switching to sampson point line error
parent
4270399083
commit
8a2ce7e118
|
|
@ -103,14 +103,57 @@ EssentialMatrix EssentialMatrix::rotate(const Rot3& cRb,
|
|||
/* ************************************************************************* */
|
||||
double EssentialMatrix::error(const Vector3& vA, const Vector3& vB, //
|
||||
OptionalJacobian<1, 5> H) const {
|
||||
|
||||
// compute the epipolar lines
|
||||
Point3 lB = E_ * vB;
|
||||
Point3 lA = E_.transpose() * vA;
|
||||
|
||||
|
||||
// compute the algebraic error as a simple dot product.
|
||||
double algebraic_error = dot(vA, lB);
|
||||
|
||||
// compute the line-norms for the two lines
|
||||
Matrix23 I;
|
||||
I.setIdentity();
|
||||
Matrix21 nA = I * lA;
|
||||
Matrix21 nB = I * lB;
|
||||
double nA_sq_norm = nA.squaredNorm();
|
||||
double nB_sq_norm = nB.squaredNorm();
|
||||
|
||||
// compute the normalizing denominator and finally the sampson error
|
||||
double denominator = sqrt(nA_sq_norm + nB_sq_norm);
|
||||
double sampson_error = algebraic_error / denominator;
|
||||
|
||||
if (H) {
|
||||
// See math.lyx
|
||||
Matrix13 HR = vA.transpose() * E_ * skewSymmetric(-vB);
|
||||
Matrix12 HD = vA.transpose() * skewSymmetric(-rotation().matrix() * vB)
|
||||
// computing the derivatives of the numerator w.r.t. E
|
||||
Matrix13 numerator_H_R = vA.transpose() * E_ * skewSymmetric(-vB);
|
||||
Matrix12 numerator_H_D = vA.transpose() * skewSymmetric(-rotation().matrix() * vB)
|
||||
* direction().basis();
|
||||
*H << HR, HD;
|
||||
|
||||
|
||||
// computing the derivatives of the denominator w.r.t. E
|
||||
Matrix12 denominator_H_nA = nA.transpose() / denominator;
|
||||
Matrix12 denominator_H_nB = nB.transpose() / denominator;
|
||||
Matrix13 denominator_H_lA = denominator_H_nA * I;
|
||||
Matrix13 denominator_H_lB = denominator_H_nB * I;
|
||||
Matrix33 lB_H_R = E_ * skewSymmetric(-vB);
|
||||
Matrix32 lB_H_D = skewSymmetric(-rotation().matrix() * vB) * direction().basis();
|
||||
Matrix33 lA_H_R = skewSymmetric(E_.matrix().transpose() * vA) *
|
||||
rotation().matrix().transpose();
|
||||
Matrix32 lA_H_D = rotation().inverse().matrix() * skewSymmetric(vA) * direction().basis();
|
||||
|
||||
Matrix13 denominator_H_R = denominator_H_lA * lA_H_R + denominator_H_lB * lB_H_R;
|
||||
Matrix12 denominator_H_D = denominator_H_lA * lA_H_D + denominator_H_lB * lB_H_D;
|
||||
|
||||
Matrix15 denominator_H;
|
||||
denominator_H << denominator_H_R, denominator_H_D;
|
||||
Matrix15 numerator_H;
|
||||
numerator_H << numerator_H_R, numerator_H_D;
|
||||
|
||||
*H = numerator_H / denominator - algebraic_error * denominator_H / (denominator * denominator);
|
||||
}
|
||||
return dot(vA, E_ * vB);
|
||||
return sampson_error;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -159,7 +159,7 @@ class EssentialMatrix {
|
|||
return E.rotate(cRb);
|
||||
}
|
||||
|
||||
/// epipolar error, algebraic
|
||||
/// epipolar error, sampson
|
||||
GTSAM_EXPORT double error(const Vector3& vA, const Vector3& vB,
|
||||
OptionalJacobian<1, 5> H = boost::none) const;
|
||||
|
||||
|
|
|
|||
|
|
@ -241,6 +241,62 @@ TEST (EssentialMatrix, epipoles) {
|
|||
EXPECT(assert_equal(e2, E.epipole_b()));
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrix, errorValue) {
|
||||
// Use two points to get error
|
||||
Point3 a(1, -2, 1);
|
||||
Point3 b(3, 1, 1);
|
||||
|
||||
// compute the expected error
|
||||
// E = [0, 0, 0; 0, 0, -1; 1, 0, 0]
|
||||
// line for b = [0, -1, 3]
|
||||
// line for a = [1, 0, 2]
|
||||
// algebraic error = 5
|
||||
// norm of line for b = 1
|
||||
// norm of line for a = 1
|
||||
// sampson error = 5 / sqrt(1^2 + 1^2)
|
||||
double expected = 3.535533906;
|
||||
|
||||
// check the error
|
||||
double actual = trueE.error(a, b);
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
double error_(const Rot3& R, const Unit3& t){
|
||||
// Use two points to get error
|
||||
Point3 a(1, -2, 1);
|
||||
Point3 b(3, 1, 1);
|
||||
|
||||
EssentialMatrix E = EssentialMatrix::FromRotationAndDirection(R, t);
|
||||
return E.error(a, b);
|
||||
}
|
||||
TEST (EssentialMatrix, errorJacobians) {
|
||||
// Use two points to get error
|
||||
Point3 a(1, -2, 1);
|
||||
Point3 b(3, 1, 1);
|
||||
|
||||
Rot3 c1Rc2 = Rot3::Ypr(0.1, -0.2, 0.3);
|
||||
Point3 c1Tc2(0.4, 0.5, 0.6);
|
||||
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix13 HRexpected;
|
||||
Matrix12 HDexpected;
|
||||
HRexpected = numericalDerivative21<double, Rot3, Unit3>(
|
||||
error_, E.rotation(), E.direction(), 1e-8);
|
||||
HDexpected = numericalDerivative22<double, Rot3, Unit3>(
|
||||
error_, E.rotation(), E.direction(), 1e-8);
|
||||
Matrix15 HEexpected;
|
||||
HEexpected << HRexpected, HDexpected;
|
||||
|
||||
Matrix15 HEactual;
|
||||
E.error(a, b, HEactual);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(HEexpected, HEactual, 1e-8));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue