Merged gtborg/gtsam into develop

release/4.3a0
Stephen Camp 2014-06-03 10:04:19 -04:00
commit 917c9c46c8
44 changed files with 1512 additions and 1147 deletions

298
.cproject
View File

@ -568,6 +568,7 @@
</target>
<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -575,6 +576,7 @@
</target>
<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testBinaryBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -622,6 +624,7 @@
</target>
<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -629,6 +632,7 @@
</target>
<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testSymbolicFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -636,6 +640,7 @@
</target>
<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -651,6 +656,7 @@
</target>
<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -728,46 +734,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testValues.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testValues.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testOrdering.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testOrdering.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testKey.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testKey.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLinearContainerFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testWhiteNoiseFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -1114,6 +1080,7 @@
</target>
<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testErrors.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1159,6 +1126,14 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testParticleFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check" path="base" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -1239,14 +1214,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testParticleFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check" path="build/inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -1351,6 +1318,22 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testImuFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCombinedImuFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -1433,7 +1416,6 @@
</target>
<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2DOriented.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1473,7 +1455,6 @@
</target>
<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1481,7 +1462,6 @@
</target>
<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated3D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1495,22 +1475,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testImuFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testCombinedImuFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEliminationTree.run" path="build/gtsam/inference/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
@ -1768,6 +1732,7 @@
</target>
<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G DEB</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1775,6 +1740,7 @@
</target>
<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G RPM</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1782,6 +1748,7 @@
</target>
<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G TGZ</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1789,6 +1756,7 @@
</target>
<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>--config CPackSourceConfig.cmake</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2217,70 +2185,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testProjectionFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testProjectionFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testAntiFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testAntiFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBetweenFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j6 -j8</buildArguments>
<buildTarget>testBetweenFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDataset.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDataset.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrixFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testRotateFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testRotateFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="check" path="build/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -2547,6 +2451,7 @@
</target>
<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2554,6 +2459,7 @@
</target>
<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testJunctionTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2561,6 +2467,7 @@
</target>
<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNetB.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2678,6 +2585,70 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testAntiFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testAntiFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBetweenFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testBetweenFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDataset.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDataset.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrixFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor_Cal3Bundler.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor_Cal3Bundler.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testGeneralSFMFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testGeneralSFMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testProjectionFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testProjectionFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testRotateFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testRotateFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="SimpleRotation.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -2830,6 +2801,70 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="Pose2SLAMExample_lago.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>Pose2SLAMExample_lago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="Pose2SLAMExample_g2o.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>Pose2SLAMExample_g2o.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLinearContainerFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testLinearContainerFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testOrdering.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testOrdering.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testValues.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testValues.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testWhiteNoiseFactor.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testWhiteNoiseFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="timeLago.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>timeLago.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testImuFactor.run" path="build-debug/gtsam_unstable/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j4</buildArguments>
@ -2848,7 +2883,6 @@
</target>
<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testGaussianISAM2</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>

4
.gitignore vendored
View File

@ -1,4 +1,6 @@
/build*
/doc*
*.pyc
*.DS_Store
*.DS_Store
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
/examples/Data/pose2example-rewritten.txt

View File

@ -4,7 +4,7 @@ cmake_minimum_required(VERSION 2.6)
# Set the version number for the library
set (GTSAM_VERSION_MAJOR 3)
set (GTSAM_VERSION_MINOR 0)
set (GTSAM_VERSION_MINOR 1)
set (GTSAM_VERSION_PATCH 0)
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
set (GTSAM_VERSION_STRING "${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}")
@ -273,6 +273,13 @@ if(MSVC)
add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344) # Disable non-DLL-exported base class and other warnings
endif()
# GCC 4.8+ complains about local typedefs which we use for shared_ptr etc.
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
add_definitions(-Wno-unused-local-typedefs)
endif()
endif()
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
endif()

View File

@ -1,80 +0,0 @@
3 7 19
0 0 -385.989990234375 387.1199951171875
1 0 -38.439998626708984375 492.1199951171875
2 0 -667.91998291015625 123.1100006103515625
0 1 383.8800048828125 -15.299989700317382812
1 1 559.75 -106.15000152587890625
0 2 591.54998779296875 136.44000244140625
1 2 863.8599853515625 -23.469970703125
2 2 494.720001220703125 112.51999664306640625
0 3 592.5 125.75
1 3 861.08001708984375 -35.219970703125
2 3 498.540008544921875 101.55999755859375
0 4 348.720001220703125 558.3800048828125
1 4 776.030029296875 483.529998779296875
2 4 7.7800288200378417969 326.350006103515625
0 5 14.010009765625 96.420013427734375
1 5 207.1300048828125 118.3600006103515625
0 6 202.7599945068359375 340.989990234375
1 6 543.18011474609375 294.80999755859375
2 6 -58.419979095458984375 110.8300018310546875
0.29656188120312942935
-0.035318354384285870207
0.31252101755032046793
0.47230274932665988752
-0.3572340863744113415
-2.0517704282499575896
1430.031982421875
-7.5572756941255647689e-08
3.2377570134516087119e-14
0.28532097381985194184
-0.27699838370789808817
0.048601169984112867206
-1.2598695987143850861
-0.049063798188844320869
-1.9586867140445654023
1432.137451171875
-7.3171918302250560373e-08
3.1759419042137054801e-14
0.057491325683772541433
0.34853090049579965592
0.47985129303736057116
8.1963904289063389541
6.5146840788718787252
-3.8392804395897406344
1572.047119140625
-1.5962623223231275915e-08
-1.6507904730136101212e-14
-11.317351620610928364
3.3594874875767186673
-42.755222607849105998
4.2648515634753199066
-8.4629358700849355301
-22.252086323427270997
10.996977688149536689
-9.2123370180278048025
-29.206739014051372294
10.935342607054865383
-9.4338917557810741954
-29.112263909175499776
15.714024935401759819
1.3745079651566265433
-59.286834979937104606
-1.3624227800805182031
-4.1979357415396094666
-21.034430148188398846
6.7690173115899296974
-4.7352452433700786827
-53.605307875695892506

View File

@ -1,23 +0,0 @@
VERTEX_SE2 0 0 0 0
VERTEX_SE2 1 1.03039 0.01135 -0.081596
VERTEX_SE2 2 2.03614 -0.129733 -0.301887
VERTEX_SE2 3 3.0151 -0.442395 -0.345514
VERTEX_SE2 4 3.34395 0.506678 1.21471
VERTEX_SE2 5 3.68449 1.46405 1.18379
VERTEX_SE2 6 4.06463 2.41478 1.17633
VERTEX_SE2 7 4.42978 3.30018 1.25917
VERTEX_SE2 8 4.12888 2.32148 -1.82539
VERTEX_SE2 9 3.88465 1.32751 -1.95302
VERTEX_SE2 10 3.53107 0.388263 -2.14893
EDGE_SE2 0 1 1.03039 0.01135 -0.081596 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 1 2 1.0139 -0.058639 -0.220291 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 2 3 1.02765 -0.007456 -0.043627 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 3 4 -0.012016 1.00436 1.56023 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 4 5 1.01603 0.014565 -0.03093 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 5 6 1.02389 0.006808 -0.007452 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 6 7 0.957734 0.003159 0.082836 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 7 8 -1.02382 -0.013668 -3.08456 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 8 9 1.02344 0.013984 -0.127624 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 9 10 1.00335 0.02225 -0.195918 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 5 9 0.033943 0.032439 3.07364 44.7214 0 0 44.7214 0 30.9017
EDGE_SE2 3 10 0.04402 0.988477 -1.55351 44.7214 0 0 44.7214 0 30.9017

