rename variables to be agnostic to underlying data structure
parent
4de2d46012
commit
9531506492
|
@ -228,19 +228,19 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys) {
|
||||||
/**
|
/**
|
||||||
* @brief Helper function to get the pruner functional.
|
* @brief Helper function to get the pruner functional.
|
||||||
*
|
*
|
||||||
* @param decisionTree The probability decision tree of only discrete keys.
|
* @param discreteProbs The probabilities of only discrete keys.
|
||||||
* @return std::function<GaussianConditional::shared_ptr(
|
* @return std::function<GaussianConditional::shared_ptr(
|
||||||
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
||||||
*/
|
*/
|
||||||
std::function<GaussianConditional::shared_ptr(
|
std::function<GaussianConditional::shared_ptr(
|
||||||
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
||||||
GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
|
GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
|
||||||
// Get the discrete keys as sets for the decision tree
|
// Get the discrete keys as sets for the decision tree
|
||||||
// and the gaussian mixture.
|
// and the gaussian mixture.
|
||||||
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
|
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
|
||||||
auto gaussianMixtureKeySet = DiscreteKeysAsSet(this->discreteKeys());
|
auto gaussianMixtureKeySet = DiscreteKeysAsSet(this->discreteKeys());
|
||||||
|
|
||||||
auto pruner = [decisionTree, decisionTreeKeySet, gaussianMixtureKeySet](
|
auto pruner = [discreteProbs, discreteProbsKeySet, gaussianMixtureKeySet](
|
||||||
const Assignment<Key> &choices,
|
const Assignment<Key> &choices,
|
||||||
const GaussianConditional::shared_ptr &conditional)
|
const GaussianConditional::shared_ptr &conditional)
|
||||||
-> GaussianConditional::shared_ptr {
|
-> GaussianConditional::shared_ptr {
|
||||||
|
@ -249,8 +249,8 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
|
||||||
|
|
||||||
// Case where the gaussian mixture has the same
|
// Case where the gaussian mixture has the same
|
||||||
// discrete keys as the decision tree.
|
// discrete keys as the decision tree.
|
||||||
if (gaussianMixtureKeySet == decisionTreeKeySet) {
|
if (gaussianMixtureKeySet == discreteProbsKeySet) {
|
||||||
if (decisionTree(values) == 0.0) {
|
if (discreteProbs(values) == 0.0) {
|
||||||
// empty aka null pointer
|
// empty aka null pointer
|
||||||
std::shared_ptr<GaussianConditional> null;
|
std::shared_ptr<GaussianConditional> null;
|
||||||
return null;
|
return null;
|
||||||
|
@ -259,10 +259,10 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
std::vector<DiscreteKey> set_diff;
|
std::vector<DiscreteKey> set_diff;
|
||||||
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
|
std::set_difference(
|
||||||
gaussianMixtureKeySet.begin(),
|
discreteProbsKeySet.begin(), discreteProbsKeySet.end(),
|
||||||
gaussianMixtureKeySet.end(),
|
gaussianMixtureKeySet.begin(), gaussianMixtureKeySet.end(),
|
||||||
std::back_inserter(set_diff));
|
std::back_inserter(set_diff));
|
||||||
|
|
||||||
const std::vector<DiscreteValues> assignments =
|
const std::vector<DiscreteValues> assignments =
|
||||||
DiscreteValues::CartesianProduct(set_diff);
|
DiscreteValues::CartesianProduct(set_diff);
|
||||||
|
@ -272,7 +272,7 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
|
||||||
|
|
||||||
// If any one of the sub-branches are non-zero,
|
// If any one of the sub-branches are non-zero,
|
||||||
// we need this conditional.
|
// we need this conditional.
|
||||||
if (decisionTree(augmented_values) > 0.0) {
|
if (discreteProbs(augmented_values) > 0.0) {
|
||||||
return conditional;
|
return conditional;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -285,12 +285,12 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &decisionTree) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/* *******************************************************************************/
|
/* *******************************************************************************/
|
||||||
void GaussianMixture::prune(const DecisionTreeFactor &decisionTree) {
|
void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
|
||||||
auto decisionTreeKeySet = DiscreteKeysAsSet(decisionTree.discreteKeys());
|
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
|
||||||
auto gmKeySet = DiscreteKeysAsSet(this->discreteKeys());
|
auto gmKeySet = DiscreteKeysAsSet(this->discreteKeys());
|
||||||
// Functional which loops over all assignments and create a set of
|
// Functional which loops over all assignments and create a set of
|
||||||
// GaussianConditionals
|
// GaussianConditionals
|
||||||
auto pruner = prunerFunc(decisionTree);
|
auto pruner = prunerFunc(discreteProbs);
|
||||||
|
|
||||||
auto pruned_conditionals = conditionals_.apply(pruner);
|
auto pruned_conditionals = conditionals_.apply(pruner);
|
||||||
conditionals_.root_ = pruned_conditionals.root_;
|
conditionals_.root_ = pruned_conditionals.root_;
|
||||||
|
|
|
@ -74,13 +74,13 @@ class GTSAM_EXPORT GaussianMixture
|
||||||
/**
|
/**
|
||||||
* @brief Helper function to get the pruner functor.
