switching to sampson point line error

release/4.3a0
Ayush Baid 2021-06-08 21:42:14 -07:00
parent 4270399083
commit 8a2ce7e118
3 changed files with 104 additions and 5 deletions

View File

@ -103,14 +103,57 @@ EssentialMatrix EssentialMatrix::rotate(const Rot3& cRb,
/* ************************************************************************* */
double EssentialMatrix::error(const Vector3& vA, const Vector3& vB, //
OptionalJacobian<1, 5> H) const {
// compute the epipolar lines
Point3 lB = E_ * vB;
Point3 lA = E_.transpose() * vA;
// compute the algebraic error as a simple dot product.
double algebraic_error = dot(vA, lB);
// compute the line-norms for the two lines
Matrix23 I;
I.setIdentity();
Matrix21 nA = I * lA;
Matrix21 nB = I * lB;
double nA_sq_norm = nA.squaredNorm();
double nB_sq_norm = nB.squaredNorm();
// compute the normalizing denominator and finally the sampson error
double denominator = sqrt(nA_sq_norm + nB_sq_norm);
double sampson_error = algebraic_error / denominator;
if (H) {
// See math.lyx
Matrix13 HR = vA.transpose() * E_ * skewSymmetric(-vB);
Matrix12 HD = vA.transpose() * skewSymmetric(-rotation().matrix() * vB)
// computing the derivatives of the numerator w.r.t. E
Matrix13 numerator_H_R = vA.transpose() * E_ * skewSymmetric(-vB);
Matrix12 numerator_H_D = vA.transpose() * skewSymmetric(-rotation().matrix() * vB)
* direction().basis();
*H << HR, HD;
// computing the derivatives of the denominator w.r.t. E
Matrix12 denominator_H_nA = nA.transpose() / denominator;
Matrix12 denominator_H_nB = nB.transpose() / denominator;
Matrix13 denominator_H_lA = denominator_H_nA * I;
Matrix13 denominator_H_lB = denominator_H_nB * I;
Matrix33 lB_H_R = E_ * skewSymmetric(-vB);
Matrix32 lB_H_D = skewSymmetric(-rotation().matrix() * vB) * direction().basis();
Matrix33 lA_H_R = skewSymmetric(E_.matrix().transpose() * vA) *
rotation().matrix().transpose();
Matrix32 lA_H_D = rotation().inverse().matrix() * skewSymmetric(vA) * direction().basis();
Matrix13 denominator_H_R = denominator_H_lA * lA_H_R + denominator_H_lB * lB_H_R;
Matrix12 denominator_H_D = denominator_H_lA * lA_H_D + denominator_H_lB * lB_H_D;
Matrix15 denominator_H;
denominator_H << denominator_H_R, denominator_H_D;
Matrix15 numerator_H;
numerator_H << numerator_H_R, numerator_H_D;
*H = numerator_H / denominator - algebraic_error * denominator_H / (denominator * denominator);
}
return dot(vA, E_ * vB);
return sampson_error;
}
/* ************************************************************************* */

View File

@ -159,7 +159,7 @@ class EssentialMatrix {
return E.rotate(cRb);
}
/// epipolar error, algebraic
/// epipolar error, sampson
GTSAM_EXPORT double error(const Vector3& vA, const Vector3& vB,
OptionalJacobian<1, 5> H = boost::none) const;

View File

@ -241,6 +241,62 @@ TEST (EssentialMatrix, epipoles) {
EXPECT(assert_equal(e2, E.epipole_b()));
}
//*************************************************************************
TEST (EssentialMatrix, errorValue) {
// Use two points to get error
Point3 a(1, -2, 1);
Point3 b(3, 1, 1);
// compute the expected error
// E = [0, 0, 0; 0, 0, -1; 1, 0, 0]
// line for b = [0, -1, 3]
// line for a = [1, 0, 2]
// algebraic error = 5
// norm of line for b = 1
// norm of line for a = 1
// sampson error = 5 / sqrt(1^2 + 1^2)
double expected = 3.535533906;
// check the error
double actual = trueE.error(a, b);
EXPECT(assert_equal(expected, actual, 1e-6));
}
//*************************************************************************
double error_(const Rot3& R, const Unit3& t){
// Use two points to get error
Point3 a(1, -2, 1);
Point3 b(3, 1, 1);
EssentialMatrix E = EssentialMatrix::FromRotationAndDirection(R, t);
return E.error(a, b);
}
TEST (EssentialMatrix, errorJacobians) {
// Use two points to get error
Point3 a(1, -2, 1);
Point3 b(3, 1, 1);
Rot3 c1Rc2 = Rot3::Ypr(0.1, -0.2, 0.3);
Point3 c1Tc2(0.4, 0.5, 0.6);
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
// Use numerical derivatives to calculate the expected Jacobian
Matrix13 HRexpected;
Matrix12 HDexpected;
HRexpected = numericalDerivative21<double, Rot3, Unit3>(
error_, E.rotation(), E.direction(), 1e-8);
HDexpected = numericalDerivative22<double, Rot3, Unit3>(
error_, E.rotation(), E.direction(), 1e-8);
Matrix15 HEexpected;
HEexpected << HRexpected, HDexpected;
Matrix15 HEactual;
E.error(a, b, HEactual);
// Verify the Jacobian is correct
EXPECT(assert_equal(HEexpected, HEactual, 1e-8));
}
/* ************************************************************************* */
int main() {
TestResult tr;