put in place initial functions
							parent
							
								
									00387b32cd
								
							
						
					
					
						commit
						82844b541c
					
				|  | @ -19,86 +19,4 @@ | |||
| 
 | ||||
| namespace gtsam { | ||||
| 
 | ||||
| 
 | ||||
| //
 | ||||
| //void SmartProjectionPoseFactorRollingShutter::add(
 | ||||
| //    const std::vector<StereoPoint2>& measurements,
 | ||||
| //    const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
 | ||||
| //    const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks) {
 | ||||
| //  assert(world_P_body_keys.size() == measurements.size());
 | ||||
| //  assert(world_P_body_keys.size() == body_P_cam_keys.size());
 | ||||
| //  assert(world_P_body_keys.size() == Ks.size());
 | ||||
| //  for (size_t i = 0; i < measurements.size(); i++) {
 | ||||
| //      Base::add(measurements[i], world_P_body_keys[i]);
 | ||||
| //      // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
 | ||||
| //      if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
 | ||||
| //          keys_.push_back(body_P_cam_keys[i]); // add only unique keys
 | ||||
| //
 | ||||
| //      world_P_body_keys_.push_back(world_P_body_keys[i]);
 | ||||
| //      body_P_cam_keys_.push_back(body_P_cam_keys[i]);
 | ||||
| //
 | ||||
| //      K_all_.push_back(Ks[i]);
 | ||||
| //    }
 | ||||
| //}
 | ||||
| //
 | ||||
| //void SmartProjectionPoseFactorRollingShutter::add(
 | ||||
| //    const std::vector<StereoPoint2>& measurements,
 | ||||
| //    const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
 | ||||
| //    const boost::shared_ptr<Cal3_S2Stereo>& K) {
 | ||||
| //  assert(world_P_body_keys.size() == measurements.size());
 | ||||
| //  assert(world_P_body_keys.size() == body_P_cam_keys.size());
 | ||||
| //  for (size_t i = 0; i < measurements.size(); i++) {
 | ||||
| //    Base::add(measurements[i], world_P_body_keys[i]);
 | ||||
| //    // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
 | ||||
| //    if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
 | ||||
| //      keys_.push_back(body_P_cam_keys[i]); // add only unique keys
 | ||||
| //
 | ||||
| //    world_P_body_keys_.push_back(world_P_body_keys[i]);
 | ||||
| //    body_P_cam_keys_.push_back(body_P_cam_keys[i]);
 | ||||
| //
 | ||||
| //    K_all_.push_back(K);
 | ||||
| //  }
 | ||||
| //}
 | ||||
| //
 | ||||
| //void SmartProjectionPoseFactorRollingShutter::print(
 | ||||
| //    const std::string& s, const KeyFormatter& keyFormatter) const {
 | ||||
| //  std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
 | ||||
| //  for (size_t i = 0; i < K_all_.size(); i++) {
 | ||||
| //    K_all_[i]->print("calibration = ");
 | ||||
| //    std::cout << " extrinsic pose key: " << keyFormatter(body_P_cam_keys_[i]) << std::endl;
 | ||||
| //  }
 | ||||
| //  Base::print("", keyFormatter);
 | ||||
| //}
 | ||||
| //
 | ||||
| //bool SmartProjectionPoseFactorRollingShutter::equals(const NonlinearFactor& p,
 | ||||
| //                                             double tol) const {
 | ||||
| //  const SmartProjectionPoseFactorRollingShutter* e =
 | ||||
| //      dynamic_cast<const SmartProjectionPoseFactorRollingShutter*>(&p);
 | ||||
| //
 | ||||
| //  return e && Base::equals(p, tol) &&
 | ||||
| //      body_P_cam_keys_ == e->getExtrinsicPoseKeys();
 | ||||
| //}
 | ||||
| //
 | ||||
| //double SmartProjectionPoseFactorRollingShutter::error(const Values& values) const {
 | ||||
| //  if (this->active(values)) {
 | ||||
| //    return this->totalReprojectionError(cameras(values));
 | ||||
| //  } else {  // else of active flag
 | ||||
| //    return 0.0;
 | ||||
| //  }
 | ||||
| //}
 | ||||
| //
 | ||||
| //SmartProjectionPoseFactorRollingShutter::Base::Cameras
 | ||||
| //SmartProjectionPoseFactorRollingShutter::cameras(const Values& values) const {
 | ||||
| //  assert(world_P_body_keys_.size() == K_all_.size());
 | ||||
| //  assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
 | ||||
| //  Base::Cameras cameras;
 | ||||
| //  for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
 | ||||
| //    Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_[i]);
 | ||||
| //    Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
 | ||||
| //    Pose3 w_P_cam = w_P_body.compose(body_P_cam);
 | ||||
| //    cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));
 | ||||
| //  }
 | ||||