View File

@ -18,46 +18,45 @@
* @author Luca Carlone
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Key.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <fstream>
#include <sstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]) {
int main(const int argc, const char *argv[]){
// Read graph from file
string g2oFile;
if (argc < 2)
std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl;
const string g2oFile = argv[1];
g2oFile = "../../examples/Data/noisyToyGraph.txt";
else
g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
readG2o(g2oFile, graph, initial);
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graphWithPrior, initial); // , parameters);
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(outputFile, graph, result);
std::cout << "done! " << std::endl;
if (argc < 3) {
result.print("result");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(*graph, result, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}

View File

@ -12,51 +12,53 @@
/**
* @file Pose2SLAMExample_lago.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
* using LAGO (Linear Approximation for Graph Optimization). See class LagoInitializer.h
* using LAGO (Linear Approximation for Graph Optimization). See class lago.h
* Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Key.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/lago.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/LagoInitializer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/PriorFactor.h>
#include <fstream>
#include <sstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]) {
int main(const int argc, const char *argv[]){
// Read graph from file
string g2oFile;
if (argc < 2)
std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl;
const string g2oFile = argv[1];
g2oFile = "../../examples/Data/noisyToyGraph.txt";
else
g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
readG2o(g2oFile, graph, initial);
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
graphWithPrior.print();
std::cout << "Computing LAGO estimate" << std::endl;
Values estimateLago = initializeLago(graphWithPrior);
Values estimateLago = lago::initialize(graphWithPrior);
std::cout << "done!" << std::endl;
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(outputFile, graph, estimateLago);
std::cout << "done! " << std::endl;
if (argc < 3) {
estimateLago.print("estimateLago");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(*graph, estimateLago, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}

View File

@ -0,0 +1,168 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExample_SmartFactor.cpp
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
* @author Duy-Nguyen Ta
* @author Jing Dong
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'.
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
// The calibration should be known.
#include <gtsam/slam/SmartProjectionPoseFactor.h>
// Also, we will initialize the robot at some location using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
// trust-region method known as Powell's Degleg
#include <gtsam/nonlinear/DoglegOptimizer.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
#include <vector>
using namespace std;
using namespace gtsam;
// Make the typename short so it looks much cleaner
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
SmartFactor;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// A vector saved all Smart factors (for get landmark position after optimization)
vector<SmartFactor::shared_ptr> smartfactors_ptr;
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < points.size(); ++i) {
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor());
for (size_t j = 0; j < poses.size(); ++j) {
// generate the 2D measurement
SimpleCamera camera(poses[j], *K);
Point2 measurement = camera.project(points[i]);
// call add() function to add measurment into a single factor, here we need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration
smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
}
// save smartfactors to get landmark position
smartfactors_ptr.push_back(smartfactor);
// insert the smart factor in the graph
graph.push_back(smartfactor);
}
// Add a prior on pose x0. This indirectly specifies where the origin is.
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest poses will be alse fixed.
graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
graph.print("Factor Graph:\n");
// Create the data structure to hold the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate;
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
initialEstimate.print("Initial Estimates:\n");
// Optimize the graph and print results
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
result.print("Final results:\n");
// Notice: Smart factor represent the 3D point as a factor, not a variable.
// The 3D position of the landmark is not explicitly calculated by the optimizer.
// If you do want to output the landmark's 3D position, you should use the internal function point()
// of the smart factor to get the 3D point.
Values landmark_result;
for (size_t i = 0; i < points.size(); ++i) {
// The output of point() is in boost::optional<gtsam::Point3>, since sometimes
// the triangulation opterations inside smart factor will encounter degeneracy.
// Check the manual of boost::optional for more details for the usages.
boost::optional<Point3> point;
// here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
point = smartfactors_ptr.at(i)->point(result);
// ignore if boost::optional return NULL
if (point)
landmark_result.insert(Symbol('l', i), *point);
}
landmark_result.print("Landmark results:\n");
return 0;
}
/* ************************************************************************* */

View File

@ -25,47 +25,43 @@
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Key.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/slam/StereoFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/StereoFactor.h>
#include <gtsam/slam/dataset.h>
#include <string>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv){
Values initial_estimate;
NonlinearFactorGraph graph;
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
Values initial_estimate = Values();
vector<double> read_vector;
string read_string, parse_string;
string data_folder = "C:/Users/Stephen/Documents/Borg/gtsam/Examples/Data/";
string calibration_loc = data_folder + "VO_calibration.txt";
string pose_loc = data_folder + "VO_camera_poses_large.txt";
string factor_loc = data_folder + "VO_stereo_factors_large.txt";
string calibration_loc = findExampleDataFile("VO_calibration.txt");
string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
//read camera calibration info from file
double fx,fy,s,u,v,b;
ifstream calibration_file(calibration_loc);
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
double fx, fy, s, u0, v0, b;
ifstream calibration_file(calibration_loc.c_str());
cout << "Reading calibration info" << endl;
calibration_file >> fx >> fy >> s >> u >> v >> b;
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
//create stereo camera calibration object
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u,v,b));
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u0,v0,b));
ifstream pose_file(pose_loc);
ifstream pose_file(pose_loc.c_str());
cout << "Reading camera poses" << endl;
int pose_id;
MatrixRowMajor m(4,4);
@ -77,30 +73,36 @@ int main(int argc, char** argv){
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
}
double x, l, uL, uR, v, X, Y, Z;
ifstream factor_file(factor_loc);
// camera and landmark keys
size_t x, l;
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
double uL, uR, v, X, Y, Z;
ifstream factor_file(factor_loc.c_str());
cout << "Reading stereo factors" << endl;
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
graph.push_back(
GenericStereoFactor<Pose3,Point3>(StereoPoint2(uL, uR, v), model,
Symbol('x', x), Symbol('l', l), K));
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
if(!initial_estimate.exists(Symbol('l',l))){
Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x));
//transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
Point3 worldPoint = camPose.transform_from(Point3(X,Y,Z));
initial_estimate.insert(Symbol('l',l),worldPoint);
}
graph.push_back(
GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model,
Symbol('x', x), Symbol('l', l), K));
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
if (!initial_estimate.exists(Symbol('l', l))) {
Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x));
//transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z));
initial_estimate.insert(Symbol('l', l), worldPoint);
}
}
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
first_pose.print("Check estimate poses:\n");
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
cout << "Optimizing" << endl;
//create Levenberg-Marquardt optimizer to solve the initial factor graph estimate
//create Levenberg-Marquardt optimizer to optimize the factor graph
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
Values result = optimizer.optimize();
@ -109,4 +111,4 @@ int main(int argc, char** argv){
pose_values.print("Final camera poses:\n");
return 0;
}
}

View File

@ -2249,6 +2249,13 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
void save2D(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);
//*************************************************************************
// Navigation

View File

@ -617,11 +617,12 @@
#include "ccolamd.h"
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#ifdef MATLAB_MEX_FILE
#include <stdint.h>
typedef uint16_t char16_t;
#include "mex.h"
#include "matrix.h"
#endif

View File

@ -13,6 +13,9 @@
#ifndef NPRINT
#ifdef MATLAB_MEX_FILE
#include <stdlib.h>
#include <stdint.h>
typedef uint16_t char16_t;
#include "mex.h"
int (*ccolamd_printf) (const char *, ...) = mexPrintf ;
#else

View File

@ -16,7 +16,7 @@
* Author: cbeall3
*/
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <CppUnitLite/TestHarness.h>

View File

@ -16,7 +16,7 @@
* @author Chris Beall
*/
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>

View File

@ -18,8 +18,8 @@
#pragma once
#include <gtsam_unstable/base/dllexport.h>
#include <gtsam_unstable/geometry/TriangulationFactor.h>
#include <gtsam/geometry/TriangulationFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
@ -52,7 +52,7 @@ public:
* @param rank_tol SVD rank tolerance
* @return Triangulated Point3
*/
GTSAM_UNSTABLE_EXPORT Point3 triangulateDLT(
GTSAM_EXPORT Point3 triangulateDLT(
const std::vector<Matrix>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol);
@ -120,7 +120,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
* @param landmarkKey to refer to landmark
* @return refined Point3
*/
GTSAM_UNSTABLE_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
const Values& values, Key landmarkKey);
/**