|
* @brief Helper function to get the pruner functor.
|
||||||
*
|
*
|
||||||
* @param decisionTree The pruned discrete probability decision tree.
|
* @param discreteProbs The pruned discrete probabilities.
|
||||||
* @return std::function<GaussianConditional::shared_ptr(
|
* @return std::function<GaussianConditional::shared_ptr(
|
||||||
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
* const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
||||||
*/
|
*/
|
||||||
std::function<GaussianConditional::shared_ptr(
|
std::function<GaussianConditional::shared_ptr(
|
||||||
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
|
||||||
prunerFunc(const DecisionTreeFactor &decisionTree);
|
prunerFunc(const DecisionTreeFactor &discreteProbs);
|
||||||
|
|
||||||
public:
|
public:
|
||||||
/// @name Constructors
|
/// @name Constructors
|
||||||
|
@ -234,12 +234,11 @@ class GTSAM_EXPORT GaussianMixture
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Prune the decision tree of Gaussian factors as per the discrete
|
* @brief Prune the decision tree of Gaussian factors as per the discrete
|
||||||
* `decisionTree`.
|
* `discreteProbs`.
|
||||||
*
|
*
|
||||||
* @param decisionTree A pruned decision tree of discrete keys where the
|
* @param discreteProbs A pruned set of probabilities for the discrete keys.
|
||||||
* leaves are probabilities.
|
|
||||||
*/
|
*/
|
||||||
void prune(const DecisionTreeFactor &decisionTree);
|
void prune(const DecisionTreeFactor &discreteProbs);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Merge the Gaussian Factor Graphs in `this` and `sum` while
|
* @brief Merge the Gaussian Factor Graphs in `this` and `sum` while
|
||||||
|
|
|
@ -39,41 +39,41 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
|
DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
|
||||||
AlgebraicDecisionTree<Key> decisionTree;
|
AlgebraicDecisionTree<Key> discreteProbs;
|
||||||
|
|
||||||
// The canonical decision tree factor which will get
|
// The canonical decision tree factor which will get
|
||||||
// the discrete conditionals added to it.
|
// the discrete conditionals added to it.
|
||||||
DecisionTreeFactor dtFactor;
|
DecisionTreeFactor discreteProbsFactor;
|
||||||
|
|
||||||
for (auto &&conditional : *this) {
|
for (auto &&conditional : *this) {
|
||||||
if (conditional->isDiscrete()) {
|
if (conditional->isDiscrete()) {
|
||||||
// Convert to a DecisionTreeFactor and add it to the main factor.
|
// Convert to a DecisionTreeFactor and add it to the main factor.
|
||||||
DecisionTreeFactor f(*conditional->asDiscrete());
|
DecisionTreeFactor f(*conditional->asDiscrete());
|
||||||
dtFactor = dtFactor * f;
|
discreteProbsFactor = discreteProbsFactor * f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return std::make_shared<DecisionTreeFactor>(dtFactor);
|
return std::make_shared<DecisionTreeFactor>(discreteProbsFactor);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/**
|
/**
|
||||||
* @brief Helper function to get the pruner functional.
|
* @brief Helper function to get the pruner functional.
|
||||||
*
|
*
|
||||||
* @param prunedDecisionTree The prob. decision tree of only discrete keys.
|
* @param prunedDiscreteProbs The prob. decision tree of only discrete keys.
|
||||||
* @param conditional Conditional to prune. Used to get full assignment.
|
* @param conditional Conditional to prune. Used to get full assignment.
|
||||||
* @return std::function<double(const Assignment<Key> &, double)>
|
* @return std::function<double(const Assignment<Key> &, double)>
|
||||||
*/
|
*/
|
||||||
std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
||||||
const DecisionTreeFactor &prunedDecisionTree,
|
const DecisionTreeFactor &prunedDiscreteProbs,
|
||||||
const HybridConditional &conditional) {
|
const HybridConditional &conditional) {
|
||||||
// Get the discrete keys as sets for the decision tree
|
// Get the discrete keys as sets for the decision tree
|
||||||
// and the Gaussian mixture.
|
// and the Gaussian mixture.
|
||||||
std::set<DiscreteKey> decisionTreeKeySet =
|
std::set<DiscreteKey> discreteProbsKeySet =
|
||||||
DiscreteKeysAsSet(prunedDecisionTree.discreteKeys());
|
DiscreteKeysAsSet(prunedDiscreteProbs.discreteKeys());
|
||||||
std::set<DiscreteKey> conditionalKeySet =
|
std::set<DiscreteKey> conditionalKeySet =
|
||||||
DiscreteKeysAsSet(conditional.discreteKeys());
|
DiscreteKeysAsSet(conditional.discreteKeys());
|
||||||
|
|
||||||
auto pruner = [prunedDecisionTree, decisionTreeKeySet, conditionalKeySet](
|
auto pruner = [prunedDiscreteProbs, discreteProbsKeySet, conditionalKeySet](
|
||||||
const Assignment<Key> &choices,
|
const Assignment<Key> &choices,
|
||||||
double probability) -> double {
|
double probability) -> double {
|
||||||
// This corresponds to 0 probability
|
// This corresponds to 0 probability
|
||||||
|
@ -83,8 +83,8 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
||||||
DiscreteValues values(choices);
|
DiscreteValues values(choices);
|
||||||
// Case where the Gaussian mixture has the same
|
// Case where the Gaussian mixture has the same
|
||||||
// discrete keys as the decision tree.
|
// discrete keys as the decision tree.
|
||||||
if (conditionalKeySet == decisionTreeKeySet) {
|
if (conditionalKeySet == discreteProbsKeySet) {
|
||||||
if (prunedDecisionTree(values) == 0) {
|
if (prunedDiscreteProbs(values) == 0) {
|
||||||
return pruned_prob;
|
return pruned_prob;
|
||||||
} else {
|
} else {
|
||||||
return probability;
|
return probability;
|
||||||
|
@ -114,11 +114,12 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
||||||
}
|
}
|
||||||
|
|
||||||
// Now we generate the full assignment by enumerating
|
// Now we generate the full assignment by enumerating
|
||||||
// over all keys in the prunedDecisionTree.
|
// over all keys in the prunedDiscreteProbs.
|
||||||
// First we find the differing keys
|
// First we find the differing keys
|
||||||
std::vector<DiscreteKey> set_diff;
|
std::vector<DiscreteKey> set_diff;
|
||||||
std::set_difference(decisionTreeKeySet.begin(), decisionTreeKeySet.end(),
|
std::set_difference(discreteProbsKeySet.begin(),
|
||||||
conditionalKeySet.begin(), conditionalKeySet.end(),
|
discreteProbsKeySet.end(), conditionalKeySet.begin(),
|
||||||
|
conditionalKeySet.end(),
|
||||||
std::back_inserter(set_diff));
|
std::back_inserter(set_diff));
|
||||||
|
|
||||||
// Now enumerate over all assignments of the differing keys
|
// Now enumerate over all assignments of the differing keys
|
||||||
|
@ -130,7 +131,7 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
||||||
|
|
||||||
// If any one of the sub-branches are non-zero,
|
// If any one of the sub-branches are non-zero,
|
||||||
// we need this probability.
|
// we need this probability.
|
||||||
if (prunedDecisionTree(augmented_values) > 0.0) {
|
if (prunedDiscreteProbs(augmented_values) > 0.0) {
|
||||||
return probability;
|
return probability;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -144,8 +145,8 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
void HybridBayesNet::updateDiscreteConditionals(
|
void HybridBayesNet::updateDiscreteConditionals(
|
||||||
const DecisionTreeFactor &prunedDecisionTree) {
|
const DecisionTreeFactor &prunedDiscreteProbs) {
|
||||||
KeyVector prunedTreeKeys = prunedDecisionTree.keys();
|
KeyVector prunedTreeKeys = prunedDiscreteProbs.keys();
|
||||||
|
|
||||||
// Loop with index since we need it later.
|
// Loop with index since we need it later.
