From 859e4cb37af125b9351db22dc86837077d5c62f9 Mon Sep 17 00:00:00 2001 From: lcarlone Date: Wed, 12 Jan 2022 21:31:22 -0500 Subject: [PATCH] thresholded mu to avoid case mu = 0 in TLS. improved verbosity handling --- gtsam/nonlinear/GncOptimizer.h | 25 +++++++++++++++++++------ gtsam/nonlinear/GncParams.h | 2 ++ 2 files changed, 21 insertions(+), 6 deletions(-) diff --git a/gtsam/nonlinear/GncOptimizer.h b/gtsam/nonlinear/GncOptimizer.h index 3025d2468..6c8519aac 100644 --- a/gtsam/nonlinear/GncOptimizer.h +++ b/gtsam/nonlinear/GncOptimizer.h @@ -206,9 +206,11 @@ class GTSAM_EXPORT GncOptimizer { std::cout << "GNC Optimizer stopped because all measurements are already known to be inliers or outliers" << std::endl; } + if (params_.verbosity >= GncParameters::Verbosity::MU) { + std::cout << "mu: " << mu << std::endl; + } if (params_.verbosity >= GncParameters::Verbosity::VALUES) { result.print("result\n"); - std::cout << "mu: " << mu << std::endl; } return result; } @@ -217,12 +219,16 @@ class GTSAM_EXPORT GncOptimizer { for (iter = 0; iter < params_.maxIterations; iter++) { // display info - if (params_.verbosity >= GncParameters::Verbosity::VALUES) { + if (params_.verbosity >= GncParameters::Verbosity::MU) { std::cout << "iter: " << iter << std::endl; - result.print("result\n"); std::cout << "mu: " << mu << std::endl; + } + if (params_.verbosity >= GncParameters::Verbosity::WEIGHTS) { std::cout << "weights: " << weights_ << std::endl; } + if (params_.verbosity >= GncParameters::Verbosity::VALUES) { + result.print("result\n"); + } // weights update weights_ = calculateWeights(result, mu); @@ -253,10 +259,12 @@ class GTSAM_EXPORT GncOptimizer { if (params_.verbosity >= GncParameters::Verbosity::SUMMARY) { std::cout << "final iterations: " << iter << std::endl; std::cout << "final mu: " << mu << std::endl; - std::cout << "final weights: " << weights_ << std::endl; std::cout << "previous cost: " << prev_cost << std::endl; std::cout << "current cost: " << cost << std::endl; } + if (params_.verbosity >= GncParameters::Verbosity::WEIGHTS) { + std::cout << "final weights: " << weights_ << std::endl; + } return result; } @@ -291,6 +299,9 @@ class GTSAM_EXPORT GncOptimizer { std::min(mu_init, barcSq_[k] / (2 * rk - barcSq_[k]) ) : mu_init; } } + if (mu_init >= 0 && mu_init < 1e-6) + mu_init = 1e-6; // if mu ~ 0 (but positive), that means we have measurements with large errors, + // i.e., rk > barcSq_[k] and rk very large, hence we threshold to 1e-6 to avoid mu = 0 return mu_init > 0 && !std::isinf(mu_init) ? mu_init : -1; // if mu <= 0 or mu = inf, return -1, // which leads to termination of the main gnc loop. In this case, all residuals are already below the threshold // and there is no need to robustify (TLS = least squares) @@ -338,8 +349,10 @@ class GTSAM_EXPORT GncOptimizer { bool checkCostConvergence(const double cost, const double prev_cost) const { bool costConverged = std::fabs(cost - prev_cost) / std::max(prev_cost, 1e-7) < params_.relativeCostTol; - if (costConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY) - std::cout << "checkCostConvergence = true " << std::endl; + if (costConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY){ + std::cout << "checkCostConvergence = true (prev. cost = " << prev_cost + << ", curr. cost = " << cost << ")" << std::endl; + } return costConverged; } diff --git a/gtsam/nonlinear/GncParams.h b/gtsam/nonlinear/GncParams.h index 086f08acc..1f324ae38 100644 --- a/gtsam/nonlinear/GncParams.h +++ b/gtsam/nonlinear/GncParams.h @@ -48,6 +48,8 @@ class GTSAM_EXPORT GncParams { enum Verbosity { SILENT = 0, SUMMARY, + MU, + WEIGHTS, VALUES };