View File

@ -23,43 +23,35 @@ namespace gtsam {
/* ************************************************************************* */
template<class FG>
void VariableIndex::augment(const FG& factors, boost::optional<const FastVector<size_t>&> newFactorIndices)
{
void VariableIndex::augment(const FG& factors,
boost::optional<const FastVector<size_t>&> newFactorIndices) {
gttic(VariableIndex_augment);
// Augment index for each factor
for(size_t i = 0; i < factors.size(); ++i)
{
if(factors[i])
{
for (size_t i = 0; i < factors.size(); ++i) {
if (factors[i]) {
const size_t globalI =
newFactorIndices ?
(*newFactorIndices)[i] :
nFactors_;
BOOST_FOREACH(const Key key, *factors[i])
{
newFactorIndices ? (*newFactorIndices)[i] : nFactors_;
BOOST_FOREACH(const Key key, *factors[i]) {
index_[key].push_back(globalI);
++ nEntries_;
++nEntries_;
}
}
// Increment factor count even if factors are null, to keep indices consistent
if(newFactorIndices)
{
if((*newFactorIndices)[i] >= nFactors_)
if (newFactorIndices) {
if ((*newFactorIndices)[i] >= nFactors_)
nFactors_ = (*newFactorIndices)[i] + 1;
}
else
{
++ nFactors_;
} else {
++nFactors_;
}
}
}
/* ************************************************************************* */
template<typename ITERATOR, class FG>
void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& factors)
{
void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor,
const FG& factors) {
gttic(VariableIndex_remove);
// NOTE: We intentionally do not decrement nFactors_ because the factor
@ -68,17 +60,20 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG&
// one greater than the highest-numbered factor referenced in a VariableIndex.
ITERATOR factorIndex = firstFactor;
size_t i = 0;
for( ; factorIndex != lastFactor; ++factorIndex, ++i) {
if(i >= factors.size())
throw std::invalid_argument("Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
if(factors[i]) {
for (; factorIndex != lastFactor; ++factorIndex, ++i) {
if (i >= factors.size())
throw std::invalid_argument(
"Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
if (factors[i]) {
BOOST_FOREACH(Key j, *factors[i]) {
Factors& factorEntries = internalAt(j);
Factors::iterator entry = std::find(factorEntries.begin(), factorEntries.end(), *factorIndex);
if(entry == factorEntries.end())
throw std::invalid_argument("Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index");
Factors::iterator entry = std::find(factorEntries.begin(),
factorEntries.end(), *factorIndex);
if (entry == factorEntries.end())
throw std::invalid_argument(
"Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index");
factorEntries.erase(entry);
-- nEntries_;
--nEntries_;
}
}
}
@ -87,10 +82,11 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG&
/* ************************************************************************* */
template<typename ITERATOR>
void VariableIndex::removeUnusedVariables(ITERATOR firstKey, ITERATOR lastKey) {
for(ITERATOR key = firstKey; key != lastKey; ++key) {
for (ITERATOR key = firstKey; key != lastKey; ++key) {
KeyMap::iterator entry = index_.find(*key);
if(!entry->second.empty())
throw std::invalid_argument("Asking to remove variables from the variable index that are not unused");
if (!entry->second.empty())
throw std::invalid_argument(
"Asking to remove variables from the variable index that are not unused");
index_.erase(entry);
}
}

View File

@ -70,7 +70,7 @@ namespace gtsam {
vector<size_t> dims_accumulated;
dims_accumulated.resize(dims.size()+1,0);
dims_accumulated[0]=0;
for (int i=1; i<dims_accumulated.size(); i++)
for (size_t i=1; i<dims_accumulated.size(); i++)
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
return dims_accumulated;
}

View File

@ -49,7 +49,7 @@ void updateAb(MATRIX& Ab, int j, const Vector& a, const Vector& rd) {
/* ************************************************************************* */
// check *above the diagonal* for non-zero entries
static boost::optional<Vector> checkIfDiagonal(const Matrix M) {
boost::optional<Vector> checkIfDiagonal(const Matrix M) {
size_t m = M.rows(), n = M.cols();
// check all non-diagonal entries
bool full = false;
@ -74,23 +74,46 @@ static boost::optional<Vector> checkIfDiagonal(const Matrix M) {
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
size_t m = R.rows(), n = R.cols();
if (m != n) throw invalid_argument("Gaussian::SqrtInformation: R not square");
if (m != n)
throw invalid_argument("Gaussian::SqrtInformation: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(R);
if (diagonal) return Diagonal::Sigmas(reciprocal(*diagonal),true);
else return shared_ptr(new Gaussian(R.rows(),R));
if (diagonal)
return Diagonal::Sigmas(reciprocal(*diagonal), true);
else
return shared_ptr(new Gaussian(R.rows(), R));
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) {
Gaussian::shared_ptr Gaussian::Information(const Matrix& M, bool smart) {
size_t m = M.rows(), n = M.cols();
if (m != n)
throw invalid_argument("Gaussian::Information: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(M);
if (diagonal)
return Diagonal::Precisions(*diagonal, true);
else {
Matrix R = RtR(M);
return shared_ptr(new Gaussian(R.rows(), R));
}
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance,
bool smart) {
size_t m = covariance.rows(), n = covariance.cols();
if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square");
if (m != n)
throw invalid_argument("Gaussian::Covariance: covariance not square");
boost::optional<Vector> variances = boost::none;
if (smart)
variances = checkIfDiagonal(covariance);
if (variances) return Diagonal::Variances(*variances,true);
else return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
if (variances)
return Diagonal::Variances(*variances, true);
else
return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
}
/* ************************************************************************* */

View File

@ -164,6 +164,13 @@ namespace gtsam {
*/
static shared_ptr SqrtInformation(const Matrix& R, bool smart = true);
/**
* A Gaussian noise model created by specifying an information matrix.
* @param M The information matrix
* @param smart check if can be simplified to derived class
*/
static shared_ptr Information(const Matrix& M, bool smart = true);
/**
* A Gaussian noise model created by specifying a covariance matrix.
* @param covariance The square covariance Matrix
@ -864,6 +871,9 @@ namespace gtsam {
ar & boost::serialization::make_nvp("noise_", const_cast<NoiseModel::shared_ptr&>(noise_));
}
};
// Helper function
GTSAM_EXPORT boost::optional<Vector> checkIfDiagonal(const Matrix M);
} // namespace noiseModel

View File

@ -285,6 +285,17 @@ TEST(NoiseModel, SmartSqrtInformation2 )
EXPECT(assert_equal(*expected,*actual));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartInformation )
{
bool smart = true;
gtsam::SharedGaussian expected = Unit::Isotropic::Variance(3,2);
Matrix M = 0.5*eye(3);
EXPECT(checkIfDiagonal(M));
gtsam::SharedGaussian actual = Gaussian::Information(M, smart);
EXPECT(assert_equal(*expected,*actual));
}
/* ************************************************************************* */
TEST(NoiseModel, SmartCovariance )
{

View File

@ -54,8 +54,11 @@ public:
static Point3 unrotate(const Rot2& R, const Point3& p,
boost::optional<Matrix&> HR = boost::none) {
Point3 q = Rot3::yaw(R.theta()).unrotate(p, HR);
if (HR)
*HR = HR->col(2);
if (HR) {
// assign to temporary first to avoid error in Win-Debug mode
Matrix H = HR->col(2);
*HR = H;
}
return q;
}