| //  return cameras;
 | ||||
| //}
 | ||||
| 
 | ||||
| }  // \ namespace gtsam
 | ||||
|  |  | |||
|  | @ -38,19 +38,22 @@ namespace gtsam { | |||
|  * @addtogroup SLAM | ||||
|  */ | ||||
| template<class CALIBRATION> | ||||
| class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | ||||
| class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor< | ||||
|     PinholePose<CALIBRATION> > { | ||||
| 
 | ||||
|  protected: | ||||
|   /// shared pointer to calibration object (one for each observation)
 | ||||
|   std::vector<boost::shared_ptr<CALIBRATION> > K_all_; | ||||
| 
 | ||||
|   // The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
 | ||||
|   std::vector<std::pair<Key,Key>> world_P_body_key_pairs_; | ||||
|   /// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
 | ||||
|   std::vector<std::pair<Key, Key>> world_P_body_key_pairs_; | ||||
| 
 | ||||
|   // interpolation factor (one for each observation) to interpolate between pair of consecutive poses
 | ||||
|   /// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
 | ||||
|   std::vector<double> gammas_; | ||||
| 
 | ||||
|   /// Pose of the camera in the body frame
 | ||||
|   std::vector<Pose3> body_P_sensors_;  ///< Pose of the camera in the body frame
 | ||||
| 
 | ||||
|  public: | ||||
|   EIGEN_MAKE_ALIGNED_OPERATOR_NEW | ||||
| 
 | ||||
|  | @ -77,7 +80,8 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|   SmartProjectionPoseFactorRollingShutter( | ||||
|       const SharedNoiseModel& sharedNoiseModel, | ||||
|       const SmartProjectionParams& params = SmartProjectionParams()) | ||||
|       : Base(sharedNoiseModel, params) {} | ||||
|       : Base(sharedNoiseModel, params) { | ||||
|   } | ||||
| 
 | ||||
|   /** Virtual destructor */ | ||||
|   ~SmartProjectionPoseFactorRollingShutter() override = default; | ||||
|  | @ -91,24 +95,28 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|    * @param gamma in [0,1] is the interpolation factor, such that if gamma = 0 the interpolated pose is the same as world_P_body_key | ||||
|    * @param K is the (fixed) camera intrinsic calibration | ||||
|    */ | ||||
|   void add(const Point2& measured, | ||||
|            const Key& world_P_body_key1, | ||||
|            const Key& world_P_body_key2, | ||||
|            const double& gamma, | ||||
|            const boost::shared_ptr<CALIBRATION>& K){ | ||||
|   void add(const Point2& measured, const Key& world_P_body_key1, | ||||
|            const Key& world_P_body_key2, const double& gamma, | ||||
|            const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) { | ||||
|     // store measurements in base class (note: we only store the first key there)
 | ||||
|     Base::add(measured, world_P_body_key1); | ||||
|     // but we also store the extrinsic calibration keys in the same order
 | ||||
|     world_P_body_key_pairs_.push_back(std::make_pair(world_P_body_key1,world_P_body_key2)); | ||||
|     world_P_body_key_pairs_.push_back( | ||||
|         std::make_pair(world_P_body_key1, world_P_body_key2)); | ||||
| 
 | ||||
|     // pose keys are assumed to be unique, so we avoid duplicates here
 | ||||
|     if(std::find( this->keys_.begin(),  this->keys_.end(), world_P_body_key1) ==  this->keys_.end()) | ||||
|        this->keys_.push_back(world_P_body_key1); // add only unique keys
 | ||||
|     if(std::find( this->keys_.begin(),  this->keys_.end(), world_P_body_key2) ==  this->keys_.end()) | ||||
|        this->keys_.push_back(world_P_body_key2); // add only unique keys
 | ||||
|     if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) | ||||
|         == this->keys_.end()) | ||||
|       this->keys_.push_back(world_P_body_key1);  // add only unique keys
 | ||||
|     if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) | ||||
|         == this->keys_.end()) | ||||
|       this->keys_.push_back(world_P_body_key2);  // add only unique keys
 | ||||
| 
 | ||||
|     // store fixed calibration
 | ||||
|     K_all_.push_back(K); | ||||
| 
 | ||||
|     // store extrinsics of the camera
 | ||||
|     body_P_sensors_.push_back(body_P_sensor); | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|  | @ -118,23 +126,55 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|    * @param world_P_body_key_pairs vector of  (1 for each view) containing the pair of poses from which each view can be interpolated | ||||
