sigmoid function. */ -TEST(HybridGaussianFactor, HybridGaussianConditionalModel) { +TEST(HybridGaussianFactor, GaussianMixtureModel) { using namespace test_gmm; double mu0 = 1.0, mu1 = 3.0; @@ -267,7 +266,7 @@ TEST(HybridGaussianFactor, HybridGaussianConditionalModel) { DiscreteKey m(M(0), 2); Key z = Z(0); - auto hbn = GetHybridGaussianConditionalModel(mu0, mu1, sigma, sigma); + auto hbn = GetGaussianMixtureModel(mu0, mu1, sigma, sigma); // The result should be a sigmoid. // So should be P(m=1|z) = 0.5 at z=3.0 - 1.0=2.0 @@ -330,7 +329,7 @@ TEST(HybridGaussianFactor, HybridGaussianConditionalModel) { * which represents a Gaussian-like function * where m1>m0 close to 3.1333. */ -TEST(HybridGaussianFactor, HybridGaussianConditionalModel2) { +TEST(HybridGaussianFactor, GaussianMixtureModel2) { using namespace test_gmm; double mu0 = 1.0, mu1 = 3.0; @@ -339,7 +338,7 @@ TEST(HybridGaussianFactor, HybridGaussianConditionalModel2) { DiscreteKey m(M(0), 2); Key z = Z(0); - auto hbn = GetHybridGaussianConditionalModel(mu0, mu1, sigma0, sigma1); + auto hbn = GetGaussianMixtureModel(mu0, mu1, sigma0, sigma1); double m1_high = 3.133, lambda = 4; {