[REFACTOR] ActiveSetSolver to match commenting and format conventions.
parent
f42c4f6a92
commit
89fc822259
|
@ -0,0 +1,151 @@
|
||||||
|
/**
|
||||||
|
* @file ActiveSetSolver.cpp
|
||||||
|
* @brief Implmentation of ActiveSetSolver.
|
||||||
|
* @author Ivan Dario Jimenez
|
||||||
|
* @author Duy Nguyen Ta
|
||||||
|
* @date 2/11/16
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam_unstable/linear/ActiveSetSolver.h>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Iterates through each factor in the factor graph and checks
|
||||||
|
* whether it's active. If the factor is active it reutrns the A
|
||||||
|
* term of the factor.
|
||||||
|
*/
|
||||||
|
template<typename FACTOR>
|
||||||
|
ActiveSetSolver::TermsContainer ActiveSetSolver::collectDualJacobians(Key key,
|
||||||
|
const FactorGraph<FACTOR>& graph,
|
||||||
|
const VariableIndex& variableIndex) const {
|
||||||
|
ActiveSetSolver::TermsContainer Aterms;
|
||||||
|
if (variableIndex.find(key) != variableIndex.end()) {
|
||||||
|
BOOST_FOREACH (size_t factorIx, variableIndex[key]) {
|
||||||
|
typename FACTOR::shared_ptr factor = graph.at(factorIx);
|
||||||
|
if (!factor->active()) continue;
|
||||||
|
Matrix Ai = factor->getA(factor->find(key)).transpose();
|
||||||
|
Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return Aterms;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The goal of this function is to find currently active inequality constraints
|
||||||
|
* that violate the condition to be active. The one that violates the condition
|
||||||
|
* the most will be removed from the active set. See Nocedal06book, pg 469-471
|
||||||
|
*
|
||||||
|
* Find the BAD active inequality that pulls x strongest to the wrong direction
|
||||||
|
* of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
|
||||||
|
*
|
||||||
|
* For active inequality constraints (those that are enforced as equality constraints
|
||||||
|
* in the current working set), we want lambda < 0.
|
||||||
|
* This is because:
|
||||||
|
* - From the Lagrangian L = f - lambda*c, we know that the constraint force
|
||||||
|
* is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
|
||||||
|
* on the constraint surface, the constraint force has to balance out with
|
||||||
|
* other unconstrained forces that are pulling x towards the unconstrained
|
||||||
|
* minimum point. The other unconstrained forces are pulling x toward (-\grad f),
|
||||||
|
* hence the constraint force has to be exactly \grad f, so that the total
|
||||||
|
* force is 0.
|
||||||
|
* - We also know that at the constraint surface c(x)=0, \grad c points towards + (>= 0),
|
||||||
|
* while we are solving for - (<=0) constraint.
|
||||||
|
* - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
|
||||||
|
* i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
|
||||||
|
* That means we want lambda < 0.
|
||||||
|
* - This is because when the constrained force pulls x towards the infeasible region (+),
|
||||||
|
* the unconstrained force is pulling x towards the opposite direction into
|
||||||
|
* the feasible region (again because the total force has to be 0 to make x stay still)
|
||||||
|
* So we can drop this constraint to have a lower error but feasible solution.
|
||||||
|
*
|
||||||
|
* In short, active inequality constraints with lambda > 0 are BAD, because they
|
||||||
|
* violate the condition to be active.
|
||||||
|
*
|
||||||
|
* And we want to remove the worst one with the largest lambda from the active set.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
int ActiveSetSolver::identifyLeavingConstraint(
|
||||||
|
const InequalityFactorGraph& workingSet, const VectorValues& lambdas) const {
|
||||||
|
int worstFactorIx = -1;
|
||||||
|
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is
|
||||||
|
// either
|
||||||
|
// inactive or a good inequality constraint, so we don't care!
|
||||||
|
double maxLambda = 0.0;
|
||||||
|
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||||
|
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||||
|
if (factor->active()) {
|
||||||
|
double lambda = lambdas.at(factor->dualKey())[0];
|
||||||
|
if (lambda > maxLambda) {
|
||||||
|
worstFactorIx = factorIx;
|
||||||
|
maxLambda = lambda;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return worstFactorIx;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* This function will create a dual graph that solves for the
|
||||||
|
* lagrange multipliers for the current working set.
|
||||||
|
* You can use lagrange multipliers as a necessary condition for optimality.
|
||||||
|
* The factor graph that is being solved is f' = -lambda * g'
|
||||||
|
* where f is the optimized function and g is the function resulting from
|
||||||
|
* aggregating the working set.
|
||||||
|
* The lambdas give you information about the feasibility of a constraint.
|
||||||
|
* if lambda < 0 the constraint is Ok
|
||||||
|
* if lambda = 0 you are on the constraint
|
||||||
|
* if lambda > 0 you are violating the constraint.
|
||||||
|
*/
|
||||||
|
GaussianFactorGraph::shared_ptr ActiveSetSolver::buildDualGraph(
|
||||||
|
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
|
||||||
|
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
|
||||||
|
BOOST_FOREACH (Key key, constrainedKeys_) {
|
||||||
|
// Each constrained key becomes a factor in the dual graph
|
||||||
|
JacobianFactor::shared_ptr dualFactor =
|
||||||
|
createDualFactor(key, workingSet, delta);
|
||||||
|
if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
|
||||||
|
}
|
||||||
|
return dualGraph;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
|
||||||
|
*
|
||||||
|
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
|
||||||
|
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
|
||||||
|
* This constraint will be added to the working set and become active
|
||||||
|
* in the next iteration.
|
||||||
|
*/
|
||||||
|
boost::tuple<double, int> ActiveSetSolver::computeStepSize(
|
||||||
|
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||||
|
const VectorValues& p, const double& startAlpha) const {
|
||||||
|
double minAlpha = startAlpha;
|
||||||
|
int closestFactorIx = -1;
|
||||||
|
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||||
|
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||||
|
double b = factor->getb()[0];
|
||||||
|
// only check inactive factors
|
||||||
|
if (!factor->active()) {
|
||||||
|
// Compute a'*p
|
||||||
|
double aTp = factor->dotProductRow(p);
|
||||||
|
|
||||||
|
// Check if a'*p >0. Don't care if it's not.
|
||||||
|
if (aTp <= 0)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
// Compute a'*xk
|
||||||
|
double aTx = factor->dotProductRow(xk);
|
||||||
|
|
||||||
|
// alpha = (b - a'*xk) / (a'*p)
|
||||||
|
double alpha = (b - aTx) / aTp;
|
||||||
|
// We want the minimum of all those max alphas
|
||||||
|
if (alpha < minAlpha) {
|
||||||
|
closestFactorIx = factorIx;
|
||||||
|
minAlpha = alpha;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return boost::make_tuple(minAlpha, closestFactorIx);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -8,13 +8,21 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
|
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
|
||||||
#include <boost/range/adaptor/map.hpp>
|
#include <boost/range/adaptor/map.hpp>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is a base class for all implementations of the active set algorithm for solving
|
||||||
|
* Programming problems. It provides services and variables all active set implementations
|
||||||
|
* share.
|
||||||
|
*/
|
||||||
class ActiveSetSolver {
|
class ActiveSetSolver {
|
||||||
public:
|
public:
|
||||||
typedef std::vector<std::pair<Key, Matrix> > TermsContainer;
|
|
||||||
|
|
||||||
|
typedef std::vector<std::pair<Key, Matrix> > TermsContainer; //!< vector of key matrix pairs
|
||||||
|
//Matrices are usually the A term for a factor.
|
||||||
protected:
|
protected:
|
||||||
KeySet constrainedKeys_; //!< all constrained keys, will become factors in dual graphs
|
KeySet constrainedKeys_; //!< all constrained keys, will become factors in dual graphs
|
||||||
GaussianFactorGraph baseGraph_; //!< factor graphs of cost factors and linear equalities.
|
GaussianFactorGraph baseGraph_; //!< factor graphs of cost factors and linear equalities.
|
||||||
|
@ -24,149 +32,50 @@ protected:
|
||||||
inequalityVariableIndex_; //!< index to corresponding factors to build dual graphs
|
inequalityVariableIndex_; //!< index to corresponding factors to build dual graphs
|
||||||
|
|
||||||
public:
|
public:
|
||||||
/// Create a dual factor
|
/**
|
||||||
|
* Creates a dual factor from the current workingSet and the key of the
|
||||||
|
* the variable used to created the dual factor.
|
||||||
|
*/
|
||||||
virtual JacobianFactor::shared_ptr createDualFactor(Key key,
|
virtual JacobianFactor::shared_ptr createDualFactor(Key key,
|
||||||
const InequalityFactorGraph& workingSet,
|
const InequalityFactorGraph& workingSet,
|
||||||
const VectorValues& delta) const = 0;
|
const VectorValues& delta) const = 0;
|
||||||
|
|
||||||
/// Collect the Jacobian terms for a dual factor
|
/**
|
||||||
template <typename FACTOR>
|
* Finds the active constraints in the given factor graph and returns the
|
||||||
TermsContainer collectDualJacobians(
|
* Dual Jacobians used to build a dual factor graph.
|
||||||
Key key, const FactorGraph<FACTOR>& graph,
|
*/
|
||||||
const VariableIndex& variableIndex) const {
|
template<typename FACTOR>
|
||||||
TermsContainer Aterms;
|
TermsContainer collectDualJacobians(Key key, const FactorGraph<FACTOR>& graph,
|
||||||
if (variableIndex.find(key) != variableIndex.end()) {
|
const VariableIndex& variableIndex) const;
|
||||||
BOOST_FOREACH (size_t factorIx, variableIndex[key]) {
|
|
||||||
typename FACTOR::shared_ptr factor = graph.at(factorIx);
|
|
||||||
if (!factor->active()) continue;
|
|
||||||
Matrix Ai = factor->getA(factor->find(key)).transpose();
|
|
||||||
Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return Aterms;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The goal of this function is to find currently active inequality constraints
|
* Identifies active constraints that shouldn't be active anymore.
|
||||||
* that violate the condition to be active. The one that violates the condition
|
*/
|
||||||
* the most will be removed from the active set. See Nocedal06book, pg 469-471
|
|
||||||
*
|
|
||||||
* Find the BAD active inequality that pulls x strongest to the wrong direction
|
|
||||||
* of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
|
|
||||||
*
|
|
||||||
* For active inequality constraints (those that are enforced as equality constraints
|
|
||||||
* in the current working set), we want lambda < 0.
|
|
||||||
* This is because:
|
|
||||||
* - From the Lagrangian L = f - lambda*c, we know that the constraint force
|
|
||||||
* is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
|
|
||||||
* on the constraint surface, the constraint force has to balance out with
|
|
||||||
* other unconstrained forces that are pulling x towards the unconstrained
|
|
||||||
* minimum point. The other unconstrained forces are pulling x toward (-\grad f),
|
|
||||||
* hence the constraint force has to be exactly \grad f, so that the total
|
|
||||||
* force is 0.
|
|
||||||
* - We also know that at the constraint surface c(x)=0, \grad c points towards + (>= 0),
|
|
||||||
* while we are solving for - (<=0) constraint.
|
|
||||||
* - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
|
|
||||||
* i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
|
|
||||||
* That means we want lambda < 0.
|
|
||||||
* - This is because when the constrained force pulls x towards the infeasible region (+),
|
|
||||||
* the unconstrained force is pulling x towards the opposite direction into
|
|
||||||
* the feasible region (again because the total force has to be 0 to make x stay still)
|
|
||||||
* So we can drop this constraint to have a lower error but feasible solution.
|
|
||||||
*
|
|
||||||
* In short, active inequality constraints with lambda > 0 are BAD, because they
|
|
||||||
* violate the condition to be active.
|
|
||||||
*
|
|
||||||
* And we want to remove the worst one with the largest lambda from the active set.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
int identifyLeavingConstraint(const InequalityFactorGraph& workingSet,
|
int identifyLeavingConstraint(const InequalityFactorGraph& workingSet,
|
||||||
const VectorValues& lambdas) const {
|
const VectorValues& lambdas) const;
|
||||||
int worstFactorIx = -1;
|
|
||||||
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is
|
|
||||||
// either
|
|
||||||
// inactive or a good inequality constraint, so we don't care!
|
|
||||||
double maxLambda = 0.0;
|
|
||||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
|
||||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
|
||||||
if (factor->active()) {
|
|
||||||
double lambda = lambdas.at(factor->dualKey())[0];
|
|
||||||
if (lambda > maxLambda) {
|
|
||||||
worstFactorIx = factorIx;
|
|
||||||
maxLambda = lambda;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return worstFactorIx;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* This function will create a dual graph that solves for the
|
/**
|
||||||
* lagrange multipliers for the current working set.
|
* Builds a dual graph from the current working set.
|
||||||
* You can use lagrange multipliers as a necessary condition for optimality.
|
|
||||||
* The factor graph that is being solved is f' = -lambda * g'
|
|
||||||
* where f is the optimized function and g is the function resulting from
|
|
||||||
* aggregating the working set.
|
|
||||||
* The lambdas give you information about the feasibility of a constraint.
|
|
||||||
* if lambda < 0 the constraint is Ok
|
|
||||||
* if lambda = 0 you are on the constraint
|
|
||||||
* if lambda > 0 you are violating the constraint.
|
|
||||||
*/
|
*/
|
||||||
GaussianFactorGraph::shared_ptr buildDualGraph(
|
GaussianFactorGraph::shared_ptr buildDualGraph(
|
||||||
const InequalityFactorGraph& workingSet,
|
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
|
||||||
const VectorValues& delta) const {
|
|
||||||
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
|
|
||||||
BOOST_FOREACH (Key key, constrainedKeys_) {
|
|
||||||
// Each constrained key becomes a factor in the dual graph
|
|
||||||
JacobianFactor::shared_ptr dualFactor =
|
|
||||||
createDualFactor(key, workingSet, delta);
|
|
||||||
if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
|
|
||||||
}
|
|
||||||
return dualGraph;
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
ActiveSetSolver() : constrainedKeys_() {}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
|
* Protected constructor because this class doesn't have any meaning without
|
||||||
*
|
* a concrete Programming problem to solve.
|
||||||
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
|
*/
|
||||||
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
|
ActiveSetSolver() :
|
||||||
* This constraint will be added to the working set and become active
|
constrainedKeys_() {
|
||||||
* in the next iteration.
|
|
||||||
*/
|
|
||||||
boost::tuple<double, int> computeStepSize(
|
|
||||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
|
||||||
const VectorValues& p, const double& startAlpha) const {
|
|
||||||
double minAlpha = startAlpha;
|
|
||||||
int closestFactorIx = -1;
|
|
||||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
|
||||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
|
||||||
double b = factor->getb()[0];
|
|
||||||
// only check inactive factors
|
|
||||||
if (!factor->active()) {
|
|
||||||
// Compute a'*p
|
|
||||||
double aTp = factor->dotProductRow(p);
|
|
||||||
|
|
||||||
// Check if a'*p >0. Don't care if it's not.
|
|
||||||
if (aTp <= 0)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
// Compute a'*xk
|
|
||||||
double aTx = factor->dotProductRow(xk);
|
|
||||||
|
|
||||||
// alpha = (b - a'*xk) / (a'*p)
|
|
||||||
double alpha = (b - aTx) / aTp;
|
|
||||||
// We want the minimum of all those max alphas
|
|
||||||
if (alpha < minAlpha) {
|
|
||||||
closestFactorIx = factorIx;
|
|
||||||
minAlpha = alpha;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return boost::make_tuple(minAlpha, closestFactorIx);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Computes the distance to move from the current point being examined to the next
|
||||||
|
* location to be examined by the graph. This should only be used where there are less
|
||||||
|
* than two constraints active.
|
||||||
|
*/
|
||||||
|
boost::tuple<double, int> computeStepSize(
|
||||||
|
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||||
|
const VectorValues& p, const double& startAlpha) const;
|
||||||
};
|
};
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
Loading…
Reference in New Issue