View File

@ -1,100 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LagoInitializer.h
* @brief Initialize Pose2 in a factor graph using LAGO
* (Linear Approximation for Graph Optimization). see papers:
*
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
* approximation for planar pose graph optimization, IJRR, 2014.
*
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
* for graph-based simultaneous localization and mapping, RSS, 2011.
*
* @param graph: nonlinear factor graph (can include arbitrary factors but we assume
* that there is a subgraph involving Pose2 and betweenFactors). Also in the current
* version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc)
* and a prior on x0. This assumption can be relaxed by using the extra argument
* useOdometricPath = false, although this part of code is not stable yet.
* @return Values: initial guess from LAGO (only pose2 are initialized)
*
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#pragma once
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/graph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
namespace gtsam {
typedef std::map<Key,double> key2doubleMap;
const Key keyAnchor = symbol('Z',9999999);
noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
/* This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
* for a node (nodeKey). The function starts at the nodes and moves towards the root
* summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap"
* The root is assumed to have orientation zero.
*/
GTSAM_EXPORT double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap);
/* This function computes the cumulative orientations (without wrapping)
* for all node wrt the root (root has zero orientation)
*/
GTSAM_EXPORT key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
const PredecessorMap<Key>& tree);
/* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
* and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
*/
GTSAM_EXPORT void getSymbolicGraph(
/*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g);
/* Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2> */
GTSAM_EXPORT void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta);
/* Linear factor graph with regularized orientation measurements */
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds,
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree);
/* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node */
GTSAM_EXPORT NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph);
/* Returns the orientations of a graph including only BetweenFactors<Pose2> */
GTSAM_EXPORT VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath = true);
/* LAGO: Returns the orientations of the Pose2 in a generic factor graph */
GTSAM_EXPORT VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true);
/* Returns the values for the Pose2 in a generic factor graph */
GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true);
/* Only corrects the orientation part in initialGuess */
GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess);
} // end of namespace gtsam

View File

@ -244,7 +244,7 @@ void LevenbergMarquardtOptimizer::iterate() {
try {
delta = solve(dampedSystem, state_.values, params_);
systemSolvedSuccessfully = true;
} catch (IndeterminantLinearSystemException& e) {
} catch (IndeterminantLinearSystemException) {
systemSolvedSuccessfully = false;
}

View File

@ -6,7 +6,7 @@
*/
#pragma once
#include <gtsam_unstable/slam/JacobianSchurFactor.h>
#include <gtsam/slam/JacobianSchurFactor.h>
namespace gtsam {
/**

View File

@ -5,7 +5,7 @@
*/
#pragma once
#include "gtsam_unstable/slam/JacobianSchurFactor.h"
#include "gtsam/slam/JacobianSchurFactor.h"
namespace gtsam {
/**

View File

@ -325,7 +325,7 @@ public:
const Cameras& cameras, const Point3& point,
const double lambda = 0.0) const {
int numKeys = this->keys_.size();
size_t numKeys = this->keys_.size();
std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point,
lambda);
@ -352,7 +352,7 @@ public:
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
Vector s = svd.singularValues();
// Enull = zeros(2 * numKeys, 2 * numKeys - 3);
int numKeys = this->keys_.size();
size_t numKeys = this->keys_.size();
Enull = svd.matrixU().block(0, 3, 2 * numKeys, 2 * numKeys - 3); // last 2m-3 columns
return f;

View File

@ -21,11 +21,10 @@
#include "SmartFactorBase.h"
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam_unstable/geometry/triangulation.h>
#include <boost/optional.hpp>
#include <boost/make_shared.hpp>
@ -54,7 +53,7 @@ public:
double f;
};
enum linearizationType {
enum LinearizationMode {
HESSIAN, JACOBIAN_SVD, JACOBIAN_Q
};
@ -263,7 +262,7 @@ public:
try {
Point2 reprojectionError(camera.project(point_) - zi);
totalReprojError += reprojectionError.vector().norm();
} catch (CheiralityException& e) {
} catch (CheiralityException) {
cheiralityException_ = true;
}
i += 1;

View File

@ -41,9 +41,8 @@ template<class POSE, class LANDMARK, class CALIBRATION>
class SmartProjectionPoseFactor: public SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, 6> {
protected:
linearizationType linearizeTo_;
LinearizationMode linearizeTo_; ///< How to linearize the factor (HESSIAN, JACOBIAN_SVD, JACOBIAN_Q)
// Known calibration
std::vector<boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
public:
@ -69,7 +68,7 @@ public:
SmartProjectionPoseFactor(const double rankTol = 1,
const double linThreshold = -1, const bool manageDegeneracy = false,
const bool enableEPI = false, boost::optional<POSE> body_P_sensor = boost::none,
linearizationType linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10,
LinearizationMode linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10,
double dynamicOutlierRejectionThreshold = -1) :
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor,
landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(linearizeTo) {}
@ -80,7 +79,7 @@ public:
/**
* add a new measurement and pose key
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKey is the index corresponding to the camera observing the same landmark
* @param poseKey is key corresponding to the camera observing the same landmark
* @param noise_i is the measurement noise
* @param K_i is the (known) camera calibration
*/
@ -92,8 +91,11 @@ public:
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements
* Variant of the previous one in which we include a set of measurements
* @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param noises vector of measurement noises
* @param Ks vector of calibration objects
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
std::vector<SharedNoiseModel> noises,
@ -105,8 +107,11 @@ public:
}
/**
* add a new measurements and pose keys
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
* @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
* @param noise measurement noise (same for all measurements)
* @param K the (known) camera calibration (same for all measurements)
*/
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
const SharedNoiseModel noise, const boost::shared_ptr<CALIBRATION> K) {
@ -141,7 +146,12 @@ public:
return 6 * this->keys_.size();
}
// Collect all cameras
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses corresponding
* to keys involved in this factor
* @return vector of Values
*/
typename Base::Cameras cameras(const Values& values) const {
typename Base::Cameras cameras;
size_t i=0;
@ -154,7 +164,9 @@ public:
}
/**
* linear factor on the poses
* Linearize to Gaussian Factor
* @param values Values structure which must contain camera poses for this factor
* @return
*/
virtual boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const {
@ -184,7 +196,7 @@ public:
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
inline const std::vector<boost::shared_ptr<CALIBRATION> > calibration() const {
return K_all_;
}