|    * @param Ks vector of intrinsic calibration objects | ||||
|    */ | ||||
| //  void add(const std::vector<Point2>& measurements,
 | ||||
| //           const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
 | ||||
| //           const std::vector<double>& gammas,
 | ||||
| //           const std::vector<boost::shared_ptr<CALIBRATION>>& Ks);
 | ||||
|   void add(const std::vector<Point2>& measurements, | ||||
|            const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs, | ||||
|            const std::vector<double>& gammas, | ||||
|            const std::vector<boost::shared_ptr<CALIBRATION>>& Ks, | ||||
|            const std::vector<Pose3> body_P_sensors) { | ||||
|     assert(world_P_body_key_pairs.size() == measurements.size()); | ||||
|     assert(world_P_body_key_pairs.size() == gammas.size()); | ||||
|     assert(world_P_body_key_pairs.size() == Ks.size()); | ||||
|     for (size_t i = 0; i < measurements.size(); i++) { | ||||
|       add(measurements[i], world_P_body_key_pairs[i].first, | ||||
|           world_P_body_key_pairs[i].second, gammas[i], Ks[i], | ||||
|           body_P_sensors[i]); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * Variant of the previous one in which we include a set of measurements with | ||||
|    * the same calibration | ||||
|    * the same (intrinsic and extrinsic) calibration | ||||
|    * @param measurements vector of the 2m dimensional location of the projection | ||||
|    * of a single landmark in the m views (the measurements) | ||||
|    * @param world_P_body_key_pairs vector of  (1 for each view) containing the pair of poses from which each view can be interpolated | ||||
|    * @param K the (known) camera calibration (same for all measurements) | ||||
|    */ | ||||
| //  void add(const std::vector<Point2>& measurements,
 | ||||
| //           const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
 | ||||
| //           const std::vector<double>& gammas,
 | ||||
| //           const boost::shared_ptr<CALIBRATION>& K);
 | ||||
|   void add(const std::vector<Point2>& measurements, | ||||
|            const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs, | ||||
|            const std::vector<double>& gammas, | ||||
|            const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) { | ||||
|     assert(world_P_body_key_pairs.size() == measurements.size()); | ||||
|     assert(world_P_body_key_pairs.size() == gammas.size()); | ||||
|     for (size_t i = 0; i < measurements.size(); i++) { | ||||
|       add(measurements[i], world_P_body_key_pairs[i].first, | ||||
|           world_P_body_key_pairs[i].second, gammas[i], K, body_P_sensor); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /// return the calibration object
 | ||||
|   inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const { | ||||
|     return K_all_; | ||||
|   } | ||||
| 
 | ||||
|   /// return the interpolation factors gammas
 | ||||
|   const std::vector<double> getGammas() const { | ||||
|     return gammas_; | ||||
|   } | ||||
| 
 | ||||
|   /// return the interpolation factors gammas
 | ||||
|   const std::vector<Pose3> body_P_sensors() const { | ||||
|     return body_P_sensors_; | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * print | ||||
|  | @ -142,24 +182,38 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|    * @param keyFormatter optional formatter useful for printing Symbols | ||||
|    */ | ||||
|   void print(const std::string& s = "", const KeyFormatter& keyFormatter = | ||||
|                  DefaultKeyFormatter) const override; | ||||
|                  DefaultKeyFormatter) const override { | ||||
|     std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n "; | ||||
|     for (size_t i = 0; i < K_all_.size(); i++) { | ||||
|       std::cout << "-- Measurement nr " << i << std::endl; | ||||
|       std::cout << " pose1 key: " | ||||
|           << keyFormatter(world_P_body_key_pairs_[i].first) << std::endl; | ||||
|       std::cout << " pose2 key: " | ||||
|           << keyFormatter(world_P_body_key_pairs_[i].second) << std::endl; | ||||
|       std::cout << " gamma: " << gammas_[i] << std::endl; | ||||
|       K_all_[i]->print("calibration = "); | ||||
|     } | ||||
|     Base::print("", keyFormatter); | ||||
|   } | ||||
| 
 | ||||
|   /// equals
 | ||||
|   bool equals(const NonlinearFactor& p, double tol = 1e-9) const override; | ||||
|   bool equals(const NonlinearFactor& p, double tol = 1e-9) const override { | ||||
|     const SmartProjectionPoseFactorRollingShutter<CALIBRATION>* e = | ||||
|         dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CALIBRATION>*>(&p); | ||||
| 
 | ||||
|   /// equals
 | ||||
|   const std::vector<double> getGammas() const { | ||||
|     return gammas_; | ||||
|     return e && Base::equals(p, tol) && K_all_ == e->calibration() | ||||
|         && gammas_ == e->getGammas() && body_P_sensors_ == e->body_P_sensors(); | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|    * error calculates the error of the factor. | ||||
|    */ | ||||
|   double error(const Values& values) const override; | ||||
| 
 | ||||
|   /** return the calibration object */ | ||||
|   inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const { | ||||
|     return K_all_; | ||||
|   double error(const Values& values) const override { | ||||
|     if (this->active(values)) { | ||||
|       return this->totalReprojectionError(cameras(values)); | ||||
|     } else {  // else of active flag
 | ||||
|       return 0.0; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|  | @ -169,12 +223,18 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|    * @return Cameras | ||||
|    */ | ||||
|   typename Base::Cameras cameras(const Values& values) const override { | ||||
|     assert(world_P_body_keys_.size() == K_all_.size()); | ||||
|     assert(world_P_body_keys_.size() == body_P_cam_keys_.size()); | ||||
|     typename Base::Cameras cameras; | ||||
|     for (const Key& k : this->keys_) { | ||||
| //      const Pose3 world_P_sensor_k =
 | ||||
| //          Base::body_P_sensor_ ? values.at<Pose3>(k) * *Base::body_P_sensor_
 | ||||
| //              : values.at<Pose3>(k);
 | ||||
| //      cameras.emplace_back(world_P_sensor_k, K_);
 | ||||
|     for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) { | ||||
|       Pose3 w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first); | ||||
|       Pose3 w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second); | ||||
|       double interpolationFactor = gammas_[i]; | ||||
|       // get interpolated pose:
 | ||||
|       Pose3 w_P_body = w_P_body1.interpolateRt(w_P_body2, interpolationFactor); | ||||
|       Pose3 body_P_cam = body_P_sensors_[i]; | ||||
|       Pose3 w_P_cam = w_P_body.compose(body_P_cam); | ||||
|       cameras.emplace_back(w_P_cam, K_all_[i]); | ||||
|     } | ||||
|     return cameras; | ||||
|   } | ||||
|  | @ -225,7 +285,6 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
| //      }
 | ||||
| //    }
 | ||||
| //  }
 | ||||
| 
 | ||||
|   /// linearize and return a Hessianfactor that is an approximation of error(p)
 | ||||
| //  boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
 | ||||
| //      const Values& values, const double lambda = 0.0, bool diagonalDamping =
 | ||||
|  | @ -350,7 +409,6 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
| //    return boost::make_shared < RegularHessianFactor<DimPose>
 | ||||
| //        > ( this->keys_, augmentedHessianUniqueKeys);
 | ||||
| //  }
 | ||||
| 
 | ||||
|   /**
 | ||||
|    * Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM) | ||||
|    * @param values Values structure which must contain camera poses and extrinsic pose for this factor | ||||
|  | @ -379,7 +437,7 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
|   friend class boost::serialization::access; | ||||
|   template<class ARCHIVE> | ||||
|   void serialize(ARCHIVE& ar, const unsigned int /*version*/) { | ||||
|     ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); | ||||
|     ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); | ||||
|     ar & BOOST_SERIALIZATION_NVP(K_all_); | ||||
|   } | ||||
| 
 | ||||
|  | @ -388,8 +446,8 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor< | |||
| 
 | ||||
| /// traits
 | ||||
| template<class CALIBRATION> | ||||
| struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > : public Testable< | ||||
|     SmartProjectionPoseFactorRollingShutter<CALIBRATION> > { | ||||
| struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > : | ||||
|     public Testable<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > { | ||||
| }; | ||||
| 
 | ||||
| }  // namespace gtsam
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue