Check numeric stability close to optical axis
parent
f8444813ae
commit
91103d5f47
|
@ -17,6 +17,15 @@ import gtsam
|
|||
from gtsam.utils.test_case import GtsamTestCase
|
||||
from gtsam.symbol_shorthand import K, L, P
|
||||
|
||||
|
||||
def ulp(ftype=np.float64):
|
||||
"""
|
||||
Unit in the last place of floating point datatypes
|
||||
"""
|
||||
f = np.finfo(ftype)
|
||||
return f.tiny / ftype(1 << f.nmant)
|
||||
|
||||
|
||||
class TestCal3Fisheye(GtsamTestCase):
|
||||
|
||||
@classmethod
|
||||
|
@ -105,27 +114,63 @@ class TestCal3Fisheye(GtsamTestCase):
|
|||
score = graph.error(state)
|
||||
self.assertAlmostEqual(score, 0)
|
||||
|
||||
def test_jacobian(self):
|
||||
"""Evaluate jacobian at optical axis"""
|
||||
def test_jacobian_on_axis(self):
|
||||
"""Check of jacobian at optical axis"""
|
||||
obj_point_on_axis = np.array([0, 0, 1])
|
||||
img_point = np.array([0.0, 0.0])
|
||||
img_point = np.array([0, 0])
|
||||
f, z, H = self.evaluate_jacobian(obj_point_on_axis, img_point)
|
||||
self.assertAlmostEqual(f, 0)
|
||||
self.gtsamAssertEquals(z, np.zeros(2))
|
||||
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
|
||||
|
||||
def test_jacobian_convergence(self):
|
||||
"""Test stability of jacobian close to optical axis"""
|
||||
t = ulp(np.float64)
|
||||
obj_point_close_to_axis = np.array([t, 0, 1])
|
||||
img_point = np.array([np.sqrt(t), 0])
|
||||
f, z, H = self.evaluate_jacobian(obj_point_close_to_axis, img_point)
|
||||
self.assertAlmostEqual(f, 0)
|
||||
self.gtsamAssertEquals(z, np.zeros(2))
|
||||
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
|
||||
|
||||
# With a height of sqrt(ulp), this may cause an overflow
|
||||
t = ulp(np.float64)
|
||||
obj_point_close_to_axis = np.array([np.sqrt(t), 0, 1])
|
||||
img_point = np.array([np.sqrt(t), 0])
|
||||
f, z, H = self.evaluate_jacobian(obj_point_close_to_axis, img_point)
|
||||
self.assertAlmostEqual(f, 0)
|
||||
self.gtsamAssertEquals(z, np.zeros(2))
|
||||
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
|
||||
|
||||
def test_scaling_factor(self):
|
||||
"Check convergence of atan(r, z)/r for small r"
|
||||
r = ulp(np.float64)
|
||||
s = np.arctan(r) / r
|
||||
self.assertEqual(s, 1.0)
|
||||
z = 1
|
||||
s = np.arctan2(r, z) / r
|
||||
self.assertEqual(s, 1.0)
|
||||
z = 2
|
||||
s = np.arctan2(r, z) / r if r/z != 0 else 1.0
|
||||
self.assertEqual(s, 1.0)
|
||||
|
||||
@staticmethod
|
||||
def evaluate_jacobian(obj_point, img_point):
|
||||
"""Evaluate jacobian at given object point"""
|
||||
pose = gtsam.Pose3()
|
||||
camera = gtsam.Cal3Fisheye()
|
||||
state = gtsam.Values()
|
||||
camera_key, pose_key, landmark_key = K(0), P(0), L(0)
|
||||
state.insert_point3(landmark_key, obj_point_on_axis)
|
||||
state.insert_point3(landmark_key, obj_point)
|
||||
state.insert_pose3(pose_key, pose)
|
||||
state.insert_cal3fisheye(camera_key, camera)
|
||||
g = gtsam.NonlinearFactorGraph()
|
||||
noise_model = gtsam.noiseModel.Unit.Create(2)
|
||||
factor = gtsam.GeneralSFMFactor2Cal3Fisheye(img_point, noise_model, pose_key, landmark_key, camera_key)
|
||||
factor = gtsam.GenericProjectionFactorCal3Fisheye(img_point, noise_model, pose_key, landmark_key, camera)
|
||||
g.add(factor)
|
||||
f = g.error(state)
|
||||
gaussian_factor_graph = g.linearize(state)
|
||||
H, z = gaussian_factor_graph.jacobian()
|
||||
self.assertAlmostEqual(f, 0)
|
||||
self.gtsamAssertEquals(z, np.zeros(2))
|
||||
self.gtsamAssertEquals(H @ H.T, 4*np.eye(2))
|
||||
return f, z, H
|
||||
|
||||
@unittest.skip("triangulatePoint3 currently seems to require perspective projections.")
|
||||
def test_triangulation_skipped(self):
|
||||
|
|
Loading…
Reference in New Issue