File diff suppressed because it is too large Load Diff

View File

@ -35,7 +35,7 @@ namespace gtsam {
/**
* Find the full path to an example dataset distributed with gtsam. The name
* may be specified with or without a file extension - if no extension is
* give, this function first looks for the .graph extension, then .txt. We
* given, this function first looks for the .graph extension, then .txt. We
* first check the gtsam source tree for the file, followed by the installed
* example dataset location. Both the source tree and installed locations
* are obtained from CMake during compilation.
@ -44,8 +44,30 @@ namespace gtsam {
* search process described above.
*/
GTSAM_EXPORT std::string findExampleDataFile(const std::string& name);
/**
* Creates a temporary file name that needs to be ignored in .gitingnore
* for checking read-write oprations
*/
GTSAM_EXPORT std::string createRewrittenFileName(const std::string& name);
#endif
/// Indicates how noise parameters are stored in file
enum NoiseFormat {
NoiseFormatG2O, ///< Information matrix I11, I12, I13, I22, I23, I33
NoiseFormatTORO, ///< Information matrix, but inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
NoiseFormatGRAPH, ///< default: toro-style order, but covariance matrix !
NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
};
/// Robust kernel type to wrap around quadratic noise model
enum KernelFunctionType {
KernelFunctionTypeNONE, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY
};
/// Return type for load functions
typedef std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> GraphAndValues;
/**
* Load TORO 2D Graph
* @param dataset/model pair as constructed by [dataset]
@ -53,31 +75,57 @@ GTSAM_EXPORT std::string findExampleDataFile(const std::string& name);
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
std::pair<std::string, boost::optional<noiseModel::Diagonal::shared_ptr> > dataset,
int maxID = 0, bool addNoise = false, bool smart = true);
GTSAM_EXPORT GraphAndValues load2D(
std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0,
bool addNoise = false,
bool smart = true, //
NoiseFormat noiseFormat = NoiseFormatGRAPH,
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* Load TORO 2D Graph
* Load TORO/G2O style graph files
* @param filename
* @param model optional noise model to use instead of one specified by file
* @param maxID if non-zero cut out vertices >= maxID
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
* @param noiseFormat how noise parameters are stored
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
const std::string& filename,
boost::optional<gtsam::SharedDiagonal> model = boost::optional<
noiseModel::Diagonal::shared_ptr>(), int maxID = 0, bool addNoise = false,
bool smart = true);
GTSAM_EXPORT GraphAndValues load2D(const std::string& filename,
SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise =
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust(
const std::string& filename,
gtsam::noiseModel::Base::shared_ptr& model, int maxID = 0);
/// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
GTSAM_EXPORT GraphAndValues load2D_robust(const std::string& filename,
noiseModel::Base::shared_ptr& model, int maxID = 0);
/** save 2d graph */
GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config,
const noiseModel::Diagonal::shared_ptr model, const std::string& filename);
GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph,
const Values& config, const noiseModel::Diagonal::shared_ptr model,
const std::string& filename);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT GraphAndValues readG2o(const std::string& g2oFile,
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements
* @param estimate Values
*/
GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph,
const Values& estimate, const std::string& filename);
/**
* Load TORO 3D Graph
@ -85,27 +133,31 @@ GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph, const Values& config
GTSAM_EXPORT bool load3D(const std::string& filename);
/// A measurement with its camera index
typedef std::pair<size_t,gtsam::Point2> SfM_Measurement;
typedef std::pair<size_t, Point2> SfM_Measurement;
/// Define the structure for the 3D points
struct SfM_Track
{
gtsam::Point3 p; ///< 3D position of the point
float r,g,b; ///< RGB color of the 3D point
struct SfM_Track {
Point3 p; ///< 3D position of the point
float r, g, b; ///< RGB color of the 3D point
std::vector<SfM_Measurement> measurements; ///< The 2D image projections (id,(u,v))
size_t number_measurements() const { return measurements.size();}
size_t number_measurements() const {
return measurements.size();
}
};
/// Define the structure for the camera poses
typedef gtsam::PinholeCamera<gtsam::Cal3Bundler> SfM_Camera;
typedef PinholeCamera<Cal3Bundler> SfM_Camera;
/// Define the structure for SfM data
struct SfM_data
{
std::vector<SfM_Camera> cameras; ///< Set of cameras
struct SfM_data {
std::vector<SfM_Camera> cameras; ///< Set of cameras
std::vector<SfM_Track> tracks; ///< Sparse set of points
size_t number_cameras() const { return cameras.size();} ///< The number of camera poses
size_t number_tracks() const { return tracks.size();} ///< The number of reconstructed 3D points
size_t number_cameras() const {
return cameras.size();
} ///< The number of camera poses
size_t number_tracks() const {
return tracks.size();
} ///< The number of reconstructed 3D points
};
/**
@ -117,25 +169,6 @@ struct SfM_data
*/
GTSAM_EXPORT bool readBundler(const std::string& filename, SfM_data &data);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2). NOTE: information matrix is assumed diagonal.
* @return initial Values containing the initial guess (VERTEX_SE2)
*/
enum kernelFunctionType { QUADRATIC, HUBER, TUKEY };
GTSAM_EXPORT bool readG2o(const std::string& g2oFile, NonlinearFactorGraph& graph, Values& initial, const kernelFunctionType kernelFunction = QUADRATIC);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2)
* @return estimate Values containing the values (VERTEX_SE2)
*/
GTSAM_EXPORT bool writeG2o(const std::string& filename, const NonlinearFactorGraph& graph, const Values& estimate);
/**
* @brief This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a
* SfM_data structure
@ -165,7 +198,8 @@ GTSAM_EXPORT bool writeBAL(const std::string& filename, SfM_data &data);
* assumes that the keys are "x1" for pose 1 (or "c1" for camera 1) and "l1" for landmark 1
* @return true if the parsing was successful, false otherwise
*/
GTSAM_EXPORT bool writeBALfromValues(const std::string& filename, const SfM_data &data, Values& values);
GTSAM_EXPORT bool writeBALfromValues(const std::string& filename,
const SfM_data &data, Values& values);
/**
* @brief This function converts an openGL camera pose to an GTSAM camera pose
@ -208,5 +242,4 @@ GTSAM_EXPORT Values initialCamerasEstimate(const SfM_data& db);
*/
GTSAM_EXPORT Values initialCamerasAndPointsEstimate(const SfM_data& db);
} // namespace gtsam

