Merged gtborg/gtsam into develop
						commit
						917c9c46c8
					
				
							
								
								
									
										298
									
								
								.cproject
								
								
								
								
							
							
						
						
									
										298
									
								
								.cproject
								
								
								
								
							|  | @ -568,6 +568,7 @@ | |||
| 			</target> | ||||
| 			<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>tests/testBayesTree.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -575,6 +576,7 @@ | |||
| 			</target> | ||||
| 			<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testBinaryBayesNet.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -622,6 +624,7 @@ | |||
| 			</target> | ||||
| 			<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSymbolicBayesNet.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -629,6 +632,7 @@ | |||
| 			</target> | ||||
| 			<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>tests/testSymbolicFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -636,6 +640,7 @@ | |||
| 			</target> | ||||
| 			<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSymbolicFactorGraph.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -651,6 +656,7 @@ | |||
| 			</target> | ||||
| 			<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>tests/testBayesTree</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -728,46 +734,6 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testValues.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testValues.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testOrdering.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testOrdering.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testKey.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testKey.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testLinearContainerFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j6 -j8</buildArguments> | ||||
| 				<buildTarget>testWhiteNoiseFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -1114,6 +1080,7 @@ | |||
| 			</target> | ||||
| 			<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testErrors.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1159,6 +1126,14 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testParticleFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="check" path="base" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -1239,14 +1214,6 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testParticleFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="check" path="build/inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -1351,6 +1318,22 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testImuFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testCombinedImuFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -1433,7 +1416,6 @@ | |||
| 			</target> | ||||
| 			<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSimulated2DOriented.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1473,7 +1455,6 @@ | |||
| 			</target> | ||||
| 			<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSimulated2D.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1481,7 +1462,6 @@ | |||
| 			</target> | ||||
| 			<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSimulated3D.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1495,22 +1475,6 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testImuFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testCombinedImuFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testEliminationTree.run" path="build/gtsam/inference/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
|  | @ -1768,6 +1732,7 @@ | |||
| 			</target> | ||||
| 			<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>cpack</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>-G DEB</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1775,6 +1740,7 @@ | |||
| 			</target> | ||||
| 			<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>cpack</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>-G RPM</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1782,6 +1748,7 @@ | |||
| 			</target> | ||||
| 			<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>cpack</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>-G TGZ</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -1789,6 +1756,7 @@ | |||
| 			</target> | ||||
| 			<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>cpack</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>--config CPackSourceConfig.cmake</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -2217,70 +2185,6 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testGeneralSFMFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testGeneralSFMFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testProjectionFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testProjectionFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testAntiFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j6 -j8</buildArguments> | ||||
| 				<buildTarget>testAntiFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testBetweenFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j6 -j8</buildArguments> | ||||
| 				<buildTarget>testBetweenFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testDataset.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testDataset.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testEssentialMatrixFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testRotateFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testRotateFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="check" path="build/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -2547,6 +2451,7 @@ | |||
| 			</target> | ||||
| 			<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testGraph.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -2554,6 +2459,7 @@ | |||
| 			</target> | ||||
| 			<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testJunctionTree.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -2561,6 +2467,7 @@ | |||
| 			</target> | ||||
| 			<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>testSymbolicBayesNetB.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  | @ -2678,6 +2585,70 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testAntiFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testAntiFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testBetweenFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testBetweenFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testDataset.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testDataset.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testEssentialMatrixFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testGeneralSFMFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testGeneralSFMFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testProjectionFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testProjectionFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testRotateFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testRotateFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="SimpleRotation.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j2</buildArguments> | ||||
|  | @ -2830,6 +2801,70 @@ | |||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="Pose2SLAMExample_lago.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>Pose2SLAMExample_lago.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="Pose2SLAMExample_g2o.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>Pose2SLAMExample_g2o.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testLago.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testLinearContainerFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testOrdering.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testOrdering.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testValues.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testValues.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>testWhiteNoiseFactor.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="timeLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j5</buildArguments> | ||||
| 				<buildTarget>timeLago.run</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>true</useDefaultCommand> | ||||
| 				<runAllBuilders>true</runAllBuilders> | ||||
| 			</target> | ||||
| 			<target name="testImuFactor.run" path="build-debug/gtsam_unstable/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments>-j4</buildArguments> | ||||
|  | @ -2848,7 +2883,6 @@ | |||
| 			</target> | ||||
| 			<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> | ||||
| 				<buildCommand>make</buildCommand> | ||||
| 				<buildArguments/> | ||||
| 				<buildTarget>tests/testGaussianISAM2</buildTarget> | ||||
| 				<stopOnError>true</stopOnError> | ||||
| 				<useDefaultCommand>false</useDefaultCommand> | ||||
|  |  | |||
|  | @ -1,4 +1,6 @@ | |||
| /build* | ||||
| /doc* | ||||
| *.pyc | ||||
| *.DS_Store | ||||
| *.DS_Store | ||||
| /examples/Data/dubrovnik-3-7-pre-rewritten.txt | ||||
| /examples/Data/pose2example-rewritten.txt | ||||
|  | @ -4,7 +4,7 @@ cmake_minimum_required(VERSION 2.6) | |||
| 
 | ||||
| # Set the version number for the library | ||||
| set (GTSAM_VERSION_MAJOR 3) | ||||
| set (GTSAM_VERSION_MINOR 0) | ||||
| set (GTSAM_VERSION_MINOR 1) | ||||
| set (GTSAM_VERSION_PATCH 0) | ||||
| math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}") | ||||
| set (GTSAM_VERSION_STRING "${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}") | ||||
|  | @ -273,6 +273,13 @@ if(MSVC) | |||
| 	add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344) # Disable non-DLL-exported base class and other warnings | ||||
| endif() | ||||
| 
 | ||||
| # GCC 4.8+ complains about local typedefs which we use for shared_ptr etc. | ||||
| if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU") | ||||
|   if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8) | ||||
|     add_definitions(-Wno-unused-local-typedefs) | ||||
|   endif() | ||||
| endif() | ||||
| 
 | ||||
| if(GTSAM_ENABLE_CONSISTENCY_CHECKS) | ||||
|   add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS) | ||||
| endif() | ||||
|  |  | |||
|  | @ -1,80 +0,0 @@ | |||
| 3 7 19 | ||||
| 
 | ||||
| 0 0 -385.989990234375 387.1199951171875 | ||||
| 1 0 -38.439998626708984375 492.1199951171875 | ||||
| 2 0 -667.91998291015625 123.1100006103515625 | ||||
| 0 1 383.8800048828125 -15.299989700317382812 | ||||
| 1 1 559.75 -106.15000152587890625 | ||||
| 0 2 591.54998779296875 136.44000244140625 | ||||
| 1 2 863.8599853515625 -23.469970703125 | ||||
| 2 2 494.720001220703125 112.51999664306640625 | ||||
| 0 3 592.5 125.75 | ||||
| 1 3 861.08001708984375 -35.219970703125 | ||||
| 2 3 498.540008544921875 101.55999755859375 | ||||
| 0 4 348.720001220703125 558.3800048828125 | ||||
| 1 4 776.030029296875 483.529998779296875 | ||||
| 2 4 7.7800288200378417969 326.350006103515625 | ||||
| 0 5 14.010009765625 96.420013427734375 | ||||
| 1 5 207.1300048828125 118.3600006103515625 | ||||
| 0 6 202.7599945068359375 340.989990234375 | ||||
| 1 6 543.18011474609375 294.80999755859375 | ||||
| 2 6 -58.419979095458984375 110.8300018310546875 | ||||
| 
 | ||||
|   0.29656188120312942935 | ||||
| -0.035318354384285870207 | ||||
|   0.31252101755032046793 | ||||
| 0.47230274932665988752 | ||||
| -0.3572340863744113415 | ||||
| -2.0517704282499575896 | ||||
| 1430.031982421875 | ||||
| -7.5572756941255647689e-08 | ||||
| 3.2377570134516087119e-14 | ||||
| 
 | ||||
|  0.28532097381985194184 | ||||
| -0.27699838370789808817 | ||||
| 0.048601169984112867206 | ||||
|   -1.2598695987143850861 | ||||
| -0.049063798188844320869 | ||||
|   -1.9586867140445654023 | ||||
| 1432.137451171875 | ||||
| -7.3171918302250560373e-08 | ||||
| 3.1759419042137054801e-14 | ||||
| 
 | ||||
| 0.057491325683772541433 | ||||
|  0.34853090049579965592 | ||||
|  0.47985129303736057116 | ||||
|  8.1963904289063389541 | ||||
|  6.5146840788718787252 | ||||
| -3.8392804395897406344 | ||||
| 1572.047119140625 | ||||
| -1.5962623223231275915e-08 | ||||
| -1.6507904730136101212e-14 | ||||
| 
 | ||||
| -11.317351620610928364 | ||||
| 3.3594874875767186673 | ||||
| -42.755222607849105998 | ||||
| 
 | ||||
| 4.2648515634753199066 | ||||
| -8.4629358700849355301 | ||||
| -22.252086323427270997 | ||||
| 
 | ||||
| 10.996977688149536689 | ||||
| -9.2123370180278048025 | ||||
| -29.206739014051372294 | ||||
| 
 | ||||
| 10.935342607054865383 | ||||
| -9.4338917557810741954 | ||||
| -29.112263909175499776 | ||||
| 
 | ||||
| 15.714024935401759819 | ||||
| 1.3745079651566265433 | ||||
| -59.286834979937104606 | ||||
| 
 | ||||
| -1.3624227800805182031 | ||||
| -4.1979357415396094666 | ||||
| -21.034430148188398846 | ||||
| 
 | ||||
| 6.7690173115899296974 | ||||
| -4.7352452433700786827 | ||||
| -53.605307875695892506 | ||||
| 
 | ||||
|  | @ -1,23 +0,0 @@ | |||
| VERTEX_SE2 0 0 0 0 | ||||
| VERTEX_SE2 1 1.03039 0.01135 -0.081596 | ||||
| VERTEX_SE2 2 2.03614 -0.129733 -0.301887 | ||||
| VERTEX_SE2 3 3.0151 -0.442395 -0.345514 | ||||
| VERTEX_SE2 4 3.34395 0.506678 1.21471 | ||||
| VERTEX_SE2 5 3.68449 1.46405 1.18379 | ||||
| VERTEX_SE2 6 4.06463 2.41478 1.17633 | ||||
| VERTEX_SE2 7 4.42978 3.30018 1.25917 | ||||
| VERTEX_SE2 8 4.12888 2.32148 -1.82539 | ||||
| VERTEX_SE2 9 3.88465 1.32751 -1.95302 | ||||
| VERTEX_SE2 10 3.53107 0.388263 -2.14893 | ||||
| EDGE_SE2 0 1 1.03039 0.01135 -0.081596 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 1 2 1.0139 -0.058639 -0.220291 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 2 3 1.02765 -0.007456 -0.043627 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 3 4 -0.012016 1.00436 1.56023 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 4 5 1.01603 0.014565 -0.03093 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 5 6 1.02389 0.006808 -0.007452 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 6 7 0.957734 0.003159 0.082836 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 7 8 -1.02382 -0.013668 -3.08456 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 8 9 1.02344 0.013984 -0.127624 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 9 10 1.00335 0.02225 -0.195918 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 5 9 0.033943 0.032439 3.07364 44.7214 0 0 44.7214 0 30.9017 | ||||
| EDGE_SE2 3 10 0.04402 0.988477 -1.55351 44.7214 0 0 44.7214 0 30.9017 | ||||
|  | @ -18,46 +18,45 @@ | |||
|  * @author Luca Carlone | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| #include <gtsam/inference/Key.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h> | ||||
| #include <gtsam/nonlinear/Marginals.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <fstream> | ||||
| #include <sstream> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| int main(const int argc, const char *argv[]) { | ||||
| 
 | ||||
| int main(const int argc, const char *argv[]){ | ||||
| 
 | ||||
|   // Read graph from file
 | ||||
|   string g2oFile; | ||||
|   if (argc < 2) | ||||
|     std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl; | ||||
|   const string g2oFile = argv[1]; | ||||
|     g2oFile = "../../examples/Data/noisyToyGraph.txt"; | ||||
|   else | ||||
|     g2oFile = argv[1]; | ||||
| 
 | ||||
|   NonlinearFactorGraph graph; | ||||
|   Values initial; | ||||
|   readG2o(g2oFile, graph, initial); | ||||
|   NonlinearFactorGraph::shared_ptr graph; | ||||
|   Values::shared_ptr initial; | ||||
|   boost::tie(graph, initial) = readG2o(g2oFile); | ||||
| 
 | ||||
|   // Add prior on the pose having index (key) = 0
 | ||||
|   NonlinearFactorGraph graphWithPrior = graph; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
|   NonlinearFactorGraph graphWithPrior = *graph; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = //
 | ||||
|       noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
|   graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel)); | ||||
| 
 | ||||
|   std::cout << "Optimizing the factor graph" << std::endl; | ||||
|   GaussNewtonOptimizer optimizer(graphWithPrior, initial); // , parameters);
 | ||||
|   GaussNewtonOptimizer optimizer(graphWithPrior, *initial); | ||||
|   Values result = optimizer.optimize(); | ||||
|   std::cout << "Optimization complete" << std::endl; | ||||
| 
 | ||||
|   const string outputFile = argv[2]; | ||||
|   std::cout << "Writing results to file: " << outputFile << std::endl; | ||||
|   writeG2o(outputFile, graph, result); | ||||
|   std::cout << "done! " << std::endl; | ||||
| 
 | ||||
|   if (argc < 3) { | ||||
|     result.print("result"); | ||||
|   } else { | ||||
|     const string outputFile = argv[2]; | ||||
|     std::cout << "Writing results to file: " << outputFile << std::endl; | ||||
|     writeG2o(*graph, result, outputFile); | ||||
|     std::cout << "done! " << std::endl; | ||||
|   } | ||||
|   return 0; | ||||
| } | ||||
|  |  | |||
|  | @ -12,51 +12,53 @@ | |||
| /**
 | ||||
|  * @file Pose2SLAMExample_lago.cpp | ||||
|  * @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem | ||||
|  * using LAGO (Linear Approximation for Graph Optimization). See class LagoInitializer.h | ||||
|  * using LAGO (Linear Approximation for Graph Optimization). See class lago.h | ||||
|  * Output is written on a file, in g2o format | ||||
|  * Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o | ||||
|  * @date May 15, 2014 | ||||
|  * @author Luca Carlone | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| #include <gtsam/inference/Key.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/lago.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/nonlinear/LagoInitializer.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <fstream> | ||||
| #include <sstream> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| int main(const int argc, const char *argv[]) { | ||||
| 
 | ||||
| int main(const int argc, const char *argv[]){ | ||||
| 
 | ||||
|   // Read graph from file
 | ||||
|   string g2oFile; | ||||
|   if (argc < 2) | ||||
|     std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl; | ||||
|   const string g2oFile = argv[1]; | ||||
|     g2oFile = "../../examples/Data/noisyToyGraph.txt"; | ||||
|   else | ||||
|     g2oFile = argv[1]; | ||||
| 
 | ||||
|   NonlinearFactorGraph graph; | ||||
|   Values initial; | ||||
|   readG2o(g2oFile, graph, initial); | ||||
|   NonlinearFactorGraph::shared_ptr graph; | ||||
|   Values::shared_ptr initial; | ||||
|   boost::tie(graph, initial) = readG2o(g2oFile); | ||||
| 
 | ||||
|   // Add prior on the pose having index (key) = 0
 | ||||
|   NonlinearFactorGraph graphWithPrior = graph; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
|   NonlinearFactorGraph graphWithPrior = *graph; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = //
 | ||||
|       noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
|   graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel)); | ||||
|   graphWithPrior.print(); | ||||
| 
 | ||||
|   std::cout << "Computing LAGO estimate" << std::endl; | ||||
|   Values estimateLago = initializeLago(graphWithPrior); | ||||
|   Values estimateLago = lago::initialize(graphWithPrior); | ||||
|   std::cout << "done!" << std::endl; | ||||
| 
 | ||||
|   const string outputFile = argv[2]; | ||||
|   std::cout << "Writing results to file: " << outputFile << std::endl; | ||||
|   writeG2o(outputFile, graph, estimateLago); | ||||
|   std::cout << "done! " << std::endl; | ||||
|   if (argc < 3) { | ||||
|     estimateLago.print("estimateLago"); | ||||
|   } else { | ||||
|     const string outputFile = argv[2]; | ||||
|     std::cout << "Writing results to file: " << outputFile << std::endl; | ||||
|     writeG2o(*graph, estimateLago, outputFile); | ||||
|     std::cout << "done! " << std::endl; | ||||
|   } | ||||
| 
 | ||||
|   return 0; | ||||
| } | ||||
|  |  | |||
|  | @ -0,0 +1,168 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file    SFMExample_SmartFactor.cpp | ||||
|  * @brief   A structure-from-motion problem on a simulated dataset, using smart projection factor | ||||
|  * @author  Duy-Nguyen Ta | ||||
|  * @author  Jing Dong | ||||
|  */ | ||||
| 
 | ||||
| /**
 | ||||
|  * A structure-from-motion example with landmarks | ||||
|  *  - The landmarks form a 10 meter cube | ||||
|  *  - The robot rotates around the landmarks, always facing towards the cube | ||||
|  */ | ||||
| 
 | ||||
| // For loading the data
 | ||||
| #include "SFMdata.h" | ||||
| 
 | ||||
| // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | ||||
| #include <gtsam/geometry/Point2.h> | ||||
| 
 | ||||
| // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | ||||
| // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | ||||
| // Here we will use Symbols
 | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| 
 | ||||
| // In GTSAM, measurement functions are represented as 'factors'.
 | ||||
| // The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
 | ||||
| // The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
 | ||||
| // The calibration should be known.
 | ||||
| #include <gtsam/slam/SmartProjectionPoseFactor.h> | ||||
| 
 | ||||
| // Also, we will initialize the robot at some location using a Prior factor.
 | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| 
 | ||||
| // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | ||||
| // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| 
 | ||||
| // Finally, once all of the factors have been added to our factor graph, we will want to
 | ||||
| // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | ||||
| // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | ||||
| // trust-region method known as Powell's Degleg
 | ||||
| #include <gtsam/nonlinear/DoglegOptimizer.h> | ||||
| 
 | ||||
| // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | ||||
| // nonlinear functions around an initial linearization point, then solve the linear system
 | ||||
| // to update the linearization point. This happens repeatedly until the solver converges
 | ||||
| // to a consistent set of variable values. This requires us to specify an initial guess
 | ||||
| // for each variable, held in a Values container.
 | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| 
 | ||||
| #include <vector> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| // Make the typename short so it looks much cleaner
 | ||||
| typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2> | ||||
|   SmartFactor; | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| int main(int argc, char* argv[]) { | ||||
| 
 | ||||
|   // Define the camera calibration parameters
 | ||||
|   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | ||||
| 
 | ||||
|   // Define the camera observation noise model
 | ||||
|   noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | ||||
| 
 | ||||
|   // Create the set of ground-truth landmarks
 | ||||
|   vector<Point3> points = createPoints(); | ||||
| 
 | ||||
|   // Create the set of ground-truth poses
 | ||||
|   vector<Pose3> poses = createPoses(); | ||||
| 
 | ||||
|   // Create a factor graph
 | ||||
|   NonlinearFactorGraph graph; | ||||
| 
 | ||||
|   // A vector saved all Smart factors (for get landmark position after optimization)
 | ||||
|   vector<SmartFactor::shared_ptr> smartfactors_ptr; | ||||
| 
 | ||||
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | ||||
|   for (size_t i = 0; i < points.size(); ++i) { | ||||
| 
 | ||||
|     // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
 | ||||
|     SmartFactor::shared_ptr smartfactor(new SmartFactor()); | ||||
| 
 | ||||
|     for (size_t j = 0; j < poses.size(); ++j) { | ||||
| 
 | ||||
|       // generate the 2D measurement
 | ||||
|       SimpleCamera camera(poses[j], *K); | ||||
|       Point2 measurement = camera.project(points[i]); | ||||
| 
 | ||||
|       // call add() function to add measurment into a single factor, here we need to add:
 | ||||
|       //    1. the 2D measurement
 | ||||
|       //    2. the corresponding camera's key
 | ||||
|       //    3. camera noise model
 | ||||
|       //    4. camera calibration
 | ||||
|       smartfactor->add(measurement, Symbol('x', j), measurementNoise, K); | ||||
|     } | ||||
| 
 | ||||
|     // save smartfactors to get landmark position
 | ||||
|     smartfactors_ptr.push_back(smartfactor); | ||||
| 
 | ||||
|     // insert the smart factor in the graph
 | ||||
|     graph.push_back(smartfactor); | ||||
|   } | ||||
| 
 | ||||
|   // Add a prior on pose x0. This indirectly specifies where the origin is.
 | ||||
|   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | ||||
|   graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
 | ||||
| 
 | ||||
|   // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
 | ||||
|   // Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
 | ||||
|   // Because these two are fixed, the rest poses will be alse fixed.
 | ||||
|   graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
 | ||||
| 
 | ||||
|   graph.print("Factor Graph:\n"); | ||||
| 
 | ||||
|   // Create the data structure to hold the initial estimate to the solution
 | ||||
|   // Intentionally initialize the variables off from the ground truth
 | ||||
|   Values initialEstimate; | ||||
|   for (size_t i = 0; i < poses.size(); ++i) | ||||
|     initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); | ||||
|   initialEstimate.print("Initial Estimates:\n"); | ||||
| 
 | ||||
|   // Optimize the graph and print results
 | ||||
|   Values result = DoglegOptimizer(graph, initialEstimate).optimize(); | ||||
|   result.print("Final results:\n"); | ||||
| 
 | ||||
| 
 | ||||
|   // Notice: Smart factor represent the 3D point as a factor, not a variable.
 | ||||
|   // The 3D position of the landmark is not explicitly calculated by the optimizer.
 | ||||
|   // If you do want to output the landmark's 3D position, you should use the internal function point()
 | ||||
|   // of the smart factor to get the 3D point.
 | ||||
|   Values landmark_result; | ||||
|   for (size_t i = 0; i < points.size(); ++i) { | ||||
| 
 | ||||
|     // The output of point() is in boost::optional<gtsam::Point3>, since sometimes
 | ||||
|     // the triangulation opterations inside smart factor will encounter degeneracy.
 | ||||
|     // Check the manual of boost::optional for more details for the usages.
 | ||||
|     boost::optional<Point3> point; | ||||
| 
 | ||||
|     // here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
 | ||||
|     point = smartfactors_ptr.at(i)->point(result); | ||||
| 
 | ||||
|     // ignore if boost::optional return NULL
 | ||||
|     if (point) | ||||
|       landmark_result.insert(Symbol('l', i), *point); | ||||
|   } | ||||
| 
 | ||||
|   landmark_result.print("Landmark results:\n"); | ||||
| 
 | ||||
| 
 | ||||
|   return 0; | ||||
| } | ||||
| /* ************************************************************************* */ | ||||
| 
 | ||||
|  | @ -25,47 +25,43 @@ | |||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <gtsam/inference/Key.h> | ||||
| #include <gtsam/geometry/Cal3_S2Stereo.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/nonlinear/NonlinearEquality.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||||
| #include <gtsam/nonlinear/Marginals.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/geometry/Cal3_S2Stereo.h> | ||||
| 
 | ||||
| #include <gtsam/slam/StereoFactor.h> | ||||
| #include <gtsam/nonlinear/NonlinearEquality.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/slam/StereoFactor.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| 
 | ||||
| #include <string> | ||||
| #include <fstream> | ||||
| #include <iostream> | ||||
| #include <sstream> | ||||
| #include <string> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| int main(int argc, char** argv){ | ||||
| 
 | ||||
|   Values initial_estimate; | ||||
|   NonlinearFactorGraph graph; | ||||
|   const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1); | ||||
|   Values initial_estimate = Values(); | ||||
|   vector<double> read_vector; | ||||
|   string read_string, parse_string; | ||||
| 
 | ||||
|   string data_folder = "C:/Users/Stephen/Documents/Borg/gtsam/Examples/Data/"; | ||||
|   string calibration_loc = data_folder + "VO_calibration.txt"; | ||||
|   string pose_loc = data_folder + "VO_camera_poses_large.txt"; | ||||
|   string factor_loc = data_folder + "VO_stereo_factors_large.txt"; | ||||
|   string calibration_loc = findExampleDataFile("VO_calibration.txt"); | ||||
|   string pose_loc = findExampleDataFile("VO_camera_poses_large.txt"); | ||||
|   string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt"); | ||||
|    | ||||
|   //read camera calibration info from file
 | ||||
|   double fx,fy,s,u,v,b; | ||||
|   ifstream calibration_file(calibration_loc); | ||||
|   // focal lengths fx, fy, skew s, principal point u0, v0, baseline b
 | ||||
|   double fx, fy, s, u0, v0, b; | ||||
|   ifstream calibration_file(calibration_loc.c_str()); | ||||
|   cout << "Reading calibration info" << endl; | ||||
|   calibration_file >> fx >> fy >> s >> u >> v >> b; | ||||
|   calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; | ||||
| 
 | ||||
|   //create stereo camera calibration object
 | ||||
|   const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u,v,b)); | ||||
|   const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u0,v0,b)); | ||||
|    | ||||
|   ifstream pose_file(pose_loc); | ||||
|   ifstream pose_file(pose_loc.c_str()); | ||||
|   cout << "Reading camera poses" << endl; | ||||
|   int pose_id; | ||||
|   MatrixRowMajor m(4,4); | ||||
|  | @ -77,30 +73,36 @@ int main(int argc, char** argv){ | |||
|     initial_estimate.insert(Symbol('x', pose_id), Pose3(m)); | ||||
|   } | ||||
|    | ||||
|   double x, l, uL, uR, v, X, Y, Z; | ||||
|   ifstream factor_file(factor_loc); | ||||
|   // camera and landmark keys
 | ||||
|   size_t x, l; | ||||
| 
 | ||||
|   // pixel coordinates uL, uR, v (same for left/right images due to rectification)
 | ||||
|   // landmark coordinates X, Y, Z in camera frame, resulting from triangulation
 | ||||
|   double uL, uR, v, X, Y, Z; | ||||
|   ifstream factor_file(factor_loc.c_str()); | ||||
|   cout << "Reading stereo factors" << endl; | ||||
|   //read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
 | ||||
|   while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) { | ||||
|       graph.push_back( | ||||
|           GenericStereoFactor<Pose3,Point3>(StereoPoint2(uL, uR, v), model, | ||||
|                   Symbol('x', x), Symbol('l', l), K)); | ||||
|       //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
 | ||||
|       if(!initial_estimate.exists(Symbol('l',l))){ | ||||
|         Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x)); | ||||
|         //transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
 | ||||
|         Point3 worldPoint = camPose.transform_from(Point3(X,Y,Z)); | ||||
|         initial_estimate.insert(Symbol('l',l),worldPoint); | ||||
|       } | ||||
|     graph.push_back( | ||||
|         GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model, | ||||
|             Symbol('x', x), Symbol('l', l), K)); | ||||
|     //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
 | ||||
|     if (!initial_estimate.exists(Symbol('l', l))) { | ||||
|       Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x)); | ||||
|       //transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
 | ||||
|       Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z)); | ||||
|       initial_estimate.insert(Symbol('l', l), worldPoint); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1)); | ||||
|   first_pose.print("Check estimate poses:\n"); | ||||
|   //constrain the first pose such that it cannot change from its original value during optimization
 | ||||
|   // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
 | ||||
|   // QR is much slower than Cholesky, but numerically more stable
 | ||||
|   graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose)); | ||||
| 
 | ||||
|   cout << "Optimizing" << endl; | ||||
|   //create Levenberg-Marquardt optimizer to solve the initial factor graph estimate
 | ||||
|   //create Levenberg-Marquardt optimizer to optimize the factor graph
 | ||||
|   LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate); | ||||
|   Values result = optimizer.optimize(); | ||||
| 
 | ||||
|  | @ -109,4 +111,4 @@ int main(int argc, char** argv){ | |||
|   pose_values.print("Final camera poses:\n"); | ||||
| 
 | ||||
|   return 0; | ||||
| } | ||||
| } | ||||
|  |  | |||
							