|
||||||
for (size_t i = 0; i < this->size(); i++) {
|
for (size_t i = 0; i < this->size(); i++) {
|
||||||
|
@ -157,7 +158,7 @@ void HybridBayesNet::updateDiscreteConditionals(
|
||||||
auto discreteTree =
|
auto discreteTree =
|
||||||
std::dynamic_pointer_cast<DecisionTreeFactor::ADT>(discrete);
|
std::dynamic_pointer_cast<DecisionTreeFactor::ADT>(discrete);
|
||||||
DecisionTreeFactor::ADT prunedDiscreteTree =
|
DecisionTreeFactor::ADT prunedDiscreteTree =
|
||||||
discreteTree->apply(prunerFunc(prunedDecisionTree, *conditional));
|
discreteTree->apply(prunerFunc(prunedDiscreteProbs, *conditional));
|
||||||
|
|
||||||
// Create the new (hybrid) conditional
|
// Create the new (hybrid) conditional
|
||||||
KeyVector frontals(discrete->frontals().begin(),
|
KeyVector frontals(discrete->frontals().begin(),
|
||||||
|
@ -175,10 +176,12 @@ void HybridBayesNet::updateDiscreteConditionals(
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
||||||
// Get the decision tree of only the discrete keys
|
// Get the decision tree of only the discrete keys
|
||||||
auto discreteConditionals = this->discreteConditionals();
|
DecisionTreeFactor::shared_ptr discreteConditionals =
|
||||||
const auto decisionTree = discreteConditionals->prune(maxNrLeaves);
|
this->discreteConditionals();
|
||||||
|
const DecisionTreeFactor prunedDiscreteProbs =
|
||||||
|
discreteConditionals->prune(maxNrLeaves);
|
||||||
|
|
||||||
this->updateDiscreteConditionals(decisionTree);
|
this->updateDiscreteConditionals(prunedDiscreteProbs);
|
||||||
|
|
||||||
/* To Prune, we visitWith every leaf in the GaussianMixture.
|
/* To Prune, we visitWith every leaf in the GaussianMixture.
|
||||||
* For each leaf, using the assignment we can check the discrete decision tree
|
* For each leaf, using the assignment we can check the discrete decision tree
|
||||||
|
@ -190,12 +193,12 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
||||||
HybridBayesNet prunedBayesNetFragment;
|
HybridBayesNet prunedBayesNetFragment;
|
||||||
|
|
||||||
// Go through all the conditionals in the
|
// Go through all the conditionals in the
|
||||||
// Bayes Net and prune them as per decisionTree.
|
// Bayes Net and prune them as per prunedDiscreteProbs.
|
||||||
for (auto &&conditional : *this) {
|
for (auto &&conditional : *this) {
|
||||||
if (auto gm = conditional->asMixture()) {
|
if (auto gm = conditional->asMixture()) {
|
||||||
// Make a copy of the Gaussian mixture and prune it!
|
// Make a copy of the Gaussian mixture and prune it!
|
||||||
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
|
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
|
||||||
prunedGaussianMixture->prune(decisionTree); // imperative :-(
|
prunedGaussianMixture->prune(prunedDiscreteProbs); // imperative :-(
|
||||||
|
|
||||||
// Type-erase and add to the pruned Bayes Net fragment.
|
// Type-erase and add to the pruned Bayes Net fragment.
|
||||||
prunedBayesNetFragment.push_back(prunedGaussianMixture);
|
prunedBayesNetFragment.push_back(prunedGaussianMixture);
|
||||||
|
|
|
@ -224,9 +224,9 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
||||||
/**
|
/**
|
||||||
* @brief Update the discrete conditionals with the pruned versions.
|
* @brief Update the discrete conditionals with the pruned versions.
|
||||||
*
|
*
|
||||||
* @param prunedDecisionTree
|
* @param prunedDiscreteProbs
|
||||||
*/
|
*/
|
||||||
void updateDiscreteConditionals(const DecisionTreeFactor &prunedDecisionTree);
|
void updateDiscreteConditionals(const DecisionTreeFactor &prunedDiscreteProbs);
|
||||||
|
|
||||||
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||||
/** Serialization function */
|
/** Serialization function */
|
||||||
|
|
|
@ -173,19 +173,18 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
void HybridBayesTree::prune(const size_t maxNrLeaves) {
|
void HybridBayesTree::prune(const size_t maxNrLeaves) {
|
||||||
auto decisionTree =
|
auto discreteProbs = this->roots_.at(0)->conditional()->asDiscrete();
|
||||||
this->roots_.at(0)->conditional()->asDiscrete();
|
|
||||||
|
|
||||||
DecisionTreeFactor prunedDecisionTree = decisionTree->prune(maxNrLeaves);
|
DecisionTreeFactor prunedDiscreteProbs = discreteProbs->prune(maxNrLeaves);
|
||||||
decisionTree->root_ = prunedDecisionTree.root_;
|
discreteProbs->root_ = prunedDiscreteProbs.root_;
|
||||||
|
|
||||||
/// Helper struct for pruning the hybrid bayes tree.
|
/// Helper struct for pruning the hybrid bayes tree.
|
||||||
struct HybridPrunerData {
|
struct HybridPrunerData {
|
||||||
/// The discrete decision tree after pruning.
|
/// The discrete decision tree after pruning.
|
||||||
DecisionTreeFactor prunedDecisionTree;
|
DecisionTreeFactor prunedDiscreteProbs;
|
||||||
HybridPrunerData(const DecisionTreeFactor& prunedDecisionTree,
|
HybridPrunerData(const DecisionTreeFactor& prunedDiscreteProbs,
|
||||||
const HybridBayesTree::sharedNode& parentClique)
|
const HybridBayesTree::sharedNode& parentClique)
|
||||||
: prunedDecisionTree(prunedDecisionTree) {}
|
: prunedDiscreteProbs(prunedDiscreteProbs) {}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief A function used during tree traversal that operates on each node
|
* @brief A function used during tree traversal that operates on each node
|
||||||
|
@ -205,13 +204,13 @@ void HybridBayesTree::prune(const size_t maxNrLeaves) {
|
||||||
if (conditional->isHybrid()) {
|
if (conditional->isHybrid()) {
|
||||||
auto gaussianMixture = conditional->asMixture();
|
auto gaussianMixture = conditional->asMixture();
|
||||||
|
|
||||||
gaussianMixture->prune(parentData.prunedDecisionTree);
|
gaussianMixture->prune(parentData.prunedDiscreteProbs);
|
||||||
}
|
}
|
||||||
return parentData;
|
return parentData;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
HybridPrunerData rootData(prunedDecisionTree, 0);
|
HybridPrunerData rootData(prunedDiscreteProbs, 0);
|
||||||
{
|
{
|
||||||
treeTraversal::no_op visitorPost;
|
treeTraversal::no_op visitorPost;
|
||||||
// Limits OpenMP threads since we're mixing TBB and OpenMP
|
// Limits OpenMP threads since we're mixing TBB and OpenMP
|
||||||
|
|
|
@ -190,7 +190,8 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
|
||||||
/* ************************************************************************ */
|
/* ************************************************************************ */
|
||||||
// If any GaussianFactorGraph in the decision tree contains a nullptr, convert
|
// If any GaussianFactorGraph in the decision tree contains a nullptr, convert
|
||||||
// that leaf to an empty GaussianFactorGraph. Needed since the DecisionTree will
|
// that leaf to an empty GaussianFactorGraph. Needed since the DecisionTree will
|
||||||
// otherwise create a GFG with a single (null) factor, which doesn't register as null.
|
// otherwise create a GFG with a single (null) factor,
|
||||||
|
// which doesn't register as null.
|
||||||
GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
|
GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
|
||||||
auto emptyGaussian = [](const GaussianFactorGraph &graph) {
|
auto emptyGaussian = [](const GaussianFactorGraph &graph) {
|
||||||
bool hasNull =
|
bool hasNull =
|
||||||
|
@ -246,10 +247,6 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
||||||
// Perform elimination!
|
// Perform elimination!
|
||||||
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
|
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
|
||||||
|
|
||||||
#ifdef HYBRID_TIMING
|
|
||||||
tictoc_print_();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Separate out decision tree into conditionals and remaining factors.
|
// Separate out decision tree into conditionals and remaining factors.
|
||||||
const auto [conditionals, newFactors] = unzip(eliminationResults);
|
const auto [conditionals, newFactors] = unzip(eliminationResults);
|
||||||
|
|
||||||
|
|
|
@ -112,8 +112,8 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
||||||
public:
|
public:
|
||||||
using Base = HybridFactorGraph;
|
using Base = HybridFactorGraph;
|
||||||
using This = HybridGaussianFactorGraph; ///< this class
|
using This = HybridGaussianFactorGraph; ///< this class
|
||||||
using BaseEliminateable =
|
///< for elimination
|
||||||
EliminateableFactorGraph<This>; ///< for elimination
|
using BaseEliminateable = EliminateableFactorGraph<This>;
|
||||||
using shared_ptr = std::shared_ptr<This>; ///< shared_ptr to This
|
using shared_ptr = std::shared_ptr<This>; ///< shared_ptr to This
|
||||||
|
|
||||||
using Values = gtsam::Values; ///< backwards compatibility
|
using Values = gtsam::Values; ///< backwards compatibility
|
||||||
|
@ -148,7 +148,8 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
||||||
/// @name Standard Interface
|
/// @name Standard Interface
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
using Base::error; // Expose error(const HybridValues&) method..
|
/// Expose error(const HybridValues&) method.
|
||||||
|
using Base::error;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Compute error for each discrete assignment,
|
* @brief Compute error for each discrete assignment,
|
||||||
|
|
Loading…
Reference in New Issue