View File

@ -10,38 +10,60 @@
* -------------------------------------------------------------------------- */
/**
* @file LagoInitializer.h
* @file lago.h
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#include <gtsam/nonlinear/LagoInitializer.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/lago.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/timing.h>
#include <boost/math/special_functions.hpp>
namespace gtsam {
using namespace std;
static Matrix I = eye(1);
static Matrix I3 = eye(3);
namespace gtsam {
namespace lago {
static const Matrix I = eye(1);
static const Matrix I3 = eye(3);
static const Key keyAnchor = symbol('Z', 9999999);
static const noiseModel::Diagonal::shared_ptr priorOrientationNoise =
noiseModel::Diagonal::Sigmas((Vector(1) << 0));
static const noiseModel::Diagonal::shared_ptr priorPose2Noise =
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
/* ************************************************************************* */
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
/**
* Compute the cumulative orientation (without wrapping) wrt the root of a
* spanning tree (tree) for a node (nodeKey). The function starts at the nodes and
* moves towards the root summing up the (directed) rotation measurements.
* Relative measurements are encoded in "deltaThetaMap".
* The root is assumed to have orientation zero.
*/
static double computeThetaToRoot(const Key nodeKey,
const PredecessorMap<Key>& tree, const key2doubleMap& deltaThetaMap,
const key2doubleMap& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while(1){
while (1) {
// We check if we reached the root
if(tree.at(key_child)==key_child) // if we reached the root
if (tree.at(key_child) == key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap.at(key_child);
// we get the parent
key_parent = tree.at(key_child); // the parent
// we check if we connected to some part of the tree we know
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) {
nodeTheta += thetaFromRootMap.at(key_parent);
break;
}
@ -55,53 +77,55 @@ key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
const PredecessorMap<Key>& tree) {
key2doubleMap thetaToRootMap;
key2doubleMap::const_iterator it;
// Orientation of the roo
thetaToRootMap.insert(std::pair<Key, double>(keyAnchor, 0.0));
thetaToRootMap.insert(pair<Key, double>(keyAnchor, 0.0));
// for all nodes in the tree
for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it ){
BOOST_FOREACH(const key2doubleMap::value_type& it, deltaThetaMap) {
// compute the orientation wrt root
Key nodeKey = it->first;
Key nodeKey = it.first;
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
thetaToRootMap);
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
thetaToRootMap.insert(pair<Key, double>(nodeKey, nodeTheta));
}
return thetaToRootMap;
}
/* ************************************************************************* */
void getSymbolicGraph(
/*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
/*OUTPUTS*/vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds,
key2doubleMap& deltaThetaMap,
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g) {
// Get keys for which you want the orientation
size_t id=0;
size_t id = 0;
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
if (factor->keys().size() == 2){
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g) {
if (factor->keys().size() == 2) {
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
// recast to a between
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) continue;
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
continue;
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
bool inTree=false;
if(tree.at(key1)==key2){ // key2 -> key1
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
bool inTree = false;
if (tree.at(key1) == key2) { // key2 -> key1
deltaThetaMap.insert(pair<Key, double>(key1, -deltaTheta));
inTree = true;
} else if(tree.at(key2)==key1){ // key1 -> key2
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
} else if (tree.at(key2) == key1) { // key1 -> key2
deltaThetaMap.insert(pair<Key, double>(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chordsIds
if(inTree == true)
if (inTree == true)
spanningTreeIds.push_back(id);
else // it's a chord!
else
// it's a chord!
chordsIds.push_back(id);
}
id++;
@ -109,14 +133,16 @@ void getSymbolicGraph(
}
/* ************************************************************************* */
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
// Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
// Get the relative rotation measurement from the between factor
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (!pose2Between)
throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
throw invalid_argument(
"buildLinearOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve the noise model for the relative rotation
@ -124,114 +150,127 @@ void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
throw invalid_argument("buildLinearOrientationGraph: invalid noise model "
"(current version assumes diagonal noise model)!");
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)); // std on the angular measurement
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
}
/* ************************************************************************* */
GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds,
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){
GaussianFactorGraph buildLinearOrientationGraph(
const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds,
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot,
const PredecessorMap<Key>& tree) {
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
// put original measurements in the spanning tree
BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
BOOST_FOREACH(const size_t& factorId, spanningTreeIds) {
const FastVector<Key>& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
lagoGraph.add(key1, -I, key2, I, deltaTheta, model_deltaTheta);
}
// put regularized measurements in the chordsIds
BOOST_FOREACH(const size_t& factorId, chordsIds){
BOOST_FOREACH(const size_t& factorId, chordsIds) {
const FastVector<Key>& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
///std::cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << std::endl;
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
double k = boost::math::round(k2pi_noise/(2*M_PI));
//if (k2pi_noise - 2*k*M_PI > 1e-5) std::cout << k2pi_noise - 2*k*M_PI << std::endl; // for debug
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
///cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << endl;
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1)
- orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
double k = boost::math::round(k2pi_noise / (2 * M_PI));
//if (k2pi_noise - 2*k*M_PI > 1e-5) cout << k2pi_noise - 2*k*M_PI << endl; // for debug
Vector deltaThetaRegularized = (Vector(1)
<< key1_DeltaTheta_key2 - 2 * k * M_PI);
lagoGraph.add(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta);
}
// prior on the anchor orientation
lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
lagoGraph.add(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise);
return lagoGraph;
}
/* ************************************************************************* */
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
static NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph) {
gttic(lago_buildPose2graph);
NonlinearFactorGraph pose2Graph;
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph) {
// recast to a between on Pose2
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if (pose2Between)
pose2Graph.add(pose2Between);
// recast PriorFactor<Pose2> to BetweenFactor<Pose2>
boost::shared_ptr< PriorFactor<Pose2> > pose2Prior =
boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor);
boost::shared_ptr<PriorFactor<Pose2> > pose2Prior =
boost::dynamic_pointer_cast<PriorFactor<Pose2> >(factor);
if (pose2Prior)
pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
pose2Prior->prior(), pose2Prior->get_noiseModel()));
pose2Graph.add(
BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
pose2Prior->prior(), pose2Prior->get_noiseModel()));
}
return pose2Graph;
}
/* ************************************************************************* */
PredecessorMap<Key> findOdometricPath(const NonlinearFactorGraph& pose2Graph) {
static PredecessorMap<Key> findOdometricPath(
const NonlinearFactorGraph& pose2Graph) {
PredecessorMap<Key> tree;
Key minKey;
bool minUnassigned = true;
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2Graph){
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2Graph) {
Key key1 = std::min(factor->keys()[0], factor->keys()[1]);
Key key2 = std::max(factor->keys()[0], factor->keys()[1]);
if(minUnassigned){
if (minUnassigned) {
minKey = key1;
minUnassigned = false;
}
if( key2 - key1 == 1){ // consecutive keys
if (key2 - key1 == 1) { // consecutive keys
tree.insert(key2, key1);
if(key1 < minKey)
if (key1 < minKey)
minKey = key1;
}
}
tree.insert(minKey,keyAnchor);
tree.insert(keyAnchor,keyAnchor); // root
tree.insert(minKey, keyAnchor);
tree.insert(keyAnchor, keyAnchor); // root
return tree;
}
/* ************************************************************************* */
VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath){
// Return the orientations of a graph including only BetweenFactors<Pose2>
static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph,
bool useOdometricPath) {
gttic(lago_computeOrientations);
// Find a minimum spanning tree
PredecessorMap<Key> tree;
if (useOdometricPath)
tree = findOdometricPath(pose2Graph);
else
tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph);
tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(pose2Graph);
// Create a linear factor graph (LFG) of scalars
key2doubleMap deltaThetaMap;
std::vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
std::vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
// temporary structure to correct wraparounds along loops
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds,
chordsIds, pose2Graph, orientationsToRoot, tree);
// Solve the LFG
VectorValues orientationsLago = lagoGraph.optimize();
@ -240,70 +279,79 @@ VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, boo
}
/* ************************************************************************* */
VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath) {
VectorValues initializeOrientations(const NonlinearFactorGraph& graph,
bool useOdometricPath) {
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
return computeLagoOrientations(pose2Graph, useOdometricPath);
return computeOrientations(pose2Graph, useOdometricPath);
}
/* ************************************************************************* */
Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& orientationsLago) {
Values computePoses(const NonlinearFactorGraph& pose2graph,
VectorValues& orientationsLago) {
gttic(lago_computePoses);
// Linearized graph on full poses
GaussianFactorGraph linearPose2graph;
// We include the linear version of each between factor
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2graph){
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose2graph) {
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
if(pose2Between){
if (pose2Between) {
Key key1 = pose2Between->keys()[0];
double theta1 = orientationsLago.at(key1)(0);
double s1 = sin(theta1); double c1 = cos(theta1);
double s1 = sin(theta1);
double c1 = cos(theta1);
Key key2 = pose2Between->keys()[1];
double theta2 = orientationsLago.at(key2)(0);
double linearDeltaRot = theta2 - theta1 - pose2Between->measured().theta();
double linearDeltaRot = theta2 - theta1
- pose2Between->measured().theta();
linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
double dx = pose2Between->measured().x();
double dy = pose2Between->measured().y();
Vector globalDeltaCart = (Vector(2) << c1*dx - s1*dy, s1*dx + c1*dy);
Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot );// rhs
Matrix J1 = - I3;
J1(0,2) = s1*dx + c1*dy;
J1(1,2) = -c1*dx + s1*dy;
Vector globalDeltaCart = //
(Vector(2) << c1 * dx - s1 * dy, s1 * dx + c1 * dy);
Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot); // rhs
Matrix J1 = -I3;
J1(0, 2) = s1 * dx + c1 * dy;
J1(1, 2) = -c1 * dx + s1 * dy;
// Retrieve the noise model for the relative rotation
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(pose2Between->get_noiseModel());
boost::dynamic_pointer_cast<noiseModel::Diagonal>(
pose2Between->get_noiseModel());
linearPose2graph.add(JacobianFactor(key1, J1, key2, I3, b, diagonalModel));
}else{
throw std::invalid_argument("computeLagoPoses: cannot manage non between factor here!");
linearPose2graph.add(key1, J1, key2, I3, b, diagonalModel);
} else {
throw invalid_argument(
"computeLagoPoses: cannot manage non between factor here!");
}
}
// add prior
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
linearPose2graph.add(JacobianFactor(keyAnchor, I3, (Vector(3) << 0.0,0.0,0.0), priorModel));
linearPose2graph.add(keyAnchor, I3, (Vector(3) << 0.0, 0.0, 0.0),
priorPose2Noise);
// optimize
VectorValues posesLago = linearPose2graph.optimize();
// put into Values structure
Values initialGuessLago;
for(VectorValues::const_iterator it = posesLago.begin(); it != posesLago.end(); ++it ){
Key key = it->first;
if (key != keyAnchor){
Vector poseVector = posesLago.at(key);
Pose2 poseLago = Pose2(poseVector(0),poseVector(1),orientationsLago.at(key)(0)+poseVector(2));
BOOST_FOREACH(const VectorValues::value_type& it, posesLago) {
Key key = it.first;
if (key != keyAnchor) {
const Vector& poseVector = it.second;
Pose2 poseLago = Pose2(poseVector(0), poseVector(1),
orientationsLago.at(key)(0) + poseVector(2));
initialGuessLago.insert(key, poseLago);
}
}
@ -311,37 +359,41 @@ Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& or
}
/* ************************************************************************* */
Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath) {
Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) {
gttic(lago_initialize);
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
VectorValues orientationsLago = computeLagoOrientations(pose2Graph, useOdometricPath);
VectorValues orientationsLago = computeOrientations(pose2Graph,
useOdometricPath);
// Compute the full poses
return computeLagoPoses(pose2Graph, orientationsLago);
return computePoses(pose2Graph, orientationsLago);
}
/* ************************************************************************* */
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
Values initialize(const NonlinearFactorGraph& graph,
const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
VectorValues orientations = initializeOrientationsLago(graph);
VectorValues orientations = initializeOrientations(graph);
// for all nodes in the tree
for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
Key key = it->first;
if (key != keyAnchor){
Pose2 pose = initialGuess.at<Pose2>(key);
Vector orientation = orientations.at(key);
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
BOOST_FOREACH(const VectorValues::value_type& it, orientations) {
Key key = it.first;
if (key != keyAnchor) {
const Pose2& pose = initialGuess.at<Pose2>(key);
const Vector& orientation = it.second;
Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
} // end of namespace lago
} // end of namespace gtsam

86
gtsam/slam/lago.h Normal file
View File

@ -0,0 +1,86 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file lago.h
* @brief Initialize Pose2 in a factor graph using LAGO
* (Linear Approximation for Graph Optimization). see papers:
*
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
* approximation for planar pose graph optimization, IJRR, 2014.
*
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
* for graph-based simultaneous localization and mapping, RSS, 2011.
*
* @param graph: nonlinear factor graph (can include arbitrary factors but we assume
* that there is a subgraph involving Pose2 and betweenFactors). Also in the current
* version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc)
* and a prior on x0. This assumption can be relaxed by using the extra argument
* useOdometricPath = false, although this part of code is not stable yet.
* @return Values: initial guess from LAGO (only pose2 are initialized)
*
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/graph.h>
namespace gtsam {
namespace lago {
typedef std::map<Key, double> key2doubleMap;
/**
* Compute the cumulative orientations (without wrapping)
* for all nodes wrt the root (root has zero orientation).
*/
GTSAM_EXPORT key2doubleMap computeThetasToRoot(
const key2doubleMap& deltaThetaMap, const PredecessorMap<Key>& tree);
/**
* Given a factor graph "g", and a spanning tree "tree", select the nodes belonging
* to the tree and to g, and stores the factor slots corresponding to edges in the
* tree and to chordsIds wrt this tree.
* Also it computes deltaThetaMap which is a fast way to encode relative
* orientations along the tree: for a node key2, s.t. tree[key2]=key1,
* the value deltaThetaMap[key2] is relative orientation theta[key2]-theta[key1]
*/
GTSAM_EXPORT void getSymbolicGraph(
/*OUTPUTS*/std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds,
key2doubleMap& deltaThetaMap,
/*INPUTS*/const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g);
/** Linear factor graph with regularized orientation measurements */
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(
const std::vector<size_t>& spanningTreeIds,
const std::vector<size_t>& chordsIds, const NonlinearFactorGraph& g,
const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree);
/** LAGO: Return the orientations of the Pose2 in a generic factor graph */
GTSAM_EXPORT VectorValues initializeOrientations(
const NonlinearFactorGraph& graph, bool useOdometricPath = true);
/** Return the values for the Pose2 in a generic factor graph */
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
bool useOdometricPath = true);
/** Only correct the orientation part in initialGuess */
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
const Values& initialGuess);
} // end of namespace lago
} // end of namespace gtsam

View File

@ -40,18 +40,21 @@ TEST(dataSet, findExampleDataFile) {
}
/* ************************************************************************* */
//TEST( dataSet, load2D)
//{
// ///< The structure where we will save the SfM data
// const string filename = findExampleDataFile("smallGraph.g2o");
// boost::tie(graph,initialGuess) = load2D(filename, boost::none, 10000,
// false, false);
//// print
////
//// print
////
//// EXPECT(assert_equal(expected,actual,12));
//}
TEST( dataSet, load2D)
{
///< The structure where we will save the SfM data
const string filename = findExampleDataFile("w100.graph");
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = load2D(filename);
EXPECT_LONGS_EQUAL(300,graph->size());
EXPECT_LONGS_EQUAL(100,initial->size());
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(3);
BetweenFactor<Pose2> expected(1, 0, Pose2(-0.99879,0.0417574,-0.00818381), model);
BetweenFactor<Pose2>::shared_ptr actual = boost::dynamic_pointer_cast<
BetweenFactor<Pose2> >(graph->at(0));
EXPECT(assert_equal(expected, *actual));
}
/* ************************************************************************* */
TEST( dataSet, Balbianello)
@ -78,9 +81,9 @@ TEST( dataSet, Balbianello)
TEST( dataSet, readG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile);
Values expectedValues;
expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
@ -94,7 +97,7 @@ TEST( dataSet, readG2o)
expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
EXPECT(assert_equal(expectedValues,actualValues,1e-5));
EXPECT(assert_equal(expectedValues,*actualValues,1e-5));
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
NonlinearFactorGraph expectedGraph;
@ -110,16 +113,16 @@ TEST( dataSet, readG2o)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oHuber)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues, HUBER);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeHUBER);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel);
@ -137,16 +140,16 @@ TEST( dataSet, readG2oHuber)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oTukey)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues, TUKEY);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeTUKEY);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);
@ -164,25 +167,25 @@ TEST( dataSet, readG2oTukey)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, writeG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph expectedGraph;
Values expectedValues;
readG2o(g2oFile, expectedGraph, expectedValues);
NonlinearFactorGraph::shared_ptr expectedGraph;
Values::shared_ptr expectedValues;
boost::tie(expectedGraph, expectedValues) = readG2o(g2oFile);
const string filenameToWrite = findExampleDataFile("pose2example-rewritten");
writeG2o(filenameToWrite, expectedGraph, expectedValues);
const string filenameToWrite = createRewrittenFileName(g2oFile);
writeG2o(*expectedGraph, *expectedValues, filenameToWrite);
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(filenameToWrite, actualGraph, actualValues);
EXPECT(assert_equal(expectedValues,actualValues,1e-5));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(filenameToWrite);
EXPECT(assert_equal(*expectedValues,*actualValues,1e-5));
EXPECT(assert_equal(*expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
@ -249,7 +252,7 @@ TEST( dataSet, writeBAL_Dubrovnik)
readBAL(filenameToRead, readData);
// Write readData to file filenameToWrite
const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten");
const string filenameToWrite = createRewrittenFileName(filenameToRead);
CHECK(writeBAL(filenameToWrite, readData));
// Read what we wrote
@ -311,7 +314,7 @@ TEST( dataSet, writeBALfromValues_Dubrovnik){
}
// Write values and readData to a file
const string filenameToWrite = findExampleDataFile("dubrovnik-3-7-pre-rewritten");
const string filenameToWrite = createRewrittenFileName(filenameToRead);
writeBALfromValues(filenameToWrite, readData, value);
// Read the file we wrote

View File

@ -19,27 +19,21 @@
* @date May 14, 2014
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/slam/lago.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LagoInitializer.h>
#include <gtsam/base/TestableAssertions.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/math/constants/constants.hpp>
#include <cmath>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
namespace simple {
@ -54,10 +48,10 @@ namespace simple {
// x0
//
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
static Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
static Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
static Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
static Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
NonlinearFactorGraph graph() {
NonlinearFactorGraph g;
@ -77,10 +71,10 @@ TEST( Lago, checkSTandChords ) {
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
key2doubleMap deltaThetaMap;
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
@ -100,19 +94,19 @@ TEST( Lago, orientationsOverSpanningTree ) {
EXPECT_LONGS_EQUAL(tree[x2], x0);
EXPECT_LONGS_EQUAL(tree[x3], x0);
key2doubleMap expected;
lago::key2doubleMap expected;
expected[x0]= 0;
expected[x1]= M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
expected[x3]= -M_PI/2; // edge x0->x3 (consistent with edge (x0,x3))
key2doubleMap deltaThetaMap;
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
key2doubleMap actual;
actual = computeThetasToRoot(deltaThetaMap, tree);
lago::key2doubleMap actual;
actual = lago::computeThetasToRoot(deltaThetaMap, tree);
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
@ -125,14 +119,14 @@ TEST( Lago, regularizedMeasurements ) {
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
key2doubleMap deltaThetaMap;
lago::key2doubleMap deltaThetaMap;
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
lago::key2doubleMap orientationsToRoot = lago::computeThetasToRoot(deltaThetaMap, tree);
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
GaussianFactorGraph lagoGraph = lago::buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
@ -147,25 +141,25 @@ TEST( Lago, regularizedMeasurements ) {
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValues ) {
bool useOdometricPath = false;
VectorValues initialGuessLago = initializeOrientationsLago(simple::graph(), useOdometricPath);
VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValuesSP ) {
VectorValues initialGuessLago = initializeOrientationsLago(simple::graph());
VectorValues initial = lago::initializeOrientations(simple::graph());
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@ -173,26 +167,26 @@ TEST( Lago, multiplePosePriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath);
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePosePriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
VectorValues initialGuessLago = initializeOrientationsLago(g);
VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@ -200,26 +194,26 @@ TEST( Lago, multiplePoseAndRotPriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath);
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePoseAndRotPriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
VectorValues initialGuessLago = initializeOrientationsLago(g);
VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@ -233,7 +227,7 @@ TEST( Lago, smallGraphValues ) {
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = initializeLago(simple::graph(), initialGuess);
Values actual = lago::initialize(simple::graph(), initialGuess);
// we are in a noiseless case
Values expected;
@ -249,7 +243,7 @@ TEST( Lago, smallGraphValues ) {
TEST( Lago, smallGraph2 ) {
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = initializeLago(simple::graph());
Values actual = lago::initialize(simple::graph());
// we are in a noiseless case
Values expected;
@ -264,17 +258,17 @@ TEST( Lago, smallGraph2 ) {
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy_orientations ) {
NonlinearFactorGraph g;
Values initial;
string inputFile = findExampleDataFile("noisyToyGraph");
readG2o(inputFile, g, initial);
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = g;
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
VectorValues actualVV = initializeOrientationsLago(graphWithPrior);
VectorValues actualVV = lago::initializeOrientations(graphWithPrior);
Values actual;
Key keyAnc = symbol('Z',9999999);
for(VectorValues::const_iterator it = actualVV.begin(); it != actualVV.end(); ++it ){
@ -285,40 +279,40 @@ TEST( Lago, largeGraphNoisy_orientations ) {
actual.insert(key, poseLago);
}
}
NonlinearFactorGraph gmatlab;
Values expected;
string matlabFile = findExampleDataFile("orientationsNoisyToyGraph");
readG2o(matlabFile, gmatlab, expected);
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-5));
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-5));
}
}
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy ) {
NonlinearFactorGraph g;
Values initial;
string inputFile = findExampleDataFile("noisyToyGraph");
readG2o(inputFile, g, initial);
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = g;
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
Values actual = initializeLago(graphWithPrior);
Values actual = lago::initialize(graphWithPrior);
NonlinearFactorGraph gmatlab;
Values expected;
string matlabFile = findExampleDataFile("optimizedNoisyToyGraph");
readG2o(matlabFile, gmatlab, expected);
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-2));
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-2));
}
}

View File

@ -52,9 +52,9 @@ using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
Symbol x1('X', 1);
Symbol x2('X', 2);
Symbol x3('X', 3);
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Key poseKey1(x1);
static Point2 measurement1(323.0, 240.0);

View File

@ -0,0 +1,82 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeVirtual.cpp
* @brief Time the overhead of using virtual destructors and methods
* @author Richard Roberts
* @date Dec 3, 2010
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/lago.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/linear/Sampler.h>
#include <gtsam/base/timing.h>
#include <iostream>
using namespace std;
using namespace gtsam;
int main(int argc, char *argv[]) {
size_t trials = 1;
// read graph
Values::shared_ptr solution;
NonlinearFactorGraph::shared_ptr g;
string inputFile = findExampleDataFile("w10000");
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0));
boost::tie(g, solution) = load2D(inputFile, model);
// add noise to create initial estimate
Values initial;
Sampler sampler(42u);
Values::ConstFiltered<Pose2> poses = solution->filter<Pose2>();
SharedDiagonal noise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.5, 0.5, 15.0 * M_PI / 180.0));
BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& it, poses)
initial.insert(it.key, it.value.retract(sampler.sampleNewModel(noise)));
// Add prior on the pose having index (key) = 0
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Sigmas(Vector3(1e-6, 1e-6, 1e-8));
g->add(PriorFactor<Pose2>(0, Pose2(), priorModel));
// LAGO
for (size_t i = 0; i < trials; i++) {
{
gttic_(lago);
gttic_(init);
Values lagoInitial = lago::initialize(*g);
gttoc_(init);
gttic_(refine);
GaussNewtonOptimizer optimizer(*g, lagoInitial);
Values result = optimizer.optimize();
gttoc_(refine);
}
{
gttic_(optimize);
GaussNewtonOptimizer optimizer(*g, initial);
Values result = optimizer.optimize();
}
tictoc_finishedIteration_();
}
tictoc_print_();
return 0;
}

View File

@ -0,0 +1,121 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionFactorExample.cpp
* @brief A stereo visual odometry example
* @date May 30, 2014
* @author Stephen Camp
* @author Chris Beall
*/
/**
* A smart projection factor example based on stereo data, throwing away the
* measurement from the right camera
* -robot starts at origin
* -moves forward, taking periodic stereo measurements
* -makes monocular observations of many landmarks
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/SmartProjectionPoseFactor.h>
#include <string>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv){
typedef SmartProjectionPoseFactor<Pose3, Point3, Cal3_S2> SmartFactor;
Values initial_estimate;
NonlinearFactorGraph graph;
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1);
string calibration_loc = findExampleDataFile("VO_calibration.txt");
string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
//read camera calibration info from file
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
cout << "Reading calibration info" << endl;
ifstream calibration_file(calibration_loc.c_str());
double fx, fy, s, u0, v0, b;
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
const Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u0, v0));
cout << "Reading camera poses" << endl;
ifstream pose_file(pose_loc.c_str());
int pose_id;
MatrixRowMajor m(4,4);
//read camera pose parameters and use to make initial estimates of camera poses
while (pose_file >> pose_id) {
for (int i = 0; i < 16; i++) {
pose_file >> m.data()[i];
}
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
}
// camera and landmark keys
size_t x, l;
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
double uL, uR, v, X, Y, Z;
ifstream factor_file(factor_loc.c_str());
cout << "Reading stereo factors" << endl;
//read stereo measurements and construct smart factors
SmartFactor::shared_ptr factor(new SmartFactor());
size_t current_l = 3; // hardcoded landmark ID from first measurement
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
if(current_l != l) {
graph.push_back(factor);
factor = SmartFactor::shared_ptr(new SmartFactor());
current_l = l;
}
factor->add(Point2(uL,v), Symbol('x',x), model, K);
}
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
cout << "Optimizing" << endl;
//create Levenberg-Marquardt optimizer to optimize the factor graph
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
Values result = optimizer.optimize();
cout << "Final result sample:" << endl;
Values pose_values = result.filter<Pose3>();
pose_values.print("Final camera poses:\n");
return 0;
}

View File

@ -28,7 +28,7 @@ void FileWriter::emit(bool add_header, bool force_overwrite) const {
bool file_exists = true;
try {
existing_contents = file_contents(filename_.c_str(), add_header);
} catch (CantOpenFile& e) {
} catch (CantOpenFile) {
file_exists = false;
}