								
								
									
										7
									
								
								gtsam.h
								
								
								
								
							
							
						
						
									
										7
									
								
								gtsam.h
								
								
								
								
							|  | @ -2249,6 +2249,13 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename, | |||
| pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename); | ||||
| pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename, | ||||
|     gtsam::noiseModel::Base* model); | ||||
| void save2D(const gtsam::NonlinearFactorGraph& graph, | ||||
|     const gtsam::Values& config, gtsam::noiseModel::Diagonal* model, | ||||
|     string filename); | ||||
| 
 | ||||
| pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename); | ||||
| void writeG2o(const gtsam::NonlinearFactorGraph& graph, | ||||
|     const gtsam::Values& estimate, string filename); | ||||
| 
 | ||||
| //*************************************************************************
 | ||||
| // Navigation
 | ||||
|  |  | |||
|  | @ -617,11 +617,12 @@ | |||
| 
 | ||||
| #include "ccolamd.h" | ||||
| 
 | ||||
| #include <stdlib.h> | ||||
| #include <math.h> | ||||
| #include <limits.h> | ||||
| 
 | ||||
| #ifdef MATLAB_MEX_FILE | ||||
| #include <stdint.h> | ||||
| typedef uint16_t char16_t; | ||||
| #include "mex.h" | ||||
| #include "matrix.h" | ||||
| #endif | ||||
|  |  | |||
|  | @ -13,6 +13,9 @@ | |||
| 
 | ||||
| #ifndef NPRINT | ||||
| #ifdef MATLAB_MEX_FILE | ||||
| #include <stdlib.h> | ||||
| #include <stdint.h> | ||||
| typedef uint16_t char16_t; | ||||
| #include "mex.h" | ||||
| int (*ccolamd_printf) (const char *, ...) = mexPrintf ; | ||||
| #else | ||||
|  |  | |||
|  | @ -16,7 +16,7 @@ | |||
|  *      Author: cbeall3 | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam_unstable/geometry/triangulation.h> | ||||
| #include <gtsam/geometry/triangulation.h> | ||||
| #include <gtsam/geometry/Cal3Bundler.h> | ||||
| #include <CppUnitLite/TestHarness.h> | ||||
| 
 | ||||
|  | @ -16,7 +16,7 @@ | |||
|  * @author Chris Beall | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam_unstable/geometry/triangulation.h> | ||||
| #include <gtsam/geometry/triangulation.h> | ||||
| 
 | ||||
| #include <gtsam/geometry/PinholeCamera.h> | ||||
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||||
|  | @ -18,8 +18,8 @@ | |||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include <gtsam_unstable/base/dllexport.h> | ||||
| #include <gtsam_unstable/geometry/TriangulationFactor.h> | ||||
| 
 | ||||
| #include <gtsam/geometry/TriangulationFactor.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
|  | @ -52,7 +52,7 @@ public: | |||
|  * @param rank_tol SVD rank tolerance | ||||
|  * @return Triangulated Point3 | ||||
|  */ | ||||
| GTSAM_UNSTABLE_EXPORT Point3 triangulateDLT( | ||||
| GTSAM_EXPORT Point3 triangulateDLT( | ||||
|     const std::vector<Matrix>& projection_matrices, | ||||
|     const std::vector<Point2>& measurements, double rank_tol); | ||||
| 
 | ||||
|  | @ -120,7 +120,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph( | |||
|  * @param landmarkKey to refer to landmark | ||||
|  * @return refined Point3 | ||||
|  */ | ||||
| GTSAM_UNSTABLE_EXPORT Point3 optimize(const NonlinearFactorGraph& graph, | ||||
| GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph, | ||||
|     const Values& values, Key landmarkKey); | ||||
| 
 | ||||
| /**
 | ||||
|  | @ -23,43 +23,35 @@ namespace gtsam { | |||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| template<class FG> | ||||
| void VariableIndex::augment(const FG& factors, boost::optional<const FastVector<size_t>&> newFactorIndices) | ||||
| { | ||||
| void VariableIndex::augment(const FG& factors, | ||||
|     boost::optional<const FastVector<size_t>&> newFactorIndices) { | ||||
|   gttic(VariableIndex_augment); | ||||
| 
 | ||||
|   // Augment index for each factor
 | ||||
|   for(size_t i = 0; i < factors.size(); ++i) | ||||
|   { | ||||
|     if(factors[i]) | ||||
|     { | ||||
|   for (size_t i = 0; i < factors.size(); ++i) { | ||||
|     if (factors[i]) { | ||||
|       const size_t globalI = | ||||
|         newFactorIndices ? | ||||
|         (*newFactorIndices)[i] : | ||||
|         nFactors_; | ||||
|       BOOST_FOREACH(const Key key, *factors[i]) | ||||
|       { | ||||
|           newFactorIndices ? (*newFactorIndices)[i] : nFactors_; | ||||
|       BOOST_FOREACH(const Key key, *factors[i]) { | ||||
|         index_[key].push_back(globalI); | ||||
|         ++ nEntries_; | ||||
|         ++nEntries_; | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     // Increment factor count even if factors are null, to keep indices consistent
 | ||||
|     if(newFactorIndices) | ||||
|     { | ||||
|       if((*newFactorIndices)[i] >= nFactors_) | ||||
|     if (newFactorIndices) { | ||||
|       if ((*newFactorIndices)[i] >= nFactors_) | ||||
|         nFactors_ = (*newFactorIndices)[i] + 1; | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|       ++ nFactors_; | ||||
|     } else { | ||||
|       ++nFactors_; | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| template<typename ITERATOR, class FG> | ||||
| void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& factors) | ||||
| { | ||||
| void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, | ||||
|     const FG& factors) { | ||||
|   gttic(VariableIndex_remove); | ||||
| 
 | ||||
|   // NOTE: We intentionally do not decrement nFactors_ because the factor
 | ||||
|  | @ -68,17 +60,20 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& | |||
|   // one greater than the highest-numbered factor referenced in a VariableIndex.
 | ||||
|   ITERATOR factorIndex = firstFactor; | ||||
|   size_t i = 0; | ||||
|   for( ; factorIndex != lastFactor; ++factorIndex, ++i) { | ||||
|     if(i >= factors.size()) | ||||
|       throw std::invalid_argument("Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove"); | ||||
|     if(factors[i]) { | ||||
|   for (; factorIndex != lastFactor; ++factorIndex, ++i) { | ||||
|     if (i >= factors.size()) | ||||
|       throw std::invalid_argument( | ||||
|           "Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove"); | ||||
|     if (factors[i]) { | ||||
|       BOOST_FOREACH(Key j, *factors[i]) { | ||||
|         Factors& factorEntries = internalAt(j); | ||||
|         Factors::iterator entry = std::find(factorEntries.begin(), factorEntries.end(), *factorIndex); | ||||
|         if(entry == factorEntries.end()) | ||||
|           throw std::invalid_argument("Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index"); | ||||
|         Factors::iterator entry = std::find(factorEntries.begin(), | ||||
|             factorEntries.end(), *factorIndex); | ||||
|         if (entry == factorEntries.end()) | ||||
|           throw std::invalid_argument( | ||||
|               "Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index"); | ||||
|         factorEntries.erase(entry); | ||||
|         -- nEntries_; | ||||
|         --nEntries_; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | @ -87,10 +82,11 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& | |||
| /* ************************************************************************* */ | ||||
| template<typename ITERATOR> | ||||
| void VariableIndex::removeUnusedVariables(ITERATOR firstKey, ITERATOR lastKey) { | ||||
|   for(ITERATOR key = firstKey; key != lastKey; ++key) { | ||||
|   for (ITERATOR key = firstKey; key != lastKey; ++key) { | ||||
|     KeyMap::iterator entry = index_.find(*key); | ||||
|     if(!entry->second.empty()) | ||||
|       throw std::invalid_argument("Asking to remove variables from the variable index that are not unused"); | ||||
|     if (!entry->second.empty()) | ||||
|       throw std::invalid_argument( | ||||
|           "Asking to remove variables from the variable index that are not unused"); | ||||
|     index_.erase(entry); | ||||
|   } | ||||
| } | ||||
|  |  | |||
|  | @ -70,7 +70,7 @@ namespace gtsam { | |||
|       vector<size_t> dims_accumulated; | ||||
|       dims_accumulated.resize(dims.size()+1,0); | ||||
|       dims_accumulated[0]=0; | ||||
|       for (int i=1; i<dims_accumulated.size(); i++) | ||||
|       for (size_t i=1; i<dims_accumulated.size(); i++) | ||||
|     	  dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1]; | ||||
|       return dims_accumulated; | ||||
|     } | ||||
|  |  | |||
|  | @ -49,7 +49,7 @@ void updateAb(MATRIX& Ab, int j, const Vector& a, const Vector& rd) { | |||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| // check *above the diagonal* for non-zero entries
 | ||||
| static boost::optional<Vector> checkIfDiagonal(const Matrix M) { | ||||
| boost::optional<Vector> checkIfDiagonal(const Matrix M) { | ||||
|   size_t m = M.rows(), n = M.cols(); | ||||
|   // check all non-diagonal entries
 | ||||
|   bool full = false; | ||||
|  | @ -74,23 +74,46 @@ static boost::optional<Vector> checkIfDiagonal(const Matrix M) { | |||
| /* ************************************************************************* */ | ||||
| Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) { | ||||
|   size_t m = R.rows(), n = R.cols(); | ||||
|   if (m != n) throw invalid_argument("Gaussian::SqrtInformation: R not square"); | ||||
|   if (m != n) | ||||
|     throw invalid_argument("Gaussian::SqrtInformation: R not square"); | ||||
|   boost::optional<Vector> diagonal = boost::none; | ||||
|   if (smart) | ||||
|     diagonal = checkIfDiagonal(R); | ||||
|   if (diagonal) return Diagonal::Sigmas(reciprocal(*diagonal),true); | ||||
|   else return shared_ptr(new Gaussian(R.rows(),R)); | ||||
|   if (diagonal) | ||||
|     return Diagonal::Sigmas(reciprocal(*diagonal), true); | ||||
|   else | ||||
|     return shared_ptr(new Gaussian(R.rows(), R)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) { | ||||
| Gaussian::shared_ptr Gaussian::Information(const Matrix& M, bool smart) { | ||||
|   size_t m = M.rows(), n = M.cols(); | ||||
|   if (m != n) | ||||
|     throw invalid_argument("Gaussian::Information: R not square"); | ||||
|   boost::optional<Vector> diagonal = boost::none; | ||||
|   if (smart) | ||||
|     diagonal = checkIfDiagonal(M); | ||||
|   if (diagonal) | ||||
|     return Diagonal::Precisions(*diagonal, true); | ||||
|   else { | ||||
|     Matrix R = RtR(M); | ||||
|     return shared_ptr(new Gaussian(R.rows(), R)); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, | ||||
|     bool smart) { | ||||
|   size_t m = covariance.rows(), n = covariance.cols(); | ||||
|   if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square"); | ||||
|   if (m != n) | ||||
|     throw invalid_argument("Gaussian::Covariance: covariance not square"); | ||||
|   boost::optional<Vector> variances = boost::none; | ||||
|   if (smart) | ||||
|     variances = checkIfDiagonal(covariance); | ||||
|   if (variances) return Diagonal::Variances(*variances,true); | ||||
|   else return shared_ptr(new Gaussian(n, inverse_square_root(covariance))); | ||||
|   if (variances) | ||||
|     return Diagonal::Variances(*variances, true); | ||||
|   else | ||||
|     return shared_ptr(new Gaussian(n, inverse_square_root(covariance))); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|  |  | |||
|  | @ -164,6 +164,13 @@ namespace gtsam { | |||
|        */ | ||||
|       static shared_ptr SqrtInformation(const Matrix& R, bool smart = true); | ||||
| 
 | ||||
|       /**
 | ||||
|        * A Gaussian noise model created by specifying an information matrix. | ||||
|        * @param M The information matrix | ||||
|        * @param smart check if can be simplified to derived class | ||||
|        */ | ||||
|       static shared_ptr Information(const Matrix& M, bool smart = true); | ||||
| 
 | ||||
|       /**
 | ||||
|        * A Gaussian noise model created by specifying a covariance matrix. | ||||
|        * @param covariance The square covariance Matrix | ||||
|  | @ -864,6 +871,9 @@ namespace gtsam { | |||
|         ar & boost::serialization::make_nvp("noise_", const_cast<NoiseModel::shared_ptr&>(noise_)); | ||||
|       } | ||||
|     }; | ||||
|      | ||||
|     // Helper function
 | ||||
|     GTSAM_EXPORT boost::optional<Vector> checkIfDiagonal(const Matrix M); | ||||
| 
 | ||||
|   } // namespace noiseModel
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -285,6 +285,17 @@ TEST(NoiseModel, SmartSqrtInformation2 ) | |||
|   EXPECT(assert_equal(*expected,*actual)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST(NoiseModel, SmartInformation ) | ||||
| { | ||||
|   bool smart = true; | ||||
|   gtsam::SharedGaussian expected = Unit::Isotropic::Variance(3,2); | ||||
|   Matrix M = 0.5*eye(3); | ||||
|   EXPECT(checkIfDiagonal(M)); | ||||
|   gtsam::SharedGaussian actual = Gaussian::Information(M, smart); | ||||
|   EXPECT(assert_equal(*expected,*actual)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST(NoiseModel, SmartCovariance ) | ||||
| { | ||||
|  |  | |||
|  | @ -54,8 +54,11 @@ public: | |||
|   static Point3 unrotate(const Rot2& R, const Point3& p, | ||||
|       boost::optional<Matrix&> HR = boost::none) { | ||||
|     Point3 q = Rot3::yaw(R.theta()).unrotate(p, HR); | ||||
|     if (HR) | ||||
|       *HR = HR->col(2); | ||||
|     if (HR) { | ||||
|       // assign to temporary first to avoid error in Win-Debug mode
 | ||||
|       Matrix H = HR->col(2); | ||||
|       *HR = H; | ||||
|     } | ||||
|     return q; | ||||
|   } | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,100 +0,0 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  *  @file  LagoInitializer.h | ||||
|  *  @brief Initialize Pose2 in a factor graph using LAGO | ||||
|  *  (Linear Approximation for Graph Optimization). see papers: | ||||
|  * | ||||
|  *  L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate | ||||
|  *  approximation for planar pose graph optimization, IJRR, 2014. | ||||
|  * | ||||
|  *  L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation | ||||
|  *  for graph-based simultaneous localization and mapping, RSS, 2011. | ||||
|  * | ||||
|  *  @param graph: nonlinear factor graph (can include arbitrary factors but we assume | ||||
|  *  that there is a subgraph involving Pose2 and betweenFactors). Also in the current | ||||
|  *  version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc) | ||||
|  *  and a prior on x0. This assumption can be relaxed by using the extra argument | ||||
|  *  useOdometricPath = false, although this part of code is not stable yet. | ||||
|  *  @return Values: initial guess from LAGO (only pose2 are initialized) | ||||
|  * | ||||
|  *  @author Luca Carlone | ||||
|  *  @author Frank Dellaert | ||||
|  *  @date   May 14, 2014 | ||||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/linear/GaussianFactorGraph.h> | ||||
| #include <gtsam/linear/VectorValues.h> | ||||
| #include <gtsam/inference/graph.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| 
 | ||||
| typedef std::map<Key,double> key2doubleMap; | ||||
| const Key keyAnchor = symbol('Z',9999999); | ||||
| noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8)); | ||||
| noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
| 
 | ||||
| /*  This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
 | ||||
|  *  for a node (nodeKey). The function starts at the nodes and moves towards the root | ||||
|  *  summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap" | ||||
|  *  The root is assumed to have orientation zero. | ||||
|  */ | ||||
| GTSAM_EXPORT double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree, | ||||
|     const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap); | ||||
| 
 | ||||
| /*  This function computes the cumulative orientations (without wrapping)
 | ||||
|  *  for all node wrt the root (root has zero orientation) | ||||
|  */ | ||||
| GTSAM_EXPORT key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap, | ||||
|     const PredecessorMap<Key>& tree); | ||||
| 
 | ||||
| /*  Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
 | ||||
|  *  and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree | ||||
|  *  Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree: | ||||
|  *  for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1] | ||||
|  */ | ||||
| GTSAM_EXPORT void getSymbolicGraph( | ||||
|     /*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap, | ||||
|     /*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g); | ||||
| 
 | ||||
| /*  Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2> */ | ||||
| GTSAM_EXPORT void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor, | ||||
|     Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta); | ||||
| 
 | ||||
| /*  Linear factor graph with regularized orientation measurements */ | ||||
| GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds, | ||||
|     const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree); | ||||
| 
 | ||||
| /* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node */ | ||||
| GTSAM_EXPORT NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph); | ||||
| 
 | ||||
| /* Returns the orientations of a graph including only BetweenFactors<Pose2> */ | ||||
| GTSAM_EXPORT VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath = true); | ||||
| 
 | ||||
| /*  LAGO: Returns the orientations of the Pose2 in a generic factor graph */ | ||||
| GTSAM_EXPORT VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true); | ||||
| 
 | ||||
| /*  Returns the values for the Pose2 in a generic factor graph */ | ||||
| GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true); | ||||
| 
 | ||||
| /*  Only corrects the orientation part in initialGuess */ | ||||
| GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess); | ||||
| 
 | ||||
| } // end of namespace gtsam
 | ||||
|  | @ -244,7 +244,7 @@ void LevenbergMarquardtOptimizer::iterate() { | |||
|     try { | ||||
|       delta = solve(dampedSystem, state_.values, params_); | ||||
|       systemSolvedSuccessfully = true; | ||||
|     } catch (IndeterminantLinearSystemException& e) { | ||||
|     } catch (IndeterminantLinearSystemException) { | ||||
|       systemSolvedSuccessfully = false; | ||||
|     } | ||||
| 
 | ||||
|  |  | |||
|  | @ -6,7 +6,7 @@ | |||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
| #include <gtsam_unstable/slam/JacobianSchurFactor.h> | ||||
| #include <gtsam/slam/JacobianSchurFactor.h> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| /**
 | ||||
|  | @ -5,7 +5,7 @@ | |||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
| #include "gtsam_unstable/slam/JacobianSchurFactor.h" | ||||
| #include "gtsam/slam/JacobianSchurFactor.h" | ||||
| 
 | ||||
| namespace gtsam { | ||||
| /**
 | ||||
|  | @ -325,7 +325,7 @@ public: | |||
|       const Cameras& cameras, const Point3& point, | ||||
|       const double lambda = 0.0) const { | ||||
| 
 | ||||
|     int numKeys = this->keys_.size(); | ||||
|     size_t numKeys = this->keys_.size(); | ||||
|     std::vector<KeyMatrix2D> Fblocks; | ||||
|     double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, | ||||
|         lambda); | ||||
|  | @ -352,7 +352,7 @@ public: | |||
|     Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU); | ||||
|     Vector s = svd.singularValues(); | ||||
|     // Enull = zeros(2 * numKeys, 2 * numKeys - 3);
 | ||||
|     int numKeys = this->keys_.size(); | ||||
|     size_t numKeys = this->keys_.size(); | ||||
|     Enull = svd.matrixU().block(0, 3, 2 * numKeys, 2 * numKeys - 3); // last 2m-3 columns
 | ||||
| 
 | ||||
|     return f; | ||||
|  | @ -21,11 +21,10 @@ | |||
| 
 | ||||
| #include "SmartFactorBase.h" | ||||
| 
 | ||||
| #include <gtsam_unstable/geometry/triangulation.h> | ||||
| #include <gtsam/geometry/triangulation.h> | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam_unstable/geometry/triangulation.h> | ||||
| 
 | ||||
| #include <boost/optional.hpp> | ||||
| #include <boost/make_shared.hpp> | ||||
|  | @ -54,7 +53,7 @@ public: | |||
|   double f; | ||||
| }; | ||||
| 
 | ||||
| enum linearizationType { | ||||
| enum LinearizationMode { | ||||
|   HESSIAN, JACOBIAN_SVD, JACOBIAN_Q | ||||
| }; | ||||
| 
 | ||||
|  | @ -263,7 +262,7 @@ public: | |||
|           try { | ||||
|             Point2 reprojectionError(camera.project(point_) - zi); | ||||
|             totalReprojError += reprojectionError.vector().norm(); | ||||
|           } catch (CheiralityException& e) { | ||||
|           } catch (CheiralityException) { | ||||
|             cheiralityException_ = true; | ||||
|           } | ||||
|           i += 1; | ||||
|  | @ -41,9 +41,8 @@ template<class POSE, class LANDMARK, class CALIBRATION> | |||
| class SmartProjectionPoseFactor: public SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, 6> { | ||||
| protected: | ||||
| 
 | ||||
|   linearizationType linearizeTo_; | ||||
|   LinearizationMode linearizeTo_;  ///< How to linearize the factor (HESSIAN, JACOBIAN_SVD, JACOBIAN_Q)
 | ||||
| 
 | ||||
|   // Known calibration
 | ||||
|   std::vector<boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
 | ||||
| 
 | ||||
| public: | ||||
|  | @ -69,7 +68,7 @@ public: | |||
|   SmartProjectionPoseFactor(const double rankTol = 1, | ||||
|       const double linThreshold = -1, const bool manageDegeneracy = false, | ||||
|       const bool enableEPI = false, boost::optional<POSE> body_P_sensor = boost::none, | ||||
|       linearizationType linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10, | ||||
|       LinearizationMode linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10, | ||||
|       double dynamicOutlierRejectionThreshold = -1) : | ||||
|         Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor, | ||||
|         landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(linearizeTo) {} | ||||
|  | @ -80,7 +79,7 @@ public: | |||
|   /**
 | ||||
|    * add a new measurement and pose key | ||||
|    * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement) | ||||
|    * @param poseKey is the index corresponding to the camera observing the same landmark | ||||
|    * @param poseKey is key corresponding to the camera observing the same landmark | ||||
|    * @param noise_i is the measurement noise | ||||
|    * @param K_i is the (known) camera calibration | ||||
|    */ | ||||
|  | @ -92,8 +91,11 @@ public: | |||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * add a new measurements and pose keys | ||||
|    * Variant of the previous one in which we include a set of measurements | ||||
|    *  Variant of the previous one in which we include a set of measurements | ||||
|    * @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement) | ||||
|    * @param poseKeys vector of keys corresponding to the camera observing the same landmark | ||||
|    * @param noises vector of measurement noises | ||||
|    * @param Ks vector of calibration objects | ||||
|    */ | ||||
|   void add(std::vector<Point2> measurements, std::vector<Key> poseKeys, | ||||
|       std::vector<SharedNoiseModel> noises, | ||||
|  | @ -105,8 +107,11 @@ public: | |||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * add a new measurements and pose keys | ||||
|    * Variant of the previous one in which we include a set of measurements with the same noise and calibration | ||||
|    * @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement) | ||||
|    * @param poseKeys vector of keys corresponding to the camera observing the same landmark | ||||
|    * @param noise measurement noise (same for all measurements) | ||||
|    * @param K the (known) camera calibration (same for all measurements) | ||||
|    */ | ||||
|   void add(std::vector<Point2> measurements, std::vector<Key> poseKeys, | ||||
|       const SharedNoiseModel noise, const boost::shared_ptr<CALIBRATION> K) { | ||||
|  | @ -141,7 +146,12 @@ public: | |||
|     return 6 * this->keys_.size(); | ||||
|   } | ||||
| 
 | ||||
|   // Collect all cameras
 | ||||
|   /**
 | ||||
|    * Collect all cameras involved in this factor | ||||
|    * @param values Values structure which must contain camera poses corresponding | ||||
|    * to keys involved in this factor | ||||
|    * @return vector of Values | ||||
|    */ | ||||
|   typename Base::Cameras cameras(const Values& values) const { | ||||
|     typename Base::Cameras cameras; | ||||
|     size_t i=0; | ||||
|  | @ -154,7 +164,9 @@ public: | |||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * linear factor on the poses | ||||
|    * Linearize to Gaussian Factor | ||||
|    * @param values Values structure which must contain camera poses for this factor | ||||
|    * @return | ||||
|    */ | ||||
|   virtual boost::shared_ptr<GaussianFactor> linearize( | ||||
|       const Values& values) const { | ||||
|  | @ -184,7 +196,7 @@ public: | |||
|   } | ||||
| 
 | ||||
|   /** return the calibration object */ | ||||
|   inline const boost::shared_ptr<CALIBRATION> calibration() const { | ||||
|   inline const std::vector<boost::shared_ptr<CALIBRATION> > calibration() const { | ||||
|     return K_all_; | ||||
|   } | ||||
| 
 | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							|  | @ -35,7 +35,7 @@ namespace gtsam { | |||
| /**
 | ||||
|  * Find the full path to an example dataset distributed with gtsam.  The name | ||||
|  * may be specified with or without a file extension - if no extension is | ||||
|  * give, this function first looks for the .graph extension, then .txt.  We | ||||
|  * given, this function first looks for the .graph extension, then .txt.  We | ||||
|  * first check the gtsam source tree for the file, followed by the installed | ||||
|  * example dataset location.  Both the source tree and installed locations | ||||
|  * are obtained from CMake during compilation. | ||||
|  | @ -44,8 +44,30 @@ namespace gtsam { | |||
|  * search process described above. | ||||
|  */ | ||||
| GTSAM_EXPORT std::string findExampleDataFile(const std::string& name); | ||||
| 
 | ||||
| /**
 | ||||
|  * Creates a temporary file name that needs to be ignored in .gitingnore | ||||
|  * for checking read-write oprations | ||||
|  */ | ||||
| GTSAM_EXPORT std::string createRewrittenFileName(const std::string& name); | ||||
| #endif | ||||
| 
 | ||||
| /// Indicates how noise parameters are stored in file
 | ||||
| enum NoiseFormat { | ||||
|   NoiseFormatG2O, ///< Information matrix I11, I12, I13, I22, I23, I33
 | ||||
|   NoiseFormatTORO, ///< Information matrix, but inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
 | ||||
|   NoiseFormatGRAPH, ///< default: toro-style order, but covariance matrix !
 | ||||
|   NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
 | ||||
| }; | ||||
| 
 | ||||
| /// Robust kernel type to wrap around quadratic noise model
 | ||||
| enum KernelFunctionType { | ||||
|   KernelFunctionTypeNONE, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY | ||||
| }; | ||||
| 
 | ||||
| /// Return type for load functions
 | ||||
| typedef std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> GraphAndValues; | ||||
| 
 | ||||
| /**
 | ||||
|  * Load TORO 2D Graph | ||||
|  * @param dataset/model pair as constructed by [dataset] | ||||
|  | @ -53,31 +75,57 @@ GTSAM_EXPORT std::string findExampleDataFile(const std::string& name); | |||
|  * @param addNoise add noise to the edges | ||||
|  * @param smart try to reduce complexity of covariance to cheapest model | ||||
|  */ | ||||
| GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D( | ||||
|     std::pair<std::string, boost::optional<noiseModel::Diagonal::shared_ptr> > dataset, | ||||
|     int maxID = 0, bool addNoise = false, bool smart = true); | ||||
| GTSAM_EXPORT GraphAndValues load2D( | ||||
|     std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0, | ||||
|     bool addNoise = false, | ||||
|     bool smart = true, //
 | ||||
|     NoiseFormat noiseFormat = NoiseFormatGRAPH, | ||||
|     KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE); | ||||
| 
 | ||||
| /**
 | ||||
|  * Load TORO 2D Graph | ||||
|  * Load TORO/G2O style graph files | ||||
|  * @param filename | ||||
|  * @param model optional noise model to use instead of one specified by file | ||||
|  * @param maxID if non-zero cut out vertices >= maxID | ||||
|  * @param addNoise add noise to the edges | ||||
|  * @param smart try to reduce complexity of covariance to cheapest model | ||||
|  * @param noiseFormat how noise parameters are stored | ||||
|  * @param kernelFunctionType whether to wrap the noise model in a robust kernel | ||||
|  * @return graph and initial values | ||||
|  */ | ||||
| GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D( | ||||
|     const std::string& filename, | ||||
|     boost::optional<gtsam::SharedDiagonal> model = boost::optional< | ||||
|     noiseModel::Diagonal::shared_ptr>(), int maxID = 0, bool addNoise = false, | ||||
|     bool smart = true); | ||||
| GTSAM_EXPORT GraphAndValues load2D(const std::string& filename, | ||||
|     SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise = | ||||
|         false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
 | ||||
|     KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE); | ||||
| 
 | ||||
| GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust( | ||||
|     const std::string& filename, | ||||
|     gtsam::noiseModel::Base::shared_ptr& model, int maxID = 0); | ||||
| /// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
 | ||||
| GTSAM_EXPORT GraphAndValues load2D_robust(const std::string& filename, | ||||
|     noiseModel::Base::shared_ptr& model, int maxID = 0); | ||||
| 
 | ||||
| /** save 2d graph */ | ||||
| GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config, | ||||
|     const noiseModel::Diagonal::shared_ptr model, const std::string& filename); | ||||
| GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, | ||||
|     const Values& config, const noiseModel::Diagonal::shared_ptr model, | ||||
|     const std::string& filename); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function parses a g2o file and stores the measurements into a | ||||
|  * NonlinearFactorGraph and the initial guess in a Values structure | ||||
|  * @param filename The name of the g2o file | ||||
|  * @param kernelFunctionType whether to wrap the noise model in a robust kernel | ||||
|  * @return graph and initial values | ||||
|  */ | ||||
| GTSAM_EXPORT GraphAndValues readG2o(const std::string& g2oFile, | ||||
|     KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function writes a g2o file from | ||||
|  * NonlinearFactorGraph and a Values structure | ||||
|  * @param filename The name of the g2o file to write | ||||
|  * @param graph NonlinearFactor graph storing the measurements | ||||
|  * @param estimate Values | ||||
|  */ | ||||
| GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph, | ||||
|     const Values& estimate, const std::string& filename); | ||||
| 
 | ||||
| /**
 | ||||
|  * Load TORO 3D Graph | ||||
|  | @ -85,27 +133,31 @@ GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config | |||
| GTSAM_EXPORT bool load3D(const std::string& filename); | ||||
| 
 | ||||
| /// A measurement with its camera index
 | ||||
| typedef std::pair<size_t,gtsam::Point2> SfM_Measurement; | ||||
| typedef std::pair<size_t, Point2> SfM_Measurement; | ||||
| 
 | ||||
| /// Define the structure for the 3D points
 | ||||
| struct SfM_Track | ||||
| { | ||||
|   gtsam::Point3 p; ///< 3D position of the point
 | ||||
|   float r,g,b; ///< RGB color of the 3D point
 | ||||
| struct SfM_Track { | ||||
|   Point3 p; ///< 3D position of the point
 | ||||
|   float r, g, b; ///< RGB color of the 3D point
 | ||||
|   std::vector<SfM_Measurement> measurements; ///< The 2D image projections (id,(u,v))
 | ||||
|   size_t number_measurements() const { return measurements.size();} | ||||
|   size_t number_measurements() const { | ||||
|     return measurements.size(); | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| /// Define the structure for the camera poses
 | ||||
| typedef gtsam::PinholeCamera<gtsam::Cal3Bundler> SfM_Camera; | ||||
| typedef PinholeCamera<Cal3Bundler> SfM_Camera; | ||||
| 
 | ||||
| /// Define the structure for SfM data
 | ||||
| struct SfM_data | ||||
| { | ||||
|   std::vector<SfM_Camera> cameras;    ///< Set of cameras
 | ||||
| struct SfM_data { | ||||
|   std::vector<SfM_Camera> cameras; ///< Set of cameras
 | ||||
|   std::vector<SfM_Track> tracks; ///< Sparse set of points
 | ||||
|   size_t number_cameras() const { return cameras.size();}   ///< The number of camera poses
 | ||||
|   size_t number_tracks()  const { return tracks.size();}  ///< The number of reconstructed 3D points
 | ||||
|   size_t number_cameras() const { | ||||
|     return cameras.size(); | ||||
|   } ///< The number of camera poses
 | ||||
|   size_t number_tracks() const { | ||||
|     return tracks.size(); | ||||
|   } ///< The number of reconstructed 3D points
 | ||||
| }; | ||||
| 
 | ||||
| /**
 | ||||
|  | @ -117,25 +169,6 @@ struct SfM_data | |||
|  */ | ||||
| GTSAM_EXPORT bool readBundler(const std::string& filename, SfM_data &data); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function parses a g2o file and stores the measurements into a | ||||
|  * NonlinearFactorGraph and the initial guess in a Values structure | ||||
|  * @param filename The name of the g2o file | ||||
|  * @param graph NonlinearFactor graph storing the measurements (EDGE_SE2). NOTE: information matrix is assumed diagonal. | ||||
|  * @return initial Values containing the initial guess (VERTEX_SE2) | ||||
|  */ | ||||
| enum kernelFunctionType { QUADRATIC, HUBER, TUKEY }; | ||||
| GTSAM_EXPORT bool readG2o(const std::string& g2oFile, NonlinearFactorGraph& graph, Values& initial, const kernelFunctionType kernelFunction = QUADRATIC); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function writes a g2o file from | ||||
|  * NonlinearFactorGraph and a Values structure | ||||
|  * @param filename The name of the g2o file to write | ||||
|  * @param graph NonlinearFactor graph storing the measurements (EDGE_SE2) | ||||
|  * @return estimate Values containing the values (VERTEX_SE2) | ||||
|  */ | ||||
| GTSAM_EXPORT bool writeG2o(const std::string& filename, const NonlinearFactorGraph& graph, const Values& estimate); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a | ||||
|  * SfM_data structure | ||||
|  | @ -165,7 +198,8 @@ GTSAM_EXPORT bool writeBAL(const std::string& filename, SfM_data &data); | |||
|  * assumes that the keys are "x1" for pose 1 (or "c1" for camera 1) and "l1" for landmark 1 | ||||
|  * @return true if the parsing was successful, false otherwise | ||||
|  */ | ||||
| GTSAM_EXPORT bool writeBALfromValues(const std::string& filename, const SfM_data &data, Values& values); | ||||
| GTSAM_EXPORT bool writeBALfromValues(const std::string& filename, | ||||
|     const SfM_data &data, Values& values); | ||||
| 
 | ||||
| /**
 | ||||
|  * @brief This function converts an openGL camera pose to an GTSAM camera pose | ||||
|  | @ -208,5 +242,4 @@ GTSAM_EXPORT Values initialCamerasEstimate(const SfM_data& db); | |||
|  */ | ||||
| GTSAM_EXPORT Values initialCamerasAndPointsEstimate(const SfM_data& db); | ||||
| 
 | ||||
| 
 | ||||
| } // namespace gtsam
 | ||||
|  |  | |||
|  | @ -10,38 +10,60 @@ | |||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  *  @file  LagoInitializer.h | ||||
|  *  @file  lago.h | ||||
|  *  @author Luca Carlone | ||||
|  *  @author Frank Dellaert | ||||
|  *  @date   May 14, 2014 | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/nonlinear/LagoInitializer.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/slam/lago.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| #include <gtsam/base/timing.h> | ||||
| 
 | ||||
| #include <boost/math/special_functions.hpp> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| using namespace std; | ||||
| 
 | ||||
| static Matrix I = eye(1); | ||||
| static Matrix I3 = eye(3); | ||||
| namespace gtsam { | ||||
| namespace lago { | ||||
| 
 | ||||
| static const Matrix I = eye(1); | ||||
| static const Matrix I3 = eye(3); | ||||
| 
 | ||||
| static const Key keyAnchor = symbol('Z', 9999999); | ||||
| static const noiseModel::Diagonal::shared_ptr priorOrientationNoise = | ||||
|     noiseModel::Diagonal::Sigmas((Vector(1) << 0)); | ||||
| static const noiseModel::Diagonal::shared_ptr priorPose2Noise = | ||||
|     noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8)); | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree, | ||||
|     const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) { | ||||
| /**
 | ||||
|  * Compute the cumulative orientation (without wrapping) wrt the root of a | ||||
|  * spanning tree (tree) for a node (nodeKey). The function starts at the nodes and | ||||
|  * moves towards the root summing up the (directed) rotation measurements. | ||||
|  * Relative measurements are encoded in "deltaThetaMap". | ||||
|  * The root is assumed to have orientation zero. | ||||
|  */ | ||||
| static double computeThetaToRoot(const Key nodeKey, | ||||
|     const PredecessorMap<Key>& tree, const key2doubleMap& deltaThetaMap, | ||||
|     const key2doubleMap& thetaFromRootMap) { | ||||
| 
 | ||||
|   double nodeTheta = 0; | ||||
|   Key key_child = nodeKey; // the node
 | ||||
|   Key key_parent = 0; // the initialization does not matter
 | ||||
|   while(1){ | ||||
|   while (1) { | ||||
|     // We check if we reached the root
 | ||||
|     if(tree.at(key_child)==key_child) // if we reached the root
 | ||||
|     if (tree.at(key_child) == key_child) // if we reached the root
 | ||||
|       break; | ||||
|     // we sum the delta theta corresponding to the edge parent->child
 | ||||
|     nodeTheta += deltaThetaMap.at(key_child); | ||||
|     // we get the parent
 | ||||
|     key_parent = tree.at(key_child); // the parent
 | ||||
|     // we check if we connected to some part of the tree we know
 | ||||
|     if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){ | ||||
|     if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) { | ||||
|       nodeTheta += thetaFromRootMap.at(key_parent); | ||||
|       break; | ||||
|     } | ||||
|  | @ -55,53 +77,55 @@ key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap, | |||
|     const PredecessorMap<Key>& tree) { | ||||
| 
 | ||||
|   key2doubleMap thetaToRootMap; | ||||
|   key2doubleMap::const_iterator it; | ||||
| 
 | ||||
|   // Orientation of the roo
 | ||||
|   thetaToRootMap.insert(std::pair<Key, double>(keyAnchor, 0.0)); | ||||
|   thetaToRootMap.insert(pair<Key, double>(keyAnchor, 0.0)); | ||||
| 
 | ||||
|   // for all nodes in the tree
 | ||||
|   for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it ){ | ||||
|   BOOST_FOREACH(const key2doubleMap::value_type& it, deltaThetaMap) { | ||||
|     // compute the orientation wrt root
 | ||||
|     Key nodeKey = it->first; | ||||
|     Key nodeKey = it.first; | ||||
|     double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap, | ||||
|         thetaToRootMap); | ||||
|     thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta)); | ||||
|     thetaToRootMap.insert(pair<Key, double>(nodeKey, nodeTheta)); | ||||
|   } | ||||
|   return thetaToRootMap; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void getSymbolicGraph( | ||||
|     /*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap, | ||||
|     /*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){ | ||||
| /*OUTPUTS*/vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds, | ||||
|     key2doubleMap& deltaThetaMap, | ||||
|     /*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g) { | ||||
| 
 | ||||
|   // Get keys for which you want the orientation
 | ||||
|   size_t id=0; | ||||
|   size_t id = 0; | ||||
|   // Loop over the factors
 | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){ | ||||
|     if (factor->keys().size() == 2){ | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g) { | ||||
|     if (factor->keys().size() == 2) { | ||||
|       Key key1 = factor->keys()[0]; | ||||
|       Key key2 = factor->keys()[1]; | ||||
|       // recast to a between
 | ||||
|       boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = | ||||
|           boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor); | ||||
|       if (!pose2Between) continue; | ||||
|       boost::shared_ptr<BetweenFactor<Pose2> > pose2Between = | ||||
|           boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor); | ||||
|       if (!pose2Between) | ||||
|         continue; | ||||
|       // get the orientation - measured().theta();
 | ||||
|       double deltaTheta = pose2Between->measured().theta(); | ||||
|       // insert (directed) orientations in the map "deltaThetaMap"
 | ||||
|       bool inTree=false; | ||||
|       if(tree.at(key1)==key2){ // key2 -> key1
 | ||||
|         deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta)); | ||||
|       bool inTree = false; | ||||
|       if (tree.at(key1) == key2) { // key2 -> key1
 | ||||
|         deltaThetaMap.insert(pair<Key, double>(key1, -deltaTheta)); | ||||
|         inTree = true; | ||||
|       } else if(tree.at(key2)==key1){ // key1 -> key2
 | ||||
|         deltaThetaMap.insert(std::pair<Key, double>(key2,  deltaTheta)); | ||||
|       } else if (tree.at(key2) == key1) { // key1 -> key2
 | ||||
|         deltaThetaMap.insert(pair<Key, double>(key2, deltaTheta)); | ||||
|         inTree = true; | ||||
|       } | ||||
|       // store factor slot, distinguishing spanning tree edges from chordsIds
 | ||||
|       if(inTree == true) | ||||
|       if (inTree == true) | ||||
|         spanningTreeIds.push_back(id); | ||||
|       else // it's a chord!
 | ||||
|       else | ||||
|         // it's a chord!
 | ||||
|         chordsIds.push_back(id); | ||||
|     } | ||||
|     id++; | ||||
|  | @ -109,14 +133,16 @@ void getSymbolicGraph( | |||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor, | ||||
| // Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
 | ||||
| static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor, | ||||
|     Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) { | ||||
| 
 | ||||
|   // Get the relative rotation measurement from the between factor
 | ||||
|   boost::shared_ptr<BetweenFactor<Pose2> > pose2Between = | ||||
|       boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor); | ||||
|   if (!pose2Between) | ||||
|     throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!"); | ||||
|     throw invalid_argument( | ||||
|         "buildLinearOrientationGraph: invalid between factor!"); | ||||
|   deltaTheta = (Vector(1) << pose2Between->measured().theta()); | ||||
| 
 | ||||
|   // Retrieve the noise model for the relative rotation
 | ||||
|  | @ -124,114 +150,127 @@ void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor, | |||
|   boost::shared_ptr<noiseModel::Diagonal> diagonalModel = | ||||
|       boost::dynamic_pointer_cast<noiseModel::Diagonal>(model); | ||||
|   if (!diagonalModel) | ||||
|     throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model " | ||||
|     throw invalid_argument("buildLinearOrientationGraph: invalid noise model " | ||||
|         "(current version assumes diagonal noise model)!"); | ||||
|   Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
 | ||||
|   Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)); // std on the angular measurement
 | ||||
|   model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds, | ||||
|     const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){ | ||||
| GaussianFactorGraph buildLinearOrientationGraph( | ||||
|     const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds, | ||||
|     const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, | ||||
|     const PredecessorMap<Key>& tree) { | ||||
| 
 | ||||
|   GaussianFactorGraph lagoGraph; | ||||
|   Vector deltaTheta; | ||||
|   noiseModel::Diagonal::shared_ptr model_deltaTheta; | ||||
| 
 | ||||
|   // put original measurements in the spanning tree
 | ||||
|   BOOST_FOREACH(const size_t& factorId, spanningTreeIds){ | ||||
|   BOOST_FOREACH(const size_t& factorId, spanningTreeIds) { | ||||
|     const FastVector<Key>& keys = g[factorId]->keys(); | ||||
|     Key key1 = keys[0], key2 = keys[1]; | ||||
|     getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta); | ||||
|     lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta)); | ||||
|     lagoGraph.add(key1, -I, key2, I, deltaTheta, model_deltaTheta); | ||||
|   } | ||||
|   // put regularized measurements in the chordsIds
 | ||||
|   BOOST_FOREACH(const size_t& factorId, chordsIds){ | ||||
|   BOOST_FOREACH(const size_t& factorId, chordsIds) { | ||||
|     const FastVector<Key>& keys = g[factorId]->keys(); | ||||
|     Key key1 = keys[0], key2 = keys[1]; | ||||
|     getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta); | ||||
|     double key1_DeltaTheta_key2 = deltaTheta(0); | ||||
|     ///std::cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << std::endl;
 | ||||
|     double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
 | ||||
|     double k = boost::math::round(k2pi_noise/(2*M_PI)); | ||||
|     //if (k2pi_noise - 2*k*M_PI > 1e-5) std::cout << k2pi_noise - 2*k*M_PI << std::endl; // for debug
 | ||||
|     Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI); | ||||
|     lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta)); | ||||
|     ///cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << endl;
 | ||||
|     double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) | ||||
|         - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
 | ||||
|     double k = boost::math::round(k2pi_noise / (2 * M_PI)); | ||||
|     //if (k2pi_noise - 2*k*M_PI > 1e-5) cout << k2pi_noise - 2*k*M_PI << endl; // for debug
 | ||||
|     Vector deltaThetaRegularized = (Vector(1) | ||||
|         << key1_DeltaTheta_key2 - 2 * k * M_PI); | ||||
|     lagoGraph.add(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta); | ||||
|   } | ||||
|   // prior on the anchor orientation
 | ||||
|   lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise)); | ||||
|   lagoGraph.add(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise); | ||||
|   return lagoGraph; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){ | ||||
| // Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
 | ||||
| static NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph) { | ||||
|   gttic(lago_buildPose2graph); | ||||
|   NonlinearFactorGraph pose2Graph; | ||||
| 
 | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){ | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph) { | ||||
| 
 | ||||
|     // recast to a between on Pose2
 | ||||
|     boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = | ||||
|         boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor); | ||||
|     boost::shared_ptr<BetweenFactor<Pose2> > pose2Between = | ||||
|         boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor); | ||||
|     if (pose2Between) | ||||
|       pose2Graph.add(pose2Between); | ||||
| 
 | ||||
|     // recast PriorFactor<Pose2> to BetweenFactor<Pose2>
 | ||||
|     boost::shared_ptr< PriorFactor<Pose2> > pose2Prior = | ||||
|         boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor); | ||||
|     boost::shared_ptr<PriorFactor<Pose2> > pose2Prior = | ||||
|         boost::dynamic_pointer_cast<PriorFactor<Pose2> >(factor); | ||||
|     if (pose2Prior) | ||||
|       pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0], | ||||
|           pose2Prior->prior(), pose2Prior->get_noiseModel())); | ||||
|       pose2Graph.add( | ||||
|           BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0], | ||||
|               pose2Prior->prior(), pose2Prior->get_noiseModel())); | ||||
|   } | ||||
|   return pose2Graph; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| PredecessorMap<Key> findOdometricPath(const NonlinearFactorGraph& pose2Graph) { | ||||
| static PredecessorMap<Key> findOdometricPath( | ||||
|     const NonlinearFactorGraph& pose2Graph) { | ||||
| 
 | ||||
|   PredecessorMap<Key> tree; | ||||
|   Key minKey; | ||||
|   bool minUnassigned = true; | ||||
| 
 | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2Graph){ | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2Graph) { | ||||
| 
 | ||||
|     Key key1 = std::min(factor->keys()[0], factor->keys()[1]); | ||||
|     Key key2 = std::max(factor->keys()[0], factor->keys()[1]); | ||||
|     if(minUnassigned){ | ||||
|     if (minUnassigned) { | ||||
|       minKey = key1; | ||||
|       minUnassigned = false; | ||||
|     } | ||||
|     if( key2 - key1 == 1){ // consecutive keys
 | ||||
|     if (key2 - key1 == 1) { // consecutive keys
 | ||||
|       tree.insert(key2, key1); | ||||
|       if(key1 < minKey) | ||||
|       if (key1 < minKey) | ||||
|         minKey = key1; | ||||
|     } | ||||
|   } | ||||
|   tree.insert(minKey,keyAnchor); | ||||
|   tree.insert(keyAnchor,keyAnchor); // root
 | ||||
|   tree.insert(minKey, keyAnchor); | ||||
|   tree.insert(keyAnchor, keyAnchor); // root
 | ||||
|   return tree; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath){ | ||||
| // Return the orientations of a graph including only BetweenFactors<Pose2>
 | ||||
| static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph, | ||||
|     bool useOdometricPath) { | ||||
|   gttic(lago_computeOrientations); | ||||
| 
 | ||||
|   // Find a minimum spanning tree
 | ||||
|   PredecessorMap<Key> tree; | ||||
|   if (useOdometricPath) | ||||
|     tree = findOdometricPath(pose2Graph); | ||||
|   else | ||||
|     tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph); | ||||
|     tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, | ||||
|         BetweenFactor<Pose2> >(pose2Graph); | ||||
| 
 | ||||
|   // Create a linear factor graph (LFG) of scalars
 | ||||
|   key2doubleMap deltaThetaMap; | ||||
|   std::vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
 | ||||
|   std::vector<size_t> chordsIds;       // ids of between factors corresponding to chordsIds wrt T
 | ||||
|   vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
 | ||||
|   vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
 | ||||
|   getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph); | ||||
| 
 | ||||
|   // temporary structure to correct wraparounds along loops
 | ||||
|   key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree); | ||||
| 
 | ||||
|   // regularize measurements and plug everything in a factor graph
 | ||||
|   GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree); | ||||
|   GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, | ||||
|       chordsIds, pose2Graph, orientationsToRoot, tree); | ||||
| 
 | ||||
|   // Solve the LFG
 | ||||
|   VectorValues orientationsLago = lagoGraph.optimize(); | ||||
|  | @ -240,70 +279,79 @@ VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, boo | |||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath) { | ||||
| VectorValues initializeOrientations(const NonlinearFactorGraph& graph, | ||||
|     bool useOdometricPath) { | ||||
| 
 | ||||
|   // We "extract" the Pose2 subgraph of the original graph: this
 | ||||
|   // is done to properly model priors and avoiding operating on a larger graph
 | ||||
|   NonlinearFactorGraph pose2Graph = buildPose2graph(graph); | ||||
| 
 | ||||
|   // Get orientations from relative orientation measurements
 | ||||
|   return computeLagoOrientations(pose2Graph, useOdometricPath); | ||||
|   return computeOrientations(pose2Graph, useOdometricPath); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& orientationsLago) { | ||||
| Values computePoses(const NonlinearFactorGraph& pose2graph, | ||||
|     VectorValues& orientationsLago) { | ||||
|   gttic(lago_computePoses); | ||||
| 
 | ||||
|   // Linearized graph on full poses
 | ||||
|   GaussianFactorGraph linearPose2graph; | ||||
| 
 | ||||
|   // We include the linear version of each between factor
 | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2graph){ | ||||
|   BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2graph) { | ||||
| 
 | ||||
|     boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = | ||||
|         boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor); | ||||
|     boost::shared_ptr<BetweenFactor<Pose2> > pose2Between = | ||||
|         boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor); | ||||
| 
 | ||||
|     if(pose2Between){ | ||||
|     if (pose2Between) { | ||||
|       Key key1 = pose2Between->keys()[0]; | ||||
|       double theta1 = orientationsLago.at(key1)(0); | ||||
|       double s1 = sin(theta1); double c1 = cos(theta1); | ||||
|       double s1 = sin(theta1); | ||||
|       double c1 = cos(theta1); | ||||
| 
 | ||||
|       Key key2 = pose2Between->keys()[1]; | ||||
|       double theta2 = orientationsLago.at(key2)(0); | ||||
| 
 | ||||
|       double linearDeltaRot = theta2 - theta1 - pose2Between->measured().theta(); | ||||
|       double linearDeltaRot = theta2 - theta1 | ||||
|           - pose2Between->measured().theta(); | ||||
|       linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
 | ||||
| 
 | ||||
|       double dx = pose2Between->measured().x(); | ||||
|       double dy = pose2Between->measured().y(); | ||||
| 
 | ||||
|       Vector globalDeltaCart = (Vector(2) << c1*dx - s1*dy, s1*dx + c1*dy); | ||||
|       Vector b = (Vector(3) <<  globalDeltaCart, linearDeltaRot );// rhs
 | ||||
|       Matrix J1 = - I3; | ||||
|       J1(0,2) =  s1*dx + c1*dy; | ||||
|       J1(1,2) = -c1*dx + s1*dy; | ||||
|       Vector globalDeltaCart = //
 | ||||
|           (Vector(2) << c1 * dx - s1 * dy, s1 * dx + c1 * dy); | ||||
|       Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot); // rhs
 | ||||
|       Matrix J1 = -I3; | ||||
|       J1(0, 2) = s1 * dx + c1 * dy; | ||||
|       J1(1, 2) = -c1 * dx + s1 * dy; | ||||
|       // Retrieve the noise model for the relative rotation
 | ||||
|       boost::shared_ptr<noiseModel::Diagonal> diagonalModel = | ||||
|           boost::dynamic_pointer_cast<noiseModel::Diagonal>(pose2Between->get_noiseModel()); | ||||
|           boost::dynamic_pointer_cast<noiseModel::Diagonal>( | ||||
|               pose2Between->get_noiseModel()); | ||||
| 
 | ||||
|       linearPose2graph.add(JacobianFactor(key1, J1, key2, I3, b, diagonalModel)); | ||||
|     }else{ | ||||
|       throw std::invalid_argument("computeLagoPoses: cannot manage non between factor here!"); | ||||
|       linearPose2graph.add(key1, J1, key2, I3, b, diagonalModel); | ||||
|     } else { | ||||
|       throw invalid_argument( | ||||
|           "computeLagoPoses: cannot manage non between factor here!"); | ||||
|     } | ||||
|   } | ||||
|   // add prior
 | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4)); | ||||
|   linearPose2graph.add(JacobianFactor(keyAnchor, I3, (Vector(3) << 0.0,0.0,0.0), priorModel)); | ||||
|   linearPose2graph.add(keyAnchor, I3, (Vector(3) << 0.0, 0.0, 0.0), | ||||
|       priorPose2Noise); | ||||
| 
 | ||||
|   // optimize
 | ||||
|   VectorValues posesLago = linearPose2graph.optimize(); | ||||
| 
 | ||||
|   // put into Values structure
 | ||||
|   Values initialGuessLago; | ||||
|   for(VectorValues::const_iterator it = posesLago.begin(); it != posesLago.end(); ++it ){ | ||||
|     Key key = it->first; | ||||
|     if (key != keyAnchor){ | ||||
|       Vector poseVector = posesLago.at(key); | ||||
|       Pose2 poseLago = Pose2(poseVector(0),poseVector(1),orientationsLago.at(key)(0)+poseVector(2)); | ||||
|   BOOST_FOREACH(const VectorValues::value_type& it, posesLago) { | ||||
|     Key key = it.first; | ||||
|     if (key != keyAnchor) { | ||||
|       const Vector& poseVector = it.second; | ||||
|       Pose2 poseLago = Pose2(poseVector(0), poseVector(1), | ||||
|           orientationsLago.at(key)(0) + poseVector(2)); | ||||
|       initialGuessLago.insert(key, poseLago); | ||||
|     } | ||||
|   } | ||||
|  | @ -311,37 +359,41 @@ Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& or | |||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath) { | ||||
| Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) { | ||||
|   gttic(lago_initialize); | ||||
| 
 | ||||
|   // We "extract" the Pose2 subgraph of the original graph: this
 | ||||
|   // is done to properly model priors and avoiding operating on a larger graph
 | ||||
|   NonlinearFactorGraph pose2Graph = buildPose2graph(graph); | ||||
| 
 | ||||
|   // Get orientations from relative orientation measurements
 | ||||
|   VectorValues orientationsLago = computeLagoOrientations(pose2Graph, useOdometricPath); | ||||
|   VectorValues orientationsLago = computeOrientations(pose2Graph, | ||||
|       useOdometricPath); | ||||
| 
 | ||||
|   // Compute the full poses
 | ||||
|   return computeLagoPoses(pose2Graph, orientationsLago); | ||||
|   return computePoses(pose2Graph, orientationsLago); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) { | ||||
| Values initialize(const NonlinearFactorGraph& graph, | ||||
|     const Values& initialGuess) { | ||||
|   Values initialGuessLago; | ||||
| 
 | ||||
|   // get the orientation estimates from LAGO
 | ||||
|   VectorValues orientations = initializeOrientationsLago(graph); | ||||
|   VectorValues orientations = initializeOrientations(graph); | ||||
| 
 | ||||
|   // for all nodes in the tree
 | ||||
|   for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){ | ||||
|     Key key = it->first; | ||||
|     if (key != keyAnchor){ | ||||
|       Pose2 pose = initialGuess.at<Pose2>(key); | ||||
|       Vector orientation = orientations.at(key); | ||||
|       Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0)); | ||||
|   BOOST_FOREACH(const VectorValues::value_type& it, orientations) { | ||||
|     Key key = it.first; | ||||
|     if (key != keyAnchor) { | ||||
|       const Pose2& pose = initialGuess.at<Pose2>(key); | ||||
|       const Vector& orientation = it.second; | ||||
|       Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0)); | ||||
|       initialGuessLago.insert(key, poseLago); | ||||
|     } | ||||
|   } | ||||
|   return initialGuessLago; | ||||
| } | ||||
| 
 | ||||
| } // end of namespace lago
 | ||||
| } // end of namespace gtsam
 | ||||
|  | @ -0,0 +1,86 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  *  @file  lago.h | ||||
|  *  @brief Initialize Pose2 in a factor graph using LAGO | ||||
|  *  (Linear Approximation for Graph Optimization). see papers: | ||||
|  * | ||||
|  *  L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate | ||||
|  *  approximation for planar pose graph optimization, IJRR, 2014. | ||||
|  * | ||||
|  *  L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation | ||||
|  *  for graph-based simultaneous localization and mapping, RSS, 2011. | ||||
|  * | ||||
|  *  @param graph: nonlinear factor graph (can include arbitrary factors but we assume | ||||
|  *  that there is a subgraph involving Pose2 and betweenFactors). Also in the current | ||||
|  *  version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc) | ||||
|  *  and a prior on x0. This assumption can be relaxed by using the extra argument | ||||
|  *  useOdometricPath = false, although this part of code is not stable yet. | ||||
|  *  @return Values: initial guess from LAGO (only pose2 are initialized) | ||||
|  * | ||||
|  *  @author Luca Carlone | ||||
|  *  @author Frank Dellaert | ||||
|  *  @date   May 14, 2014 | ||||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/linear/GaussianFactorGraph.h> | ||||
| #include <gtsam/linear/VectorValues.h> | ||||
| #include <gtsam/inference/graph.h> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| namespace lago { | ||||
| 
 | ||||
| typedef std::map<Key, double> key2doubleMap; | ||||
| 
 | ||||
| /**
 | ||||
|  * Compute the cumulative orientations (without wrapping) | ||||
|  * for all nodes wrt the root (root has zero orientation). | ||||
|  */ | ||||
| GTSAM_EXPORT key2doubleMap computeThetasToRoot( | ||||
|     const key2doubleMap& deltaThetaMap, const PredecessorMap<Key>& tree); | ||||
| 
 | ||||
| /**
 | ||||
|  * Given a factor graph "g", and a spanning tree "tree", select the nodes belonging | ||||
|  * to the tree and to g, and stores the factor slots corresponding to edges in the | ||||
|  * tree and to chordsIds wrt this tree. | ||||
|  * Also it computes deltaThetaMap which is a fast way to encode relative | ||||
|  * orientations along the tree: for a node key2, s.t. tree[key2]=key1, | ||||
|  * the value deltaThetaMap[key2] is relative orientation theta[key2]-theta[key1] | ||||
|  */ | ||||
| GTSAM_EXPORT void getSymbolicGraph( | ||||
| /*OUTPUTS*/std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, | ||||
|     key2doubleMap& deltaThetaMap, | ||||
|     /*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g); | ||||
| 
 | ||||
| /** Linear factor graph with regularized orientation measurements */ | ||||
| GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph( | ||||
|     const std::vector<size_t>& spanningTreeIds, | ||||
|     const std::vector<size_t>& chordsIds, const NonlinearFactorGraph& g, | ||||
|     const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree); | ||||
| 
 | ||||
| /** LAGO: Return the orientations of the Pose2 in a generic factor graph */ | ||||
| GTSAM_EXPORT VectorValues initializeOrientations( | ||||
|     const NonlinearFactorGraph& graph, bool useOdometricPath = true); | ||||
| 
 | ||||
| /** Return the values for the Pose2 in a generic factor graph */ | ||||
| GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, | ||||
|     bool useOdometricPath = true); | ||||
| 
 | ||||
| /** Only correct the orientation part in initialGuess */ | ||||
| GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, | ||||
|     const Values& initialGuess); | ||||
| 
 | ||||
| } // end of namespace lago
 | ||||
| } // end of namespace gtsam
 | ||||
|  | @ -40,18 +40,21 @@ TEST(dataSet, findExampleDataFile) { | |||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| //TEST( dataSet, load2D)
 | ||||
| //{
 | ||||
| //  ///< The structure where we will save the SfM data
 | ||||
| //  const string filename = findExampleDataFile("smallGraph.g2o");
 | ||||
| //  boost::tie(graph,initialGuess) = load2D(filename, boost::none, 10000,
 | ||||
| //      false, false);
 | ||||
| ////  print
 | ||||
| ////
 | ||||
| ////  print
 | ||||
| ////
 | ||||
| ////  EXPECT(assert_equal(expected,actual,12));
 | ||||
| //}
 | ||||
| TEST( dataSet, load2D) | ||||
| { | ||||
|   ///< The structure where we will save the SfM data
 | ||||
|   const string filename = findExampleDataFile("w100.graph"); | ||||
|   NonlinearFactorGraph::shared_ptr graph; | ||||
|   Values::shared_ptr initial; | ||||
|   boost::tie(graph, initial) = load2D(filename); | ||||
|   EXPECT_LONGS_EQUAL(300,graph->size()); | ||||
|   EXPECT_LONGS_EQUAL(100,initial->size()); | ||||
|   noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(3); | ||||
|   BetweenFactor<Pose2> expected(1, 0, Pose2(-0.99879,0.0417574,-0.00818381), model); | ||||
|   BetweenFactor<Pose2>::shared_ptr actual = boost::dynamic_pointer_cast< | ||||
|       BetweenFactor<Pose2> >(graph->at(0)); | ||||
|   EXPECT(assert_equal(expected, *actual)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( dataSet, Balbianello) | ||||
|  | @ -78,9 +81,9 @@ TEST( dataSet, Balbianello) | |||
| TEST( dataSet, readG2o) | ||||
| { | ||||
|   const string g2oFile = findExampleDataFile("pose2example"); | ||||
|   NonlinearFactorGraph actualGraph; | ||||
|   Values actualValues; | ||||
|   readG2o(g2oFile, actualGraph, actualValues); | ||||
|   NonlinearFactorGraph::shared_ptr actualGraph; | ||||
|   Values::shared_ptr actualValues; | ||||
|   boost::tie(actualGraph, actualValues) = readG2o(g2oFile); | ||||
| 
 | ||||
|   Values expectedValues; | ||||
|   expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000)); | ||||
|  | @ -94,7 +97,7 @@ TEST( dataSet, readG2o) | |||
|   expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391)); | ||||
|   expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016)); | ||||
|   expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934)); | ||||
|   EXPECT(assert_equal(expectedValues,actualValues,1e-5)); | ||||
|   EXPECT(assert_equal(expectedValues,*actualValues,1e-5)); | ||||
| 
 | ||||
|   noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699)); | ||||
|   NonlinearFactorGraph expectedGraph; | ||||
|  | @ -110,16 +113,16 @@ TEST( dataSet, readG2o) | |||
|   expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model)); | ||||
|   EXPECT(assert_equal(actualGraph,expectedGraph,1e-5)); | ||||
|   EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( dataSet, readG2oHuber) | ||||
| { | ||||
|   const string g2oFile = findExampleDataFile("pose2example"); | ||||
|   NonlinearFactorGraph actualGraph; | ||||
|   Values actualValues; | ||||
|   readG2o(g2oFile, actualGraph, actualValues, HUBER); | ||||
|   NonlinearFactorGraph::shared_ptr actualGraph; | ||||
|   Values::shared_ptr actualValues; | ||||
|   boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeHUBER); | ||||
| 
 | ||||
|   noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699)); | ||||
|   SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel); | ||||
|  | @ -137,16 +140,16 @@ TEST( dataSet, readG2oHuber) | |||
|   expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model)); | ||||
|   EXPECT(assert_equal(actualGraph,expectedGraph,1e-5)); | ||||
|   EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( dataSet, readG2oTukey) | ||||
| { | ||||
|   const string g2oFile = findExampleDataFile("pose2example"); | ||||
|   NonlinearFactorGraph actualGraph; | ||||
|   Values actualValues; | ||||
|   readG2o(g2oFile, actualGraph, actualValues, TUKEY); | ||||
|   NonlinearFactorGraph::shared_ptr actualGraph; | ||||
|   Values::shared_ptr actualValues; | ||||
|   boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeTUKEY); | ||||
| 
 | ||||
|   noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699)); | ||||
|   SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel); | ||||
|  | @ -164,25 +167,25 @@ TEST( dataSet, readG2oTukey) | |||
|   expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model)); | ||||
|   expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model)); | ||||
|   EXPECT(assert_equal(actualGraph,expectedGraph,1e-5)); | ||||
|   EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST( dataSet, writeG2o) | ||||
| { | ||||
|   const string g2oFile = findExampleDataFile("pose2example"); | ||||
|   NonlinearFactorGraph expectedGraph; | ||||
|   Values expectedValues; | ||||
|   readG2o(g2oFile, expectedGraph, expectedValues); | ||||
|   NonlinearFactorGraph::shared_ptr expectedGraph; | ||||
|   Values::shared_ptr expectedValues; | ||||
|   boost::tie(expectedGraph, expectedValues) = readG2o(g2oFile); | ||||
| 
 | ||||
|   const string filenameToWrite = findExampleDataFile("pose2example-rewritten"); | ||||
|   writeG2o(filenameToWrite, expectedGraph, expectedValues); | ||||
|   const string filenameToWrite = createRewrittenFileName(g2oFile); | ||||
|   writeG2o(*expectedGraph, *expectedValues, filenameToWrite); | ||||
| 
 | ||||
|   NonlinearFactorGraph actualGraph; | ||||
|   Values actualValues; | ||||
|   readG2o(filenameToWrite, actualGraph, actualValues); | ||||
|   EXPECT(assert_equal(expectedValues,actualValues,1e-5)); | ||||
|   EXPECT(assert_equal(actualGraph,expectedGraph,1e-5)); | ||||
|   NonlinearFactorGraph::shared_ptr actualGraph; | ||||
|   Values::shared_ptr actualValues; | ||||
|   boost::tie(actualGraph, actualValues) = readG2o(filenameToWrite); | ||||
|   EXPECT(assert_equal(*expectedValues,*actualValues,1e-5)); | ||||
|   EXPECT(assert_equal(*expectedGraph,*actualGraph,1e-5)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|  | @ -249,7 +252,7 @@ TEST( dataSet, writeBAL_Dubrovnik) | |||
|   readBAL(filenameToRead, readData); | ||||
| 
 | ||||
|   // Write readData to file filenameToWrite
 | ||||
|   const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten"); | ||||
|   const string filenameToWrite = createRewrittenFileName(filenameToRead); | ||||
|   CHECK(writeBAL(filenameToWrite, readData)); | ||||
| 
 | ||||
|   // Read what we wrote
 | ||||
|  | @ -311,7 +314,7 @@ TEST( dataSet, writeBALfromValues_Dubrovnik){ | |||
|   } | ||||
| 
 | ||||
|   // Write values and readData to a file
 | ||||
|   const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten"); | ||||
|   const string filenameToWrite = createRewrittenFileName(filenameToRead); | ||||
|   writeBALfromValues(filenameToWrite, readData, value); | ||||
| 
 | ||||
|   // Read the file we wrote
 | ||||
|  |  | |||
|  | @ -19,27 +19,21 @@ | |||
|  *  @date   May 14, 2014 | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose2.h> | ||||
| 
 | ||||
| #include <gtsam/slam/lago.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| 
 | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| 
 | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/LagoInitializer.h> | ||||
| 
 | ||||
| #include <gtsam/base/TestableAssertions.h> | ||||
| #include <CppUnitLite/TestHarness.h> | ||||
| #include <boost/math/constants/constants.hpp> | ||||
| 
 | ||||
| #include <cmath> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| using namespace boost::assign; | ||||
| 
 | ||||
| Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3); | ||||
| static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3); | ||||
| static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1)); | ||||
| 
 | ||||
| namespace simple { | ||||
|  | @ -54,10 +48,10 @@ namespace simple { | |||
| //               x0
 | ||||
| //
 | ||||
| 
 | ||||
| Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000); | ||||
| Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796); | ||||
| Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593); | ||||
| Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389); | ||||
| static Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000); | ||||
| static Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796); | ||||
| static Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593); | ||||
| static Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389); | ||||
| 
 | ||||
| NonlinearFactorGraph graph() { | ||||
|   NonlinearFactorGraph g; | ||||
|  | @ -77,10 +71,10 @@ TEST( Lago, checkSTandChords ) { | |||
|   PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, | ||||
|       BetweenFactor<Pose2> >(g); | ||||
| 
 | ||||
|   key2doubleMap deltaThetaMap; | ||||
|   lago::key2doubleMap deltaThetaMap; | ||||
|   vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
 | ||||
|   vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
 | ||||
|   getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
|   lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
| 
 | ||||
|   DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
 | ||||
|   DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
 | ||||
|  | @ -100,19 +94,19 @@ TEST( Lago, orientationsOverSpanningTree ) { | |||
|   EXPECT_LONGS_EQUAL(tree[x2], x0); | ||||
|   EXPECT_LONGS_EQUAL(tree[x3], x0); | ||||
| 
 | ||||
|   key2doubleMap expected; | ||||
|   lago::key2doubleMap expected; | ||||
|   expected[x0]=  0; | ||||
|   expected[x1]=  M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
 | ||||
|   expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
 | ||||
|   expected[x3]= -M_PI/2;  // edge x0->x3 (consistent with edge (x0,x3))
 | ||||
| 
 | ||||
|   key2doubleMap deltaThetaMap; | ||||
|   lago::key2doubleMap deltaThetaMap; | ||||
|   vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
 | ||||
|   vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
 | ||||
|   getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
|   lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
| 
 | ||||
|   key2doubleMap actual; | ||||
|   actual = computeThetasToRoot(deltaThetaMap, tree); | ||||
|   lago::key2doubleMap actual; | ||||
|   actual = lago::computeThetasToRoot(deltaThetaMap, tree); | ||||
|   DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6); | ||||
|   DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6); | ||||
|   DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6); | ||||
|  | @ -125,14 +119,14 @@ TEST( Lago, regularizedMeasurements ) { | |||
|   PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, | ||||
|       BetweenFactor<Pose2> >(g); | ||||
| 
 | ||||
|   key2doubleMap deltaThetaMap; | ||||
|   lago::key2doubleMap deltaThetaMap; | ||||
|   vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
 | ||||
|   vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
 | ||||
|   getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
|   lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g); | ||||
| 
 | ||||
|   key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree); | ||||
|   lago::key2doubleMap orientationsToRoot = lago::computeThetasToRoot(deltaThetaMap, tree); | ||||
| 
 | ||||
|   GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree); | ||||
|   GaussianFactorGraph lagoGraph = lago::buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree); | ||||
|   std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian(); | ||||
|   // jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
 | ||||
|   Vector actual = (Vector(5) <<  actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4)); | ||||
|  | @ -147,25 +141,25 @@ TEST( Lago, regularizedMeasurements ) { | |||
| /* *************************************************************************** */ | ||||
| TEST( Lago, smallGraphVectorValues ) { | ||||
|   bool useOdometricPath = false; | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(simple::graph(), useOdometricPath); | ||||
|   VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
| TEST( Lago, smallGraphVectorValuesSP ) { | ||||
| 
 | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(simple::graph()); | ||||
|   VectorValues initial = lago::initializeOrientations(simple::graph()); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
|  | @ -173,26 +167,26 @@ TEST( Lago, multiplePosePriors ) { | |||
|   bool useOdometricPath = false; | ||||
|   NonlinearFactorGraph g = simple::graph(); | ||||
|   g.add(PriorFactor<Pose2>(x1, simple::pose1, model)); | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath); | ||||
|   VectorValues initial = lago::initializeOrientations(g, useOdometricPath); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
| TEST( Lago, multiplePosePriorsSP ) { | ||||
|   NonlinearFactorGraph g = simple::graph(); | ||||
|   g.add(PriorFactor<Pose2>(x1, simple::pose1, model)); | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(g); | ||||
|   VectorValues initial = lago::initializeOrientations(g); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
|  | @ -200,26 +194,26 @@ TEST( Lago, multiplePoseAndRotPriors ) { | |||
|   bool useOdometricPath = false; | ||||
|   NonlinearFactorGraph g = simple::graph(); | ||||
|   g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model)); | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath); | ||||
|   VectorValues initial = lago::initializeOrientations(g, useOdometricPath); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
| TEST( Lago, multiplePoseAndRotPriorsSP ) { | ||||
|   NonlinearFactorGraph g = simple::graph(); | ||||
|   g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model)); | ||||
|   VectorValues initialGuessLago = initializeOrientationsLago(g); | ||||
|   VectorValues initial = lago::initializeOrientations(g); | ||||
| 
 | ||||
|   // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
 | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6)); | ||||
|   EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6)); | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
|  | @ -233,7 +227,7 @@ TEST( Lago, smallGraphValues ) { | |||
|   initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0)); | ||||
| 
 | ||||
|   // lago does not touch the Cartesian part and only fixed the orientations
 | ||||
|   Values actual = initializeLago(simple::graph(), initialGuess); | ||||
|   Values actual = lago::initialize(simple::graph(), initialGuess); | ||||
| 
 | ||||
|   // we are in a noiseless case
 | ||||
|   Values expected; | ||||
|  | @ -249,7 +243,7 @@ TEST( Lago, smallGraphValues ) { | |||
| TEST( Lago, smallGraph2 ) { | ||||
| 
 | ||||
|   // lago does not touch the Cartesian part and only fixed the orientations
 | ||||
|   Values actual = initializeLago(simple::graph()); | ||||
|   Values actual = lago::initialize(simple::graph()); | ||||
| 
 | ||||
|   // we are in a noiseless case
 | ||||
|   Values expected; | ||||
|  | @ -264,17 +258,17 @@ TEST( Lago, smallGraph2 ) { | |||
| /* *************************************************************************** */ | ||||
| TEST( Lago, largeGraphNoisy_orientations ) { | ||||
| 
 | ||||
|   NonlinearFactorGraph g; | ||||
|   Values initial; | ||||
|   string inputFile = findExampleDataFile("noisyToyGraph"); | ||||
|   readG2o(inputFile, g, initial); | ||||
|   NonlinearFactorGraph::shared_ptr g; | ||||
|   Values::shared_ptr initial; | ||||
|   boost::tie(g, initial) = readG2o(inputFile); | ||||
| 
 | ||||
|   // Add prior on the pose having index (key) = 0
 | ||||
|   NonlinearFactorGraph graphWithPrior = g; | ||||
|   NonlinearFactorGraph graphWithPrior = *g; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4)); | ||||
|   graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel)); | ||||
| 
 | ||||
|   VectorValues actualVV = initializeOrientationsLago(graphWithPrior); | ||||
|   VectorValues actualVV = lago::initializeOrientations(graphWithPrior); | ||||
|   Values actual; | ||||
|   Key keyAnc = symbol('Z',9999999); | ||||
|   for(VectorValues::const_iterator it = actualVV.begin(); it != actualVV.end(); ++it ){ | ||||
|  | @ -285,40 +279,40 @@ TEST( Lago, largeGraphNoisy_orientations ) { | |||
|       actual.insert(key, poseLago); | ||||
|     } | ||||
|   } | ||||
|   NonlinearFactorGraph gmatlab; | ||||
|   Values expected; | ||||
|   string matlabFile = findExampleDataFile("orientationsNoisyToyGraph"); | ||||
|   readG2o(matlabFile, gmatlab, expected); | ||||
|   NonlinearFactorGraph::shared_ptr gmatlab; | ||||
|   Values::shared_ptr expected; | ||||
|   boost::tie(gmatlab, expected) = readG2o(matlabFile); | ||||
| 
 | ||||
|   BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){ | ||||
|   BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){ | ||||
|     Key k = key_val.key; | ||||
|     EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-5)); | ||||
|     EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-5)); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* *************************************************************************** */ | ||||
| TEST( Lago, largeGraphNoisy ) { | ||||
| 
 | ||||
|   NonlinearFactorGraph g; | ||||
|   Values initial; | ||||
|   string inputFile = findExampleDataFile("noisyToyGraph"); | ||||
|   readG2o(inputFile, g, initial); | ||||
|   NonlinearFactorGraph::shared_ptr g; | ||||
|   Values::shared_ptr initial; | ||||
|   boost::tie(g, initial) = readG2o(inputFile); | ||||
| 
 | ||||
|   // Add prior on the pose having index (key) = 0
 | ||||
|   NonlinearFactorGraph graphWithPrior = g; | ||||
|   NonlinearFactorGraph graphWithPrior = *g; | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4)); | ||||
|   graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel)); | ||||
| 
 | ||||
|   Values actual = initializeLago(graphWithPrior); | ||||
|   Values actual = lago::initialize(graphWithPrior); | ||||
| 
 | ||||
|   NonlinearFactorGraph gmatlab; | ||||
|   Values expected; | ||||
|   string matlabFile = findExampleDataFile("optimizedNoisyToyGraph"); | ||||
|   readG2o(matlabFile, gmatlab, expected); | ||||
|   NonlinearFactorGraph::shared_ptr gmatlab; | ||||
|   Values::shared_ptr expected; | ||||
|   boost::tie(gmatlab, expected) = readG2o(matlabFile); | ||||
| 
 | ||||
|   BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){ | ||||
|   BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){ | ||||
|     Key k = key_val.key; | ||||
|     EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-2)); | ||||
|     EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-2)); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
|  | @ -52,9 +52,9 @@ using symbol_shorthand::X; | |||
| using symbol_shorthand::L; | ||||
| 
 | ||||
| // tests data
 | ||||
| Symbol x1('X',  1); | ||||
| Symbol x2('X',  2); | ||||
| Symbol x3('X',  3); | ||||
| static Symbol x1('X',  1); | ||||
| static Symbol x2('X',  2); | ||||
| static Symbol x3('X',  3); | ||||
| 
 | ||||
| static Key poseKey1(x1); | ||||
| static Point2 measurement1(323.0, 240.0); | ||||
|  | @ -0,0 +1,82 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file    timeVirtual.cpp | ||||
|  * @brief   Time the overhead of using virtual destructors and methods | ||||
|  * @author  Richard Roberts | ||||
|  * @date    Dec 3, 2010 | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/slam/dataset.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/lago.h> | ||||
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h> | ||||
| #include <gtsam/linear/Sampler.h> | ||||
| #include <gtsam/base/timing.h> | ||||
| 
 | ||||
| #include <iostream> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| int main(int argc, char *argv[]) { | ||||
| 
 | ||||
|   size_t trials = 1; | ||||
| 
 | ||||
|   // read graph
 | ||||
|   Values::shared_ptr solution; | ||||
|   NonlinearFactorGraph::shared_ptr g; | ||||
|   string inputFile = findExampleDataFile("w10000"); | ||||
|   SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0)); | ||||
|   boost::tie(g, solution) = load2D(inputFile, model); | ||||
| 
 | ||||
|   // add noise to create initial estimate
 | ||||
|   Values initial; | ||||
|   Sampler sampler(42u); | ||||
|   Values::ConstFiltered<Pose2> poses = solution->filter<Pose2>(); | ||||
|   SharedDiagonal noise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.5, 0.5, 15.0 * M_PI / 180.0)); | ||||
|   BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& it, poses) | ||||
|     initial.insert(it.key, it.value.retract(sampler.sampleNewModel(noise))); | ||||
| 
 | ||||
|   // Add prior on the pose having index (key) = 0
 | ||||
|   noiseModel::Diagonal::shared_ptr priorModel = //
 | ||||
|       noiseModel::Diagonal::Sigmas(Vector3(1e-6, 1e-6, 1e-8)); | ||||
|   g->add(PriorFactor<Pose2>(0, Pose2(), priorModel)); | ||||
| 
 | ||||
|   // LAGO
 | ||||
|   for (size_t i = 0; i < trials; i++) { | ||||
|     { | ||||
|       gttic_(lago); | ||||
| 
 | ||||
|       gttic_(init); | ||||
|       Values lagoInitial = lago::initialize(*g); | ||||
|       gttoc_(init); | ||||
| 
 | ||||
|       gttic_(refine); | ||||
|       GaussNewtonOptimizer optimizer(*g, lagoInitial); | ||||
|       Values result = optimizer.optimize(); | ||||
|       gttoc_(refine); | ||||
|     } | ||||
| 
 | ||||
|     { | ||||
|       gttic_(optimize); | ||||
|       GaussNewtonOptimizer optimizer(*g, initial); | ||||
|       Values result = optimizer.optimize(); | ||||
|     } | ||||
| 
 | ||||
|     tictoc_finishedIteration_(); | ||||
|   } | ||||
| 
 | ||||
|   tictoc_print_(); | ||||
| 
 | ||||
|   return 0; | ||||
| } | ||||
|  | @ -0,0 +1,121 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
| * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
| * Atlanta, Georgia 30332-0415 | ||||
| * All Rights Reserved | ||||
| * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
| * See LICENSE for the license information | ||||
| 
 | ||||
| * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
| * @file SmartProjectionFactorExample.cpp | ||||
| * @brief A stereo visual odometry example | ||||
| * @date May 30, 2014 | ||||
| * @author Stephen Camp | ||||
| * @author Chris Beall | ||||
| */ | ||||
| 
 | ||||
| 
 | ||||
| /**
 | ||||
|  * A smart projection factor example based on stereo data, throwing away the | ||||
|  * measurement from the right camera | ||||
|  *  -robot starts at origin | ||||
|  *  -moves forward, taking periodic stereo measurements | ||||
|  *  -makes monocular observations of many landmarks | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <gtsam/geometry/Cal3_S2Stereo.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/nonlinear/NonlinearEquality.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||||
| #include <gtsam/inference/Symbol.h> | ||||
| #include <gtsam/slam/dataset.h> | ||||
| 
 | ||||
| #include <gtsam/slam/SmartProjectionPoseFactor.h> | ||||
| 
 | ||||
| #include <string> | ||||
| #include <fstream> | ||||
| #include <iostream> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| int main(int argc, char** argv){ | ||||
| 
 | ||||
|   typedef SmartProjectionPoseFactor<Pose3, Point3, Cal3_S2> SmartFactor; | ||||
| 
 | ||||
|   Values initial_estimate; | ||||
|   NonlinearFactorGraph graph; | ||||
|   const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1); | ||||
| 
 | ||||
|   string calibration_loc = findExampleDataFile("VO_calibration.txt"); | ||||
|   string pose_loc = findExampleDataFile("VO_camera_poses_large.txt"); | ||||
|   string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt"); | ||||
|    | ||||
|   //read camera calibration info from file
 | ||||
|   // focal lengths fx, fy, skew s, principal point u0, v0, baseline b
 | ||||
|   cout << "Reading calibration info" << endl; | ||||
|   ifstream calibration_file(calibration_loc.c_str()); | ||||
| 
 | ||||
|   double fx, fy, s, u0, v0, b; | ||||
|   calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; | ||||
|   const Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u0, v0)); | ||||
| 
 | ||||
|   cout << "Reading camera poses" << endl; | ||||
|   ifstream pose_file(pose_loc.c_str()); | ||||
| 
 | ||||
|   int pose_id; | ||||
|   MatrixRowMajor m(4,4); | ||||
|   //read camera pose parameters and use to make initial estimates of camera poses
 | ||||
|   while (pose_file >> pose_id) { | ||||
|     for (int i = 0; i < 16; i++) { | ||||
|       pose_file >> m.data()[i]; | ||||
|     } | ||||
|     initial_estimate.insert(Symbol('x', pose_id), Pose3(m)); | ||||
|   } | ||||
|    | ||||
|   // camera and landmark keys
 | ||||
|   size_t x, l; | ||||
| 
 | ||||
|   // pixel coordinates uL, uR, v (same for left/right images due to rectification)
 | ||||
|   // landmark coordinates X, Y, Z in camera frame, resulting from triangulation
 | ||||
|   double uL, uR, v, X, Y, Z; | ||||
|   ifstream factor_file(factor_loc.c_str()); | ||||
|   cout << "Reading stereo factors" << endl; | ||||
| 
 | ||||
|   //read stereo measurements and construct smart factors
 | ||||
| 
 | ||||
|   SmartFactor::shared_ptr factor(new SmartFactor()); | ||||
|   size_t current_l = 3;   // hardcoded landmark ID from first measurement
 | ||||
| 
 | ||||
|   while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) { | ||||
| 
 | ||||
|     if(current_l != l) { | ||||
|       graph.push_back(factor); | ||||
|       factor = SmartFactor::shared_ptr(new SmartFactor()); | ||||
|       current_l = l; | ||||
|     } | ||||
|     factor->add(Point2(uL,v), Symbol('x',x), model, K); | ||||
|   } | ||||
| 
 | ||||
|   Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1)); | ||||
|   //constrain the first pose such that it cannot change from its original value during optimization
 | ||||
|   // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
 | ||||
|   // QR is much slower than Cholesky, but numerically more stable
 | ||||
|   graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose)); | ||||
| 
 | ||||
|   cout << "Optimizing" << endl; | ||||
|   //create Levenberg-Marquardt optimizer to optimize the factor graph
 | ||||
|   LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate); | ||||
|   Values result = optimizer.optimize(); | ||||
| 
 | ||||
|   cout << "Final result sample:" << endl; | ||||
|   Values pose_values = result.filter<Pose3>(); | ||||
|   pose_values.print("Final camera poses:\n"); | ||||
| 
 | ||||
|   return 0; | ||||
| } | ||||
|  | @ -28,7 +28,7 @@ void FileWriter::emit(bool add_header, bool force_overwrite) const { | |||
|   bool file_exists = true; | ||||
|   try { | ||||
|     existing_contents = file_contents(filename_.c_str(), add_header); | ||||
|   } catch (CantOpenFile& e) { | ||||
|   } catch (CantOpenFile) { | ||||
|     file_exists = false; | ||||
|   } | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue