(2.0_prep branch) Merged in virtual_values branch
commit
820b33bd55
|
@ -20,7 +20,6 @@
|
|||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimization.h>
|
||||
|
@ -28,13 +27,12 @@
|
|||
using namespace gtsam;
|
||||
|
||||
typedef TypedSymbol<Pose3, 'x'> PoseKey;
|
||||
typedef Values<PoseKey> PoseValues;
|
||||
|
||||
/**
|
||||
* Unary factor for the pose.
|
||||
*/
|
||||
class ResectioningFactor: public NonlinearFactor1<PoseValues, PoseKey> {
|
||||
typedef NonlinearFactor1<PoseValues, PoseKey> Base;
|
||||
class ResectioningFactor: public NonlinearFactor1<PoseKey> {
|
||||
typedef NonlinearFactor1<PoseKey> Base;
|
||||
|
||||
shared_ptrK K_; // camera's intrinsic parameters
|
||||
Point3 P_; // 3D point on the calibration rig
|
||||
|
@ -46,6 +44,8 @@ public:
|
|||
Base(model, key), K_(calib), P_(P), p_(p) {
|
||||
}
|
||||
|
||||
virtual ~ResectioningFactor() {}
|
||||
|
||||
virtual Vector evaluateError(const Pose3& X, boost::optional<Matrix&> H =
|
||||
boost::none) const {
|
||||
SimpleCamera camera(*K_, X);
|
||||
|
@ -72,7 +72,7 @@ int main(int argc, char* argv[]) {
|
|||
PoseKey X(1);
|
||||
|
||||
/* 1. create graph */
|
||||
NonlinearFactorGraph<PoseValues> graph;
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
/* 2. add factors to the graph */
|
||||
// add measurement factors
|
||||
|
@ -92,14 +92,13 @@ int main(int argc, char* argv[]) {
|
|||
graph.push_back(factor);
|
||||
|
||||
/* 3. Create an initial estimate for the camera pose */
|
||||
PoseValues initial;
|
||||
Values initial;
|
||||
initial.insert(X, Pose3(Rot3(1.,0.,0.,
|
||||
0.,-1.,0.,
|
||||
0.,0.,-1.), Point3(0.,0.,2.0)));
|
||||
|
||||
/* 4. Optimize the graph using Levenberg-Marquardt*/
|
||||
PoseValues result = optimize<NonlinearFactorGraph<PoseValues> , PoseValues> (
|
||||
graph, initial);
|
||||
Values result = optimize<NonlinearFactorGraph> (graph, initial);
|
||||
result.print("Final result: ");
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -16,8 +16,8 @@ noinst_PROGRAMS += PlanarSLAMExample_easy # Solves SLAM example from tutorial
|
|||
noinst_PROGRAMS += PlanarSLAMSelfContained_advanced # Solves SLAM example from tutorial with all typedefs in the script
|
||||
noinst_PROGRAMS += Pose2SLAMExample_easy # Solves SLAM example from tutorial by using Pose2SLAM and easy optimization interface
|
||||
noinst_PROGRAMS += Pose2SLAMExample_advanced # Solves SLAM example from tutorial by using Pose2SLAM and advanced optimization interface
|
||||
noinst_PROGRAMS += Pose2SLAMwSPCG_easy # Solves a simple Pose2 SLAM example with advanced SPCG solver
|
||||
noinst_PROGRAMS += Pose2SLAMwSPCG_advanced # Solves a simple Pose2 SLAM example with easy SPCG solver
|
||||
#noinst_PROGRAMS += Pose2SLAMwSPCG_easy # Solves a simple Pose2 SLAM example with advanced SPCG solver
|
||||
#noinst_PROGRAMS += Pose2SLAMwSPCG_advanced # Solves a simple Pose2 SLAM example with easy SPCG solver
|
||||
noinst_PROGRAMS += elaboratePoint2KalmanFilter # simple linear Kalman filter on a moving 2D point, but done using factor graphs
|
||||
noinst_PROGRAMS += easyPoint2KalmanFilter # uses the cool generic templated Kalman filter class to do the same
|
||||
noinst_PROGRAMS += CameraResectioning
|
||||
|
|
|
@ -76,7 +76,7 @@ int main(int argc, char** argv) {
|
|||
graph.print("full graph");
|
||||
|
||||
// initialize to noisy points
|
||||
planarSLAM::Values initialEstimate;
|
||||
Values initialEstimate;
|
||||
initialEstimate.insert(x1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(x2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insert(x3, Pose2(4.1, 0.1, 0.1));
|
||||
|
@ -86,7 +86,7 @@ int main(int argc, char** argv) {
|
|||
initialEstimate.print("initial estimate");
|
||||
|
||||
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
planarSLAM::Values result = optimize<Graph, planarSLAM::Values>(graph, initialEstimate);
|
||||
Values result = optimize<Graph>(graph, initialEstimate);
|
||||
result.print("final result");
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
|
||||
// implementations for structures - needed if self-contained, and these should be included last
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
#include <gtsam/linear/GaussianSequentialSolver.h>
|
||||
|
@ -43,12 +42,9 @@
|
|||
// Main typedefs
|
||||
typedef gtsam::TypedSymbol<gtsam::Pose2, 'x'> PoseKey; // Key for poses, with type included
|
||||
typedef gtsam::TypedSymbol<gtsam::Point2,'l'> PointKey; // Key for points, with type included
|
||||
typedef gtsam::Values<PoseKey> PoseValues; // config type for poses
|
||||
typedef gtsam::Values<PointKey> PointValues; // config type for points
|
||||
typedef gtsam::TupleValues2<PoseValues, PointValues> PlanarValues; // main config with two variable classes
|
||||
typedef gtsam::NonlinearFactorGraph<PlanarValues> Graph; // graph structure
|
||||
typedef gtsam::NonlinearOptimizer<Graph,PlanarValues,gtsam::GaussianFactorGraph,gtsam::GaussianSequentialSolver> OptimizerSeqential; // optimization engine for this domain
|
||||
typedef gtsam::NonlinearOptimizer<Graph,PlanarValues,gtsam::GaussianFactorGraph,gtsam::GaussianMultifrontalSolver> OptimizerMultifrontal; // optimization engine for this domain
|
||||
typedef gtsam::NonlinearFactorGraph Graph; // graph structure
|
||||
typedef gtsam::NonlinearOptimizer<Graph,gtsam::GaussianFactorGraph,gtsam::GaussianSequentialSolver> OptimizerSeqential; // optimization engine for this domain
|
||||
typedef gtsam::NonlinearOptimizer<Graph,gtsam::GaussianFactorGraph,gtsam::GaussianMultifrontalSolver> OptimizerMultifrontal; // optimization engine for this domain
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
@ -74,7 +70,7 @@ int main(int argc, char** argv) {
|
|||
// gaussian for prior
|
||||
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
|
||||
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
|
||||
PriorFactor<PlanarValues, PoseKey> posePrior(x1, prior_measurement, prior_model); // create the factor
|
||||
PriorFactor<PoseKey> posePrior(x1, prior_measurement, prior_model); // create the factor
|
||||
graph->add(posePrior); // add the factor to the graph
|
||||
|
||||
/* add odometry */
|
||||
|
@ -82,8 +78,8 @@ int main(int argc, char** argv) {
|
|||
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
|
||||
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
// create between factors to represent odometry
|
||||
BetweenFactor<PlanarValues,PoseKey> odom12(x1, x2, odom_measurement, odom_model);
|
||||
BetweenFactor<PlanarValues,PoseKey> odom23(x2, x3, odom_measurement, odom_model);
|
||||
BetweenFactor<PoseKey> odom12(x1, x2, odom_measurement, odom_model);
|
||||
BetweenFactor<PoseKey> odom23(x2, x3, odom_measurement, odom_model);
|
||||
graph->add(odom12); // add both to graph
|
||||
graph->add(odom23);
|
||||
|
||||
|
@ -100,9 +96,9 @@ int main(int argc, char** argv) {
|
|||
range32 = 2.0;
|
||||
|
||||
// create bearing/range factors
|
||||
BearingRangeFactor<PlanarValues, PoseKey, PointKey> meas11(x1, l1, bearing11, range11, meas_model);
|
||||
BearingRangeFactor<PlanarValues, PoseKey, PointKey> meas21(x2, l1, bearing21, range21, meas_model);
|
||||
BearingRangeFactor<PlanarValues, PoseKey, PointKey> meas32(x3, l2, bearing32, range32, meas_model);
|
||||
BearingRangeFactor<PoseKey, PointKey> meas11(x1, l1, bearing11, range11, meas_model);
|
||||
BearingRangeFactor<PoseKey, PointKey> meas21(x2, l1, bearing21, range21, meas_model);
|
||||
BearingRangeFactor<PoseKey, PointKey> meas32(x3, l2, bearing32, range32, meas_model);
|
||||
|
||||
// add the factors
|
||||
graph->add(meas11);
|
||||
|
@ -112,7 +108,7 @@ int main(int argc, char** argv) {
|
|||
graph->print("Full Graph");
|
||||
|
||||
// initialize to noisy points
|
||||
boost::shared_ptr<PlanarValues> initial(new PlanarValues);
|
||||
boost::shared_ptr<Values> initial(new Values);
|
||||
initial->insert(x1, Pose2(0.5, 0.0, 0.2));
|
||||
initial->insert(x2, Pose2(2.3, 0.1,-0.2));
|
||||
initial->insert(x3, Pose2(4.1, 0.1, 0.1));
|
||||
|
|
|
@ -57,7 +57,7 @@ int main(int argc, char** argv) {
|
|||
|
||||
/* 3. Create the data structure to hold the initial estimate to the solution
|
||||
* initialize to noisy points */
|
||||
shared_ptr<pose2SLAM::Values> initial(new pose2SLAM::Values);
|
||||
shared_ptr<Values> initial(new Values);
|
||||
initial->insert(x1, Pose2(0.5, 0.0, 0.2));
|
||||
initial->insert(x2, Pose2(2.3, 0.1,-0.2));
|
||||
initial->insert(x3, Pose2(4.1, 0.1, 0.1));
|
||||
|
@ -72,7 +72,7 @@ int main(int argc, char** argv) {
|
|||
Optimizer optimizer(graph, initial, ordering, params);
|
||||
Optimizer optimizer_result = optimizer.levenbergMarquardt();
|
||||
|
||||
pose2SLAM::Values result = *optimizer_result.values();
|
||||
Values result = *optimizer_result.values();
|
||||
result.print("final result");
|
||||
|
||||
/* Get covariances */
|
||||
|
|
|
@ -55,7 +55,7 @@ int main(int argc, char** argv) {
|
|||
|
||||
/* 3. Create the data structure to hold the initial estinmate to the solution
|
||||
* initialize to noisy points */
|
||||
pose2SLAM::Values initial;
|
||||
Values initial;
|
||||
initial.insert(x1, Pose2(0.5, 0.0, 0.2));
|
||||
initial.insert(x2, Pose2(2.3, 0.1,-0.2));
|
||||
initial.insert(x3, Pose2(4.1, 0.1, 0.1));
|
||||
|
@ -63,7 +63,7 @@ int main(int argc, char** argv) {
|
|||
|
||||
/* 4 Single Step Optimization
|
||||
* optimize using Levenberg-Marquardt optimization with an ordering from colamd */
|
||||
pose2SLAM::Values result = optimize<Graph, pose2SLAM::Values>(graph, initial);
|
||||
Values result = optimize<Graph>(graph, initial);
|
||||
result.print("final result");
|
||||
|
||||
|
||||
|
|
|
@ -31,17 +31,17 @@ using namespace gtsam;
|
|||
using namespace pose2SLAM;
|
||||
|
||||
typedef boost::shared_ptr<Graph> sharedGraph ;
|
||||
typedef boost::shared_ptr<pose2SLAM::Values> sharedValue ;
|
||||
typedef boost::shared_ptr<Values> sharedValue ;
|
||||
//typedef NonlinearOptimizer<Graph, Values, SubgraphPreconditioner, SubgraphSolver<Graph,Values> > SPCGOptimizer;
|
||||
|
||||
|
||||
typedef SubgraphSolver<Graph, GaussianFactorGraph, pose2SLAM::Values> Solver;
|
||||
typedef SubgraphSolver<Graph, GaussianFactorGraph, Values> Solver;
|
||||
typedef boost::shared_ptr<Solver> sharedSolver ;
|
||||
typedef NonlinearOptimizer<Graph, pose2SLAM::Values, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
typedef NonlinearOptimizer<Graph, Values, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
|
||||
sharedGraph graph;
|
||||
sharedValue initial;
|
||||
pose2SLAM::Values result;
|
||||
Values result;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(void) {
|
||||
|
@ -51,7 +51,7 @@ int main(void) {
|
|||
Key x1(1), x2(2), x3(3), x4(4), x5(5), x6(6), x7(7), x8(8), x9(9);
|
||||
|
||||
graph = boost::make_shared<Graph>() ;
|
||||
initial = boost::make_shared<pose2SLAM::Values>() ;
|
||||
initial = boost::make_shared<Values>() ;
|
||||
|
||||
// create a 3 by 3 grid
|
||||
// x3 x6 x9
|
||||
|
|
|
@ -31,7 +31,7 @@ using namespace gtsam;
|
|||
using namespace pose2SLAM;
|
||||
|
||||
Graph graph;
|
||||
pose2SLAM::Values initial, result;
|
||||
Values initial, result;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(void) {
|
||||
|
|
|
@ -23,7 +23,6 @@
|
|||
#include <gtsam/geometry/Rot2.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimization.h>
|
||||
|
||||
|
@ -53,8 +52,7 @@ using namespace gtsam;
|
|||
* and 2D poses.
|
||||
*/
|
||||
typedef TypedSymbol<Rot2, 'x'> Key; /// Variable labels for a specific type
|
||||
typedef Values<Key> RotValues; /// Class to store values - acts as a state for the system
|
||||
typedef NonlinearFactorGraph<RotValues> Graph; /// Graph container for constraints - needs to know type of variables
|
||||
typedef NonlinearFactorGraph Graph; /// Graph container for constraints - needs to know type of variables
|
||||
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
|
@ -83,7 +81,7 @@ int main() {
|
|||
prior.print("goal angle");
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(1, 1 * degree);
|
||||
Key key(1);
|
||||
PriorFactor<RotValues, Key> factor(key, prior, model);
|
||||
PriorFactor<Key> factor(key, prior, model);
|
||||
|
||||
/**
|
||||
* Step 3: create a graph container and add the factor to it
|
||||
|
@ -114,7 +112,7 @@ int main() {
|
|||
* on the type of key used to find the appropriate value map if there
|
||||
* are multiple types of variables.
|
||||
*/
|
||||
RotValues initial;
|
||||
Values initial;
|
||||
initial.insert(key, Rot2::fromAngle(20 * degree));
|
||||
initial.print("initial estimate");
|
||||
|
||||
|
@ -126,7 +124,7 @@ int main() {
|
|||
* initial estimate. This will yield a new RotValues structure
|
||||
* with the final state of the optimization.
|
||||
*/
|
||||
RotValues result = optimize<Graph, RotValues>(graph, initial);
|
||||
Values result = optimize<Graph>(graph, initial);
|
||||
result.print("final result");
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#include <gtsam/nonlinear/ExtendedKalmanFilter-inl.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
using namespace std;
|
||||
|
@ -32,7 +31,6 @@ using namespace gtsam;
|
|||
|
||||
// Define Types for Linear System Test
|
||||
typedef TypedSymbol<Point2, 'x'> LinearKey;
|
||||
typedef Values<LinearKey> LinearValues;
|
||||
typedef Point2 LinearMeasurement;
|
||||
|
||||
int main() {
|
||||
|
@ -42,7 +40,7 @@ int main() {
|
|||
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
|
||||
// Create an ExtendedKalmanFilter object
|
||||
ExtendedKalmanFilter<LinearValues,LinearKey> ekf(x_initial, P_initial);
|
||||
ExtendedKalmanFilter<LinearKey> ekf(x_initial, P_initial);
|
||||
|
||||
|
||||
|
||||
|
@ -67,7 +65,7 @@ int main() {
|
|||
// Predict delta based on controls
|
||||
Point2 difference(1,0);
|
||||
// Create Factor
|
||||
BetweenFactor<LinearValues,LinearKey> factor1(x0, x1, difference, Q);
|
||||
BetweenFactor<LinearKey> factor1(x0, x1, difference, Q);
|
||||
|
||||
// Predict the new value with the EKF class
|
||||
Point2 x1_predict = ekf.predict(factor1);
|
||||
|
@ -88,7 +86,7 @@ int main() {
|
|||
|
||||
// This simple measurement can be modeled with a PriorFactor
|
||||
Point2 z1(1.0, 0.0);
|
||||
PriorFactor<LinearValues,LinearKey> factor2(x1, z1, R);
|
||||
PriorFactor<LinearKey> factor2(x1, z1, R);
|
||||
|
||||
// Update the Kalman Filter with the measurement
|
||||
Point2 x1_update = ekf.update(factor2);
|
||||
|
@ -100,13 +98,13 @@ int main() {
|
|||
// Predict
|
||||
LinearKey x2(2);
|
||||
difference = Point2(1,0);
|
||||
BetweenFactor<LinearValues,LinearKey> factor3(x1, x2, difference, Q);
|
||||
BetweenFactor<LinearKey> factor3(x1, x2, difference, Q);
|
||||
Point2 x2_predict = ekf.predict(factor1);
|
||||
x2_predict.print("X2 Predict");
|
||||
|
||||
// Update
|
||||
Point2 z2(2.0, 0.0);
|
||||
PriorFactor<LinearValues,LinearKey> factor4(x2, z2, R);
|
||||
PriorFactor<LinearKey> factor4(x2, z2, R);
|
||||
Point2 x2_update = ekf.update(factor4);
|
||||
x2_update.print("X2 Update");
|
||||
|
||||
|
@ -116,13 +114,13 @@ int main() {
|
|||
// Predict
|
||||
LinearKey x3(3);
|
||||
difference = Point2(1,0);
|
||||
BetweenFactor<LinearValues,LinearKey> factor5(x2, x3, difference, Q);
|
||||
BetweenFactor<LinearKey> factor5(x2, x3, difference, Q);
|
||||
Point2 x3_predict = ekf.predict(factor5);
|
||||
x3_predict.print("X3 Predict");
|
||||
|
||||
// Update
|
||||
Point2 z3(3.0, 0.0);
|
||||
PriorFactor<LinearValues,LinearKey> factor6(x3, z3, R);
|
||||
PriorFactor<LinearKey> factor6(x3, z3, R);
|
||||
Point2 x3_update = ekf.update(factor6);
|
||||
x3_update.print("X3 Update");
|
||||
|
||||
|
|
|
@ -22,7 +22,6 @@
|
|||
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/linear/GaussianSequentialSolver.h>
|
||||
|
@ -35,7 +34,6 @@ using namespace std;
|
|||
using namespace gtsam;
|
||||
|
||||
typedef TypedSymbol<Point2, 'x'> Key; /// Variable labels for a specific type
|
||||
typedef Values<Key> KalmanValues; /// Class to store values - acts as a state for the system
|
||||
|
||||
int main() {
|
||||
|
||||
|
@ -48,7 +46,7 @@ int main() {
|
|||
Ordering::shared_ptr ordering(new Ordering);
|
||||
|
||||
// Create a structure to hold the linearization points
|
||||
KalmanValues linearizationPoints;
|
||||
Values linearizationPoints;
|
||||
|
||||
// Ground truth example
|
||||
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
|
||||
|
@ -64,7 +62,7 @@ int main() {
|
|||
// This is equivalent to x_0 and P_0
|
||||
Point2 x_initial(0,0);
|
||||
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
PriorFactor<KalmanValues, Key> factor1(x0, x_initial, P_initial);
|
||||
PriorFactor<Key> factor1(x0, x_initial, P_initial);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x0, x_initial);
|
||||
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
|
||||
|
@ -95,7 +93,7 @@ int main() {
|
|||
|
||||
Point2 difference(1,0);
|
||||
SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<KalmanValues, Key> factor2(x0, x1, difference, Q);
|
||||
BetweenFactor<Key> factor2(x0, x1, difference, Q);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x1, x_initial);
|
||||
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
|
||||
|
@ -173,7 +171,7 @@ int main() {
|
|||
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
|
||||
Point2 z1(1.0, 0.0);
|
||||
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<KalmanValues, Key> factor4(x1, z1, R1);
|
||||
PriorFactor<Key> factor4(x1, z1, R1);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
|
||||
|
||||
|
@ -225,7 +223,7 @@ int main() {
|
|||
// Create a nonlinear factor describing the motion model
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<KalmanValues, Key> factor6(x1, x2, difference, Q);
|
||||
BetweenFactor<Key> factor6(x1, x2, difference, Q);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x2, x1_update);
|
||||
|
@ -263,7 +261,7 @@ int main() {
|
|||
// And update using z2 ...
|
||||
Point2 z2(2.0, 0.0);
|
||||
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<KalmanValues, Key> factor8(x2, z2, R2);
|
||||
PriorFactor<Key> factor8(x2, z2, R2);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
|
||||
|
@ -314,7 +312,7 @@ int main() {
|
|||
// Create a nonlinear factor describing the motion model
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<KalmanValues, Key> factor10(x2, x3, difference, Q);
|
||||
BetweenFactor<Key> factor10(x2, x3, difference, Q);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x3, x2_update);
|
||||
|
@ -352,7 +350,7 @@ int main() {
|
|||
// And update using z3 ...
|
||||
Point2 z3(3.0, 0.0);
|
||||
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<KalmanValues, Key> factor12(x3, z3, R3);
|
||||
PriorFactor<Key> factor12(x3, z3, R3);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
|
||||
|
|
|
@ -79,7 +79,7 @@ void readAllDataISAM() {
|
|||
/**
|
||||
* Setup newFactors and initialValues for each new pose and set of measurements at each frame.
|
||||
*/
|
||||
void createNewFactors(shared_ptr<Graph>& newFactors, boost::shared_ptr<visualSLAM::Values>& initialValues,
|
||||
void createNewFactors(shared_ptr<Graph>& newFactors, boost::shared_ptr<Values>& initialValues,
|
||||
int pose_id, const Pose3& pose, const std::vector<Feature2D>& measurements, SharedNoiseModel measurementSigma, shared_ptrK calib) {
|
||||
|
||||
// Create a graph of newFactors with new measurements
|
||||
|
@ -100,10 +100,10 @@ void createNewFactors(shared_ptr<Graph>& newFactors, boost::shared_ptr<visualSLA
|
|||
}
|
||||
|
||||
// Create initial values for all nodes in the newFactors
|
||||
initialValues = shared_ptr<visualSLAM::Values> (new visualSLAM::Values());
|
||||
initialValues->insert(pose_id, pose);
|
||||
initialValues = shared_ptr<Values> (new Values());
|
||||
initialValues->insert(PoseKey(pose_id), pose);
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
initialValues->insert(measurements[i].m_idLandmark, g_landmarks[measurements[i].m_idLandmark]);
|
||||
initialValues->insert(PointKey(measurements[i].m_idLandmark), g_landmarks[measurements[i].m_idLandmark]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,7 +123,7 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Create a NonlinearISAM which will be relinearized and reordered after every "relinearizeInterval" updates
|
||||
int relinearizeInterval = 3;
|
||||
NonlinearISAM<visualSLAM::Values> isam(relinearizeInterval);
|
||||
NonlinearISAM<> isam(relinearizeInterval);
|
||||
|
||||
// At each frame (poseId) with new camera pose and set of associated measurements,
|
||||
// create a graph of new factors and update ISAM
|
||||
|
@ -131,12 +131,12 @@ int main(int argc, char* argv[]) {
|
|||
BOOST_FOREACH(const FeatureMap::value_type& features, g_measurements) {
|
||||
const int poseId = features.first;
|
||||
shared_ptr<Graph> newFactors;
|
||||
shared_ptr<visualSLAM::Values> initialValues;
|
||||
shared_ptr<Values> initialValues;
|
||||
createNewFactors(newFactors, initialValues, poseId, g_poses[poseId],
|
||||
features.second, measurementSigma, g_calib);
|
||||
|
||||
isam.update(*newFactors, *initialValues);
|
||||
visualSLAM::Values currentEstimate = isam.estimate();
|
||||
Values currentEstimate = isam.estimate();
|
||||
cout << "****************************************************" << endl;
|
||||
currentEstimate.print("Current estimate: ");
|
||||
}
|
||||
|
|
|
@ -102,17 +102,17 @@ Graph setupGraph(std::vector<Feature2D>& measurements, SharedNoiseModel measurem
|
|||
* Create a structure of initial estimates for all nodes (landmarks and poses) in the graph.
|
||||
* The returned Values structure contains all initial values for all nodes.
|
||||
*/
|
||||
visualSLAM::Values initialize(std::map<int, Point3> landmarks, std::map<int, Pose3> poses) {
|
||||
Values initialize(std::map<int, Point3> landmarks, std::map<int, Pose3> poses) {
|
||||
|
||||
visualSLAM::Values initValues;
|
||||
Values initValues;
|
||||
|
||||
// Initialize landmarks 3D positions.
|
||||
for (map<int, Point3>::iterator lmit = landmarks.begin(); lmit != landmarks.end(); lmit++)
|
||||
initValues.insert(lmit->first, lmit->second);
|
||||
initValues.insert(PointKey(lmit->first), lmit->second);
|
||||
|
||||
// Initialize camera poses.
|
||||
for (map<int, Pose3>::iterator poseit = poses.begin(); poseit != poses.end(); poseit++)
|
||||
initValues.insert(poseit->first, poseit->second);
|
||||
initValues.insert(PoseKey(poseit->first), poseit->second);
|
||||
|
||||
return initValues;
|
||||
}
|
||||
|
@ -135,7 +135,7 @@ int main(int argc, char* argv[]) {
|
|||
boost::shared_ptr<Graph> graph(new Graph(setupGraph(g_measurements, measurementSigma, g_calib)));
|
||||
|
||||
// Create an initial Values structure using groundtruth values as the initial estimates
|
||||
boost::shared_ptr<visualSLAM::Values> initialEstimates(new visualSLAM::Values(initialize(g_landmarks, g_poses)));
|
||||
boost::shared_ptr<Values> initialEstimates(new Values(initialize(g_landmarks, g_poses)));
|
||||
cout << "*******************************************************" << endl;
|
||||
initialEstimates->print("INITIAL ESTIMATES: ");
|
||||
|
||||
|
|
8
gtsam.h
8
gtsam.h
|
@ -427,14 +427,14 @@ class Graph {
|
|||
void addRange(int poseKey, int pointKey, double range, const gtsam::SharedNoiseModel& noiseModel);
|
||||
void addBearingRange(int poseKey, int pointKey, const gtsam::Rot2& bearing, double range,
|
||||
const gtsam::SharedNoiseModel& noiseModel);
|
||||
planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate);
|
||||
Values optimize(const Values& initialEstimate);
|
||||
};
|
||||
|
||||
class Odometry {
|
||||
Odometry(int key1, int key2, const gtsam::Pose2& measured,
|
||||
const gtsam::SharedNoiseModel& model);
|
||||
void print(string s) const;
|
||||
gtsam::GaussianFactor* linearize(const planarSLAM::Values& center, const gtsam::Ordering& ordering) const;
|
||||
gtsam::GaussianFactor* linearize(const Values& center, const Ordering& ordering) const;
|
||||
};
|
||||
|
||||
class Optimizer {
|
||||
|
@ -637,8 +637,8 @@ class Graph {
|
|||
// GaussianFactor* linearize(const gtsam::Pose2Values& config) const;
|
||||
//};
|
||||
//
|
||||
//class gtsam::Pose2Graph{
|
||||
// Pose2Graph();
|
||||
//class gtsam::pose2SLAM::Graph{
|
||||
// pose2SLAM::Graph();
|
||||
// void print(string s) const;
|
||||
// GaussianFactorGraph* linearize_(const gtsam::Pose2Values& config) const;
|
||||
// void push_back(Pose2Factor* factor);
|
||||
|
|
|
@ -0,0 +1,95 @@
|
|||
/*
|
||||
* DerivedValue.h
|
||||
*
|
||||
* Created on: Jan 26, 2012
|
||||
* Author: thduynguyen
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/pool/singleton_pool.hpp>
|
||||
#include <gtsam/base/Value.h>
|
||||
namespace gtsam {
|
||||
|
||||
template<class DERIVED>
|
||||
class DerivedValue : public Value {
|
||||
private:
|
||||
/// Fake Tag struct for singleton pool allocator. In fact, it is never used!
|
||||
struct PoolTag { };
|
||||
|
||||
protected:
|
||||
DerivedValue() {}
|
||||
|
||||
public:
|
||||
|
||||
virtual ~DerivedValue() {}
|
||||
|
||||
/**
|
||||
* Create a duplicate object returned as a pointer to the generic Value interface.
|
||||
* For the sake of performance, this function use singleton pool allocator instead of the normal heap allocator
|
||||
*/
|
||||
virtual Value* clone_() const {
|
||||
void *place = boost::singleton_pool<PoolTag, sizeof(DERIVED)>::malloc();
|
||||
DERIVED* ptr = new(place) DERIVED(static_cast<const DERIVED&>(*this));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Destroy and deallocate this object, only if it was originally allocated using clone_().
|
||||
*/
|
||||
virtual void deallocate_() const {
|
||||
this->~Value();
|
||||
boost::singleton_pool<PoolTag, sizeof(DERIVED)>::free((void*)this);
|
||||
}
|
||||
|
||||
/// equals implementing generic Value interface
|
||||
virtual bool equals_(const Value& p, double tol = 1e-9) const {
|
||||
// Cast the base class Value pointer to a derived class pointer
|
||||
const DERIVED& derivedValue2 = dynamic_cast<const DERIVED&>(p);
|
||||
|
||||
// Return the result of calling equals on the derived class
|
||||
return (static_cast<const DERIVED*>(this))->equals(derivedValue2, tol);
|
||||
}
|
||||
|
||||
/// Generic Value interface version of retract
|
||||
virtual Value* retract_(const Vector& delta) const {
|
||||
// Call retract on the derived class
|
||||
const DERIVED retractResult = (static_cast<const DERIVED*>(this))->retract(delta);
|
||||
|
||||
// Create a Value pointer copy of the result
|
||||
void* resultAsValuePlace = boost::singleton_pool<PoolTag, sizeof(DERIVED)>::malloc();
|
||||
Value* resultAsValue = new(resultAsValuePlace) DERIVED(retractResult);
|
||||
|
||||
// Return the pointer to the Value base class
|
||||
return resultAsValue;
|
||||
}
|
||||
|
||||
/// Generic Value interface version of localCoordinates
|
||||
virtual Vector localCoordinates_(const Value& value2) const {
|
||||
// Cast the base class Value pointer to a derived class pointer
|
||||
const DERIVED& derivedValue2 = dynamic_cast<const DERIVED&>(value2);
|
||||
|
||||
// Return the result of calling localCoordinates on the derived class
|
||||
return (static_cast<const DERIVED*>(this))->localCoordinates(derivedValue2);
|
||||
}
|
||||
|
||||
/// Assignment operator
|
||||
virtual Value& operator=(const Value& rhs) {
|
||||
// Cast the base class Value pointer to a derived class pointer
|
||||
const DERIVED& derivedRhs = dynamic_cast<const DERIVED&>(rhs);
|
||||
|
||||
// Do the assignment and return the result
|
||||
return (static_cast<DERIVED*>(this))->operator=(derivedRhs);
|
||||
}
|
||||
|
||||
protected:
|
||||
/// Assignment operator, protected because only the Value or DERIVED
|
||||
/// assignment operators should be used.
|
||||
DerivedValue<DERIVED>& operator=(const DerivedValue<DERIVED>& rhs) {
|
||||
// Nothing to do, do not call base class assignment operator
|
||||
return *this;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} /* namespace gtsam */
|
|
@ -19,13 +19,14 @@
|
|||
|
||||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* LieVector is a wrapper around vector to allow it to be a Lie type
|
||||
*/
|
||||
struct LieVector : public Vector {
|
||||
struct LieVector : public Vector, public DerivedValue<LieVector> {
|
||||
|
||||
/** default constructor - should be unnecessary */
|
||||
LieVector() {}
|
||||
|
|
|
@ -26,7 +26,7 @@ sources += timing.cpp debug.cpp
|
|||
check_PROGRAMS += tests/testDebug tests/testTestableAssertions
|
||||
|
||||
# Manifolds and Lie Groups
|
||||
headers += Manifold.h Group.h
|
||||
headers += DerivedValue.h Value.h Manifold.h Group.h
|
||||
headers += Lie.h Lie-inl.h lieProxies.h LieScalar.h
|
||||
sources += LieVector.cpp
|
||||
check_PROGRAMS += tests/testLieVector tests/testLieScalar
|
||||
|
|
|
@ -0,0 +1,147 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Value.h
|
||||
* @brief The interface class for any variable that can be optimized or used in a factor.
|
||||
* @author Richard Roberts
|
||||
* @date Jan 14, 2012
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* This is the interface class for any value that may be used as a variable
|
||||
* assignment in a factor graph, and which you must derive to create new
|
||||
* variable types to use with gtsam. Examples of built-in classes
|
||||
* implementing this are mainly in geometry, including Rot3, Pose2, etc.
|
||||
*
|
||||
* This interface specifies pure virtual retract_(), localCoordinates_() and
|
||||
* equals_() functions that work with pointers and references to this interface
|
||||
* class, i.e. the base class. These functions allow containers, such as
|
||||
* Values can operate generically on Value objects, retracting or computing
|
||||
* local coordinates for many Value objects of different types.
|
||||
*
|
||||
* When you implement retract_(), localCoordinates_(), and equals_(), we
|
||||
* suggest first implementing versions of these functions that work directly
|
||||
* with derived objects, then using the provided helper functions to
|
||||
* implement the generic Value versions. This makes your implementation
|
||||
* easier, and also improves performance in situations where the derived type
|
||||
* is in fact known, such as in most implementations of \c evaluateError() in
|
||||
* classes derived from NonlinearFactor.
|
||||
*
|
||||
* Using the above practice, here is an example of implementing a typical
|
||||
* class derived from Value:
|
||||
* \code
|
||||
class Rot3 : public Value {
|
||||
public:
|
||||
// Constructor, there is never a need to call the Value base class constructor.
|
||||
Rot3() { ... }
|
||||
|
||||
// Print for unit tests and debugging (virtual, implements Value::print())
|
||||
virtual void print(const std::string& str = "") const;
|
||||
|
||||
// Equals working directly with Rot3 objects (non-virtual, non-overriding!)
|
||||
bool equals(const Rot3& other, double tol = 1e-9) const;
|
||||
|
||||
// Tangent space dimensionality (virtual, implements Value::dim())
|
||||
virtual size_t dim() const {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// retract working directly with Rot3 objects (non-virtual, non-overriding!)
|
||||
Rot3 retract(const Vector& delta) const {
|
||||
// Math to implement a 3D rotation retraction e.g. exponential map
|
||||
return Rot3(result);
|
||||
}
|
||||
|
||||
// localCoordinates working directly with Rot3 objects (non-virtual, non-overriding!)
|
||||
Vector localCoordinates(const Rot3& r2) const {
|
||||
// Math to implement 3D rotation localCoordinates, e.g. logarithm map
|
||||
return Vector(result);
|
||||
}
|
||||
|
||||
// Equals implementing the generic Value interface (virtual, implements Value::equals_())
|
||||
virtual bool equals_(const Value& other, double tol = 1e-9) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// equals with appropriate casting.
|
||||
return CallDerivedEquals(this, other, tol);
|
||||
}
|
||||
|
||||
// retract implementing the generic Value interface (virtual, implements Value::retract_())
|
||||
virtual std::auto_ptr<Value> retract_(const Vector& delta) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// retract and do the appropriate casting and allocation.
|
||||
return CallDerivedRetract(this, delta);
|
||||
}
|
||||
|
||||
// localCoordinates implementing the generic Value interface (virtual, implements Value::localCoordinates_())
|
||||
virtual Vector localCoordinates_(const Value& value) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// localCoordinates and do the appropriate casting.
|
||||
return CallDerivedLocalCoordinates(this, value);
|
||||
}
|
||||
};
|
||||
\endcode
|
||||
*/
|
||||
class Value {
|
||||
public:
|
||||
|
||||
/** Allocate and construct a clone of this value */
|
||||
virtual Value* clone_() const = 0;
|
||||
|
||||
/** Deallocate a raw pointer of this value */
|
||||
virtual void deallocate_() const = 0;
|
||||
|
||||
/** Compare this Value with another for equality. */
|
||||
virtual bool equals_(const Value& other, double tol = 1e-9) const = 0;
|
||||
|
||||
/** Print this value, for debugging and unit tests */
|
||||
virtual void print(const std::string& str = "") const = 0;
|
||||
|
||||
/** Return the dimensionality of the tangent space of this value. This is
|
||||
* the dimensionality of \c delta passed into retract() and of the vector
|
||||
* returned by localCoordinates().
|
||||
* @return The dimensionality of the tangent space
|
||||
*/
|
||||
virtual size_t dim() const = 0;
|
||||
|
||||
/** Increment the value, by mapping from the vector delta in the tangent
|
||||
* space of the current value back to the manifold to produce a new,
|
||||
* incremented value.
|
||||
* @param delta The delta vector in the tangent space of this value, by
|
||||
* which to increment this value.
|
||||
*/
|
||||
virtual Value* retract_(const Vector& delta) const = 0;
|
||||
|
||||
/** Compute the coordinates in the tangent space of this value that
|
||||
* retract() would map to \c value.
|
||||
* @param value The value whose coordinates should be determined in the
|
||||
* tangent space of the value on which this function is called.
|
||||
* @return The coordinates of \c value in the tangent space of \c this.
|
||||
*/
|
||||
virtual Vector localCoordinates_(const Value& value) const = 0;
|
||||
|
||||
/** Assignment operator */
|
||||
virtual Value& operator=(const Value& rhs) = 0;
|
||||
|
||||
/** Virutal destructor */
|
||||
virtual ~Value() {}
|
||||
|
||||
};
|
||||
|
||||
} /* namespace gtsam */
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -27,7 +28,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Cal3Bundler {
|
||||
class Cal3Bundler : public DerivedValue<Cal3Bundler> {
|
||||
|
||||
private:
|
||||
double f_, k1_, k2_ ;
|
||||
|
@ -94,7 +95,7 @@ public:
|
|||
Vector localCoordinates(const Cal3Bundler& T2) const ;
|
||||
|
||||
///TODO: comment
|
||||
int dim() const { return 3 ; } //TODO: make a final dimension variable (also, usually size_t in other classes e.g. Pose2)
|
||||
virtual size_t dim() const { return 3 ; } //TODO: make a final dimension variable (also, usually size_t in other classes e.g. Pose2)
|
||||
|
||||
///TODO: comment
|
||||
static size_t Dim() { return 3; } //TODO: make a final dimension variable
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -27,7 +28,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Cal3DS2 {
|
||||
class Cal3DS2 : public DerivedValue<Cal3DS2> {
|
||||
|
||||
private:
|
||||
|
||||
|
@ -97,7 +98,7 @@ public:
|
|||
Vector localCoordinates(const Cal3DS2& T2) const ;
|
||||
|
||||
///TODO: comment
|
||||
int dim() const { return 9 ; } //TODO: make a final dimension variable (also, usually size_t in other classes e.g. Pose2)
|
||||
virtual size_t dim() const { return 9 ; } //TODO: make a final dimension variable (also, usually size_t in other classes e.g. Pose2)
|
||||
|
||||
///TODO: comment
|
||||
static size_t Dim() { return 9; } //TODO: make a final dimension variable
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -30,7 +31,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Cal3_S2 {
|
||||
class Cal3_S2 : public DerivedValue<Cal3_S2> {
|
||||
private:
|
||||
double fx_, fy_, s_, u0_, v0_;
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
|
||||
|
@ -35,7 +36,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class CalibratedCamera {
|
||||
class CalibratedCamera : public DerivedValue<CalibratedCamera> {
|
||||
private:
|
||||
Pose3 pose_; // 6DOF pose
|
||||
|
||||
|
@ -61,9 +62,10 @@ namespace gtsam {
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
void print(const std::string& s="") const {
|
||||
pose_.print();
|
||||
}
|
||||
virtual void print(const std::string& s = "") const {
|
||||
pose_.print(s);
|
||||
}
|
||||
|
||||
/// check equality to another camera
|
||||
bool equals (const CalibratedCamera &camera, double tol = 1e-9) const {
|
||||
return pose_.equals(camera.pose(), tol) ;
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
|
||||
#include <cmath>
|
||||
#include <boost/optional.hpp>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
@ -35,7 +36,7 @@ namespace gtsam {
|
|||
* \nosubgrouping
|
||||
*/
|
||||
template <typename Calibration>
|
||||
class PinholeCamera {
|
||||
class PinholeCamera : public DerivedValue<PinholeCamera<Calibration> > {
|
||||
private:
|
||||
Pose3 pose_;
|
||||
Calibration k_;
|
||||
|
|
|
@ -18,6 +18,8 @@
|
|||
#pragma once
|
||||
|
||||
#include <boost/serialization/nvp.hpp>
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
|
||||
|
@ -30,7 +32,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Point2 {
|
||||
class Point2 : public DerivedValue<Point2> {
|
||||
public:
|
||||
/// dimension of the variable - used to autodetect sizes
|
||||
static const size_t dimension = 2;
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include <boost/serialization/nvp.hpp>
|
||||
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -33,7 +34,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Point3 {
|
||||
class Point3 : public DerivedValue<Point3> {
|
||||
public:
|
||||
/// dimension of the variable - used to autodetect sizes
|
||||
static const size_t dimension = 3;
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
|
||||
#include <boost/optional.hpp>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Rot2.h>
|
||||
|
||||
|
@ -32,7 +33,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Pose2 {
|
||||
class Pose2 : public DerivedValue<Pose2> {
|
||||
|
||||
public:
|
||||
static const size_t dimension = 3;
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#define POSE3_DEFAULT_COORDINATES_MODE Pose3::FIRST_ORDER
|
||||
#endif
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
|
||||
|
@ -34,7 +35,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Pose3 {
|
||||
class Pose3 : public DerivedValue<Pose3> {
|
||||
public:
|
||||
static const size_t dimension = 6;
|
||||
|
||||
|
|
|
@ -19,6 +19,8 @@
|
|||
#pragma once
|
||||
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -29,7 +31,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Rot2 {
|
||||
class Rot2 : public DerivedValue<Rot2> {
|
||||
|
||||
public:
|
||||
/** get the dimension by the type */
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/3rdparty/Eigen/Eigen/Geometry>
|
||||
|
||||
|
@ -49,7 +50,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Rot3 {
|
||||
class Rot3 : public DerivedValue<Rot3> {
|
||||
public:
|
||||
static const size_t dimension = 3;
|
||||
|
||||
|
@ -92,6 +93,9 @@ namespace gtsam {
|
|||
*/
|
||||
Rot3(const Quaternion& q);
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~Rot3() {}
|
||||
|
||||
/* Static member function to generate some well known rotations */
|
||||
|
||||
/// Rotation around X axis as in http://en.wikipedia.org/wiki/Rotation_matrix, counterclockwise when looking from unchanging axis.
|
||||
|
|
|
@ -18,6 +18,8 @@
|
|||
#pragma once
|
||||
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Cal3_S2Stereo.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/StereoPoint2.h>
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -27,7 +28,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class StereoPoint2 {
|
||||
class StereoPoint2 : public DerivedValue<StereoPoint2> {
|
||||
public:
|
||||
static const size_t dimension = 3;
|
||||
private:
|
||||
|
|
|
@ -139,19 +139,19 @@ predecessorMap2Graph(const PredecessorMap<KEY>& p_map) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class V,class POSE, class VALUES>
|
||||
template <class V, class POSE, class KEY>
|
||||
class compose_key_visitor : public boost::default_bfs_visitor {
|
||||
|
||||
private:
|
||||
boost::shared_ptr<VALUES> config_;
|
||||
boost::shared_ptr<Values> config_;
|
||||
|
||||
public:
|
||||
|
||||
compose_key_visitor(boost::shared_ptr<VALUES> config_in) {config_ = config_in;}
|
||||
compose_key_visitor(boost::shared_ptr<Values> config_in) {config_ = config_in;}
|
||||
|
||||
template <typename Edge, typename Graph> void tree_edge(Edge edge, const Graph& g) const {
|
||||
typename VALUES::Key key_from = boost::get(boost::vertex_name, g, boost::source(edge, g));
|
||||
typename VALUES::Key key_to = boost::get(boost::vertex_name, g, boost::target(edge, g));
|
||||
KEY key_from = boost::get(boost::vertex_name, g, boost::source(edge, g));
|
||||
KEY key_to = boost::get(boost::vertex_name, g, boost::target(edge, g));
|
||||
POSE relativePose = boost::get(boost::edge_weight, g, edge);
|
||||
config_->insert(key_to, (*config_)[key_from].compose(relativePose));
|
||||
}
|
||||
|
@ -159,23 +159,23 @@ public:
|
|||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class Factor, class POSE, class VALUES>
|
||||
boost::shared_ptr<VALUES> composePoses(const G& graph, const PredecessorMap<typename VALUES::Key>& tree,
|
||||
template<class G, class Factor, class POSE, class KEY>
|
||||
boost::shared_ptr<Values> composePoses(const G& graph, const PredecessorMap<KEY>& tree,
|
||||
const POSE& rootPose) {
|
||||
|
||||
//TODO: change edge_weight_t to edge_pose_t
|
||||
typedef typename boost::adjacency_list<
|
||||
boost::vecS, boost::vecS, boost::directedS,
|
||||
boost::property<boost::vertex_name_t, typename VALUES::Key>,
|
||||
boost::property<boost::vertex_name_t, KEY>,
|
||||
boost::property<boost::edge_weight_t, POSE> > PoseGraph;
|
||||
typedef typename boost::graph_traits<PoseGraph>::vertex_descriptor PoseVertex;
|
||||
typedef typename boost::graph_traits<PoseGraph>::edge_descriptor PoseEdge;
|
||||
|
||||
PoseGraph g;
|
||||
PoseVertex root;
|
||||
map<typename VALUES::Key, PoseVertex> key2vertex;
|
||||
map<KEY, PoseVertex> key2vertex;
|
||||
boost::tie(g, root, key2vertex) =
|
||||
predecessorMap2Graph<PoseGraph, PoseVertex, typename VALUES::Key>(tree);
|
||||
predecessorMap2Graph<PoseGraph, PoseVertex, KEY>(tree);
|
||||
|
||||
// attach the relative poses to the edges
|
||||
PoseEdge edge12, edge21;
|
||||
|
@ -189,8 +189,8 @@ boost::shared_ptr<VALUES> composePoses(const G& graph, const PredecessorMap<type
|
|||
boost::shared_ptr<Factor> factor = boost::dynamic_pointer_cast<Factor>(nl_factor);
|
||||
if (!factor) continue;
|
||||
|
||||
typename VALUES::Key key1 = factor->key1();
|
||||
typename VALUES::Key key2 = factor->key2();
|
||||
KEY key1 = factor->key1();
|
||||
KEY key2 = factor->key2();
|
||||
|
||||
PoseVertex v1 = key2vertex.find(key1)->second;
|
||||
PoseVertex v2 = key2vertex.find(key2)->second;
|
||||
|
@ -207,10 +207,10 @@ boost::shared_ptr<VALUES> composePoses(const G& graph, const PredecessorMap<type
|
|||
}
|
||||
|
||||
// compose poses
|
||||
boost::shared_ptr<VALUES> config(new VALUES);
|
||||
typename VALUES::Key rootKey = boost::get(boost::vertex_name, g, root);
|
||||
boost::shared_ptr<Values> config(new Values);
|
||||
KEY rootKey = boost::get(boost::vertex_name, g, root);
|
||||
config->insert(rootKey, rootPose);
|
||||
compose_key_visitor<PoseVertex, POSE, VALUES> vis(config);
|
||||
compose_key_visitor<PoseVertex, POSE, KEY> vis(config);
|
||||
boost::breadth_first_search(g, root, boost::visitor(vis));
|
||||
|
||||
return config;
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <boost/graph/graph_traits.hpp>
|
||||
#include <boost/graph/adjacency_list.hpp>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -87,9 +88,9 @@ namespace gtsam {
|
|||
/**
|
||||
* Compose the poses by following the chain specified by the spanning tree
|
||||
*/
|
||||
template<class G, class Factor, class POSE, class VALUES>
|
||||
boost::shared_ptr<VALUES>
|
||||
composePoses(const G& graph, const PredecessorMap<typename VALUES::Key>& tree, const POSE& rootPose);
|
||||
template<class G, class Factor, class POSE, class KEY>
|
||||
boost::shared_ptr<Values>
|
||||
composePoses(const G& graph, const PredecessorMap<KEY>& tree, const POSE& rootPose);
|
||||
|
||||
|
||||
/**
|
||||
|
|
|
@ -21,8 +21,8 @@ using namespace std;
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
template<class GRAPH, class LINEAR, class VALUES>
|
||||
void SubgraphSolver<GRAPH,LINEAR,VALUES>::replaceFactors(const typename LINEAR::shared_ptr &graph) {
|
||||
template<class GRAPH, class LINEAR, class KEY>
|
||||
void SubgraphSolver<GRAPH,LINEAR,KEY>::replaceFactors(const typename LINEAR::shared_ptr &graph) {
|
||||
|
||||
GaussianFactorGraph::shared_ptr Ab1 = boost::make_shared<GaussianFactorGraph>();
|
||||
GaussianFactorGraph::shared_ptr Ab2 = boost::make_shared<GaussianFactorGraph>();
|
||||
|
@ -47,8 +47,8 @@ void SubgraphSolver<GRAPH,LINEAR,VALUES>::replaceFactors(const typename LINEAR::
|
|||
Ab1->dynamicCastFactors<FactorGraph<JacobianFactor> >(), Ab2->dynamicCastFactors<FactorGraph<JacobianFactor> >(),Rc1,xbar);
|
||||
}
|
||||
|
||||
template<class GRAPH, class LINEAR, class VALUES>
|
||||
VectorValues::shared_ptr SubgraphSolver<GRAPH,LINEAR,VALUES>::optimize() {
|
||||
template<class GRAPH, class LINEAR, class KEY>
|
||||
VectorValues::shared_ptr SubgraphSolver<GRAPH,LINEAR,KEY>::optimize() const {
|
||||
|
||||
// preconditioned conjugate gradient
|
||||
VectorValues zeros = pc_->zero();
|
||||
|
@ -60,18 +60,18 @@ VectorValues::shared_ptr SubgraphSolver<GRAPH,LINEAR,VALUES>::optimize() {
|
|||
return xbar;
|
||||
}
|
||||
|
||||
template<class GRAPH, class LINEAR, class VALUES>
|
||||
void SubgraphSolver<GRAPH,LINEAR,VALUES>::initialize(const GRAPH& G, const VALUES& theta0) {
|
||||
template<class GRAPH, class LINEAR, class KEY>
|
||||
void SubgraphSolver<GRAPH,LINEAR,KEY>::initialize(const GRAPH& G, const Values& theta0) {
|
||||
// generate spanning tree
|
||||
PredecessorMap<Key> tree_ = gtsam::findMinimumSpanningTree<GRAPH, Key, Constraint>(G);
|
||||
PredecessorMap<KEY> tree_ = gtsam::findMinimumSpanningTree<GRAPH, KEY, Constraint>(G);
|
||||
|
||||
// make the ordering
|
||||
list<Key> keys = predecessorMap2Keys(tree_);
|
||||
list<KEY> keys = predecessorMap2Keys(tree_);
|
||||
ordering_ = boost::make_shared<Ordering>(list<Symbol>(keys.begin(), keys.end()));
|
||||
|
||||
// build factor pairs
|
||||
pairs_.clear();
|
||||
typedef pair<Key,Key> EG ;
|
||||
typedef pair<KEY,KEY> EG ;
|
||||
BOOST_FOREACH( const EG &eg, tree_ ) {
|
||||
Symbol key1 = Symbol(eg.first),
|
||||
key2 = Symbol(eg.second) ;
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/IterativeSolver.h>
|
||||
#include <gtsam/linear/SubgraphPreconditioner.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -31,11 +32,11 @@ bool split(const std::map<Index, Index> &M,
|
|||
* linearize: G * T -> L
|
||||
* solve : L -> VectorValues
|
||||
*/
|
||||
template<class GRAPH, class LINEAR, class VALUES>
|
||||
template<class GRAPH, class LINEAR, class KEY>
|
||||
class SubgraphSolver : public IterativeSolver {
|
||||
|
||||
private:
|
||||
typedef typename VALUES::Key Key;
|
||||
// typedef typename VALUES::Key Key;
|
||||
typedef typename GRAPH::Pose Pose;
|
||||
typedef typename GRAPH::Constraint Constraint;
|
||||
|
||||
|
@ -43,7 +44,7 @@ private:
|
|||
typedef boost::shared_ptr<Ordering> shared_ordering ;
|
||||
typedef boost::shared_ptr<GRAPH> shared_graph ;
|
||||
typedef boost::shared_ptr<LINEAR> shared_linear ;
|
||||
typedef boost::shared_ptr<VALUES> shared_values ;
|
||||
typedef boost::shared_ptr<Values> shared_values ;
|
||||
typedef boost::shared_ptr<SubgraphPreconditioner> shared_preconditioner ;
|
||||
typedef std::map<Index,Index> mapPairIndex ;
|
||||
|
||||
|
@ -61,7 +62,7 @@ private:
|
|||
|
||||
public:
|
||||
|
||||
SubgraphSolver(const GRAPH& G, const VALUES& theta0, const Parameters ¶meters = Parameters(), bool useQR = false):
|
||||
SubgraphSolver(const GRAPH& G, const Values& theta0, const Parameters ¶meters = Parameters(), bool useQR = false):
|
||||
IterativeSolver(parameters), useQR_(useQR) { initialize(G,theta0); }
|
||||
|
||||
SubgraphSolver(const LINEAR& GFG) {
|
||||
|
@ -85,11 +86,11 @@ public:
|
|||
IterativeSolver(parameters), ordering_(ordering), pairs_(pairs), pc_(pc), useQR_(useQR) {}
|
||||
|
||||
void replaceFactors(const typename LINEAR::shared_ptr &graph);
|
||||
VectorValues::shared_ptr optimize() ;
|
||||
VectorValues::shared_ptr optimize() const;
|
||||
shared_ordering ordering() const { return ordering_; }
|
||||
|
||||
protected:
|
||||
void initialize(const GRAPH& G, const VALUES& theta0);
|
||||
void initialize(const GRAPH& G, const Values& theta0);
|
||||
|
||||
private:
|
||||
SubgraphSolver():IterativeSolver(){}
|
||||
|
|
|
@ -175,7 +175,7 @@ namespace gtsam {
|
|||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
/** Construct from a container of variable dimensions (in variable order). */
|
||||
/** Construct from a container of variable dimensions (in variable order), without initializing any values. */
|
||||
template<class CONTAINER>
|
||||
VectorValues(const CONTAINER& dimensions) { append(dimensions); }
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianISAM.h> // To get optimize(BayesTree<GaussianConditional>)
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
//#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
|
@ -27,10 +27,10 @@
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class KEY>
|
||||
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::solve_(
|
||||
template<class KEY>
|
||||
typename ExtendedKalmanFilter<KEY>::T ExtendedKalmanFilter<KEY>::solve_(
|
||||
const GaussianFactorGraph& linearFactorGraph, const Ordering& ordering,
|
||||
const VALUES& linearizationPoints, const KEY& lastKey,
|
||||
const Values& linearizationPoints, const KEY& lastKey,
|
||||
JacobianFactor::shared_ptr& newPrior) const {
|
||||
|
||||
// Extract the Index of the provided last key
|
||||
|
@ -66,8 +66,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class KEY>
|
||||
ExtendedKalmanFilter<VALUES, KEY>::ExtendedKalmanFilter(T x_initial,
|
||||
template<class KEY>
|
||||
ExtendedKalmanFilter<KEY>::ExtendedKalmanFilter(T x_initial,
|
||||
noiseModel::Gaussian::shared_ptr P_initial) {
|
||||
|
||||
// Set the initial linearization point to the provided mean
|
||||
|
@ -82,8 +82,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class KEY>
|
||||
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::predict(
|
||||
template<class KEY>
|
||||
typename ExtendedKalmanFilter<KEY>::T ExtendedKalmanFilter<KEY>::predict(
|
||||
const MotionFactor& motionFactor) {
|
||||
|
||||
// TODO: This implementation largely ignores the actual factor symbols.
|
||||
|
@ -100,7 +100,7 @@ namespace gtsam {
|
|||
ordering.insert(x1, 1);
|
||||
|
||||
// Create a set of linearization points
|
||||
VALUES linearizationPoints;
|
||||
Values linearizationPoints;
|
||||
linearizationPoints.insert(x0, x_);
|
||||
linearizationPoints.insert(x1, x_); // TODO should this really be x_ ?
|
||||
|
||||
|
@ -122,8 +122,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class KEY>
|
||||
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::update(
|
||||
template<class KEY>
|
||||
typename ExtendedKalmanFilter<KEY>::T ExtendedKalmanFilter<KEY>::update(
|
||||
const MeasurementFactor& measurementFactor) {
|
||||
|
||||
// TODO: This implementation largely ignores the actual factor symbols.
|
||||
|
@ -138,7 +138,7 @@ namespace gtsam {
|
|||
ordering.insert(x0, 0);
|
||||
|
||||
// Create a set of linearization points
|
||||
VALUES linearizationPoints;
|
||||
Values linearizationPoints;
|
||||
linearizationPoints.insert(x0, x_);
|
||||
|
||||
// Create a Gaussian Factor Graph
|
||||
|
|
|
@ -40,21 +40,21 @@ namespace gtsam {
|
|||
* \nosubgrouping
|
||||
*/
|
||||
|
||||
template<class VALUES, class KEY>
|
||||
template<class KEY>
|
||||
class ExtendedKalmanFilter {
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<ExtendedKalmanFilter<VALUES, KEY> > shared_ptr;
|
||||
typedef boost::shared_ptr<ExtendedKalmanFilter<KEY> > shared_ptr;
|
||||
typedef typename KEY::Value T;
|
||||
typedef NonlinearFactor2<VALUES, KEY, KEY> MotionFactor;
|
||||
typedef NonlinearFactor1<VALUES, KEY> MeasurementFactor;
|
||||
typedef NonlinearFactor2<KEY, KEY> MotionFactor;
|
||||
typedef NonlinearFactor1<KEY> MeasurementFactor;
|
||||
|
||||
protected:
|
||||
T x_; // linearization point
|
||||
JacobianFactor::shared_ptr priorFactor_; // density
|
||||
|
||||
T solve_(const GaussianFactorGraph& linearFactorGraph,
|
||||
const Ordering& ordering, const VALUES& linearizationPoints,
|
||||
const Ordering& ordering, const Values& linearizationPoints,
|
||||
const KEY& x, JacobianFactor::shared_ptr& newPrior) const;
|
||||
|
||||
public:
|
||||
|
|
|
@ -36,19 +36,19 @@ namespace gtsam {
|
|||
* variables.
|
||||
* @tparam GRAPH The NonlinearFactorGraph structure to store factors. Defaults to standard NonlinearFactorGraph<VALUES>
|
||||
*/
|
||||
template <class VALUES, class GRAPH = NonlinearFactorGraph<VALUES> >
|
||||
class GaussianISAM2 : public ISAM2<GaussianConditional, VALUES, GRAPH> {
|
||||
typedef ISAM2<GaussianConditional, VALUES, GRAPH> Base;
|
||||
template <class GRAPH = NonlinearFactorGraph>
|
||||
class GaussianISAM2 : public ISAM2<GaussianConditional, GRAPH> {
|
||||
typedef ISAM2<GaussianConditional, GRAPH> Base;
|
||||
public:
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
GaussianISAM2(const ISAM2Params& params) : ISAM2<GaussianConditional, VALUES, GRAPH>(params) {}
|
||||
GaussianISAM2(const ISAM2Params& params) : ISAM2<GaussianConditional, GRAPH>(params) {}
|
||||
|
||||
/** Create an empty ISAM2 instance using the default set of parameters (see ISAM2Params) */
|
||||
GaussianISAM2() : ISAM2<GaussianConditional, VALUES, GRAPH>() {}
|
||||
GaussianISAM2() : ISAM2<GaussianConditional, GRAPH>() {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
|
|
|
@ -19,10 +19,10 @@ namespace gtsam {
|
|||
|
||||
using namespace std;
|
||||
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
struct ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
struct ISAM2<CONDITIONAL, GRAPH>::Impl {
|
||||
|
||||
typedef ISAM2<CONDITIONAL, VALUES, GRAPH> ISAM2Type;
|
||||
typedef ISAM2<CONDITIONAL, GRAPH> ISAM2Type;
|
||||
|
||||
struct PartialSolveResult {
|
||||
typename ISAM2Type::sharedClique bayesTree;
|
||||
|
@ -45,7 +45,7 @@ struct ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl {
|
|||
* @param ordering Current ordering to be augmented with new variables
|
||||
* @param nodes Current BayesTree::Nodes index to be augmented with slots for new variables
|
||||
*/
|
||||
static void AddVariables(const VALUES& newTheta, VALUES& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes);
|
||||
static void AddVariables(const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes);
|
||||
|
||||
/**
|
||||
* Extract the set of variable indices from a NonlinearFactorGraph. For each Symbol
|
||||
|
@ -95,7 +95,7 @@ struct ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl {
|
|||
* where we might expmap something twice, or expmap it but then not
|
||||
* recalculate its delta.
|
||||
*/
|
||||
static void ExpmapMasked(VALUES& values, const Permuted<VectorValues>& delta,
|
||||
static void ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
|
||||
const Ordering& ordering, const std::vector<bool>& mask,
|
||||
boost::optional<Permuted<VectorValues>&> invalidateIfDebug = boost::optional<Permuted<VectorValues>&>());
|
||||
|
||||
|
@ -118,25 +118,9 @@ struct ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl {
|
|||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
struct _VariableAdder {
|
||||
Ordering& ordering;
|
||||
Permuted<VectorValues>& vconfig;
|
||||
Index nextVar;
|
||||
_VariableAdder(Ordering& _ordering, Permuted<VectorValues>& _vconfig, Index _nextVar) : ordering(_ordering), vconfig(_vconfig), nextVar(_nextVar){}
|
||||
template<typename I>
|
||||
void operator()(I xIt) {
|
||||
const bool debug = ISDEBUG("ISAM2 AddVariables");
|
||||
vconfig.permutation()[nextVar] = nextVar;
|
||||
ordering.insert(xIt->first, nextVar);
|
||||
if(debug) cout << "Adding variable " << (string)xIt->first << " with order " << nextVar << endl;
|
||||
++ nextVar;
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::AddVariables(
|
||||
const VALUES& newTheta, VALUES& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,GRAPH>::Impl::AddVariables(
|
||||
const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes) {
|
||||
const bool debug = ISDEBUG("ISAM2 AddVariables");
|
||||
|
||||
theta.insert(newTheta);
|
||||
|
@ -151,8 +135,13 @@ void ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::AddVariables(
|
|||
delta.container().vector().segment(originalDim, newDim).operator=(Vector::Zero(newDim));
|
||||
delta.permutation().resize(originalnVars + newTheta.size());
|
||||
{
|
||||
_VariableAdder vadder(ordering, delta, originalnVars);
|
||||
newTheta.apply(vadder);
|
||||
Index nextVar = originalnVars;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
|
||||
delta.permutation()[nextVar] = nextVar;
|
||||
ordering.insert(key_value.first, nextVar);
|
||||
if(debug) cout << "Adding variable " << (string)key_value.first << " with order " << nextVar << endl;
|
||||
++ nextVar;
|
||||
}
|
||||
assert(delta.permutation().size() == delta.container().size());
|
||||
assert(ordering.nVars() == delta.size());
|
||||
assert(ordering.size() == delta.size());
|
||||
|
@ -162,10 +151,10 @@ void ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::AddVariables(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::IndicesFromFactors(const Ordering& ordering, const GRAPH& factors) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::IndicesFromFactors(const Ordering& ordering, const GRAPH& factors) {
|
||||
FastSet<Index> indices;
|
||||
BOOST_FOREACH(const typename NonlinearFactor<VALUES>::shared_ptr& factor, factors) {
|
||||
BOOST_FOREACH(const typename NonlinearFactor::shared_ptr& factor, factors) {
|
||||
BOOST_FOREACH(const Symbol& key, factor->keys()) {
|
||||
indices.insert(ordering[key]);
|
||||
}
|
||||
|
@ -174,8 +163,8 @@ FastSet<Index> ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::IndicesFromFactors(const O
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering, const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering, const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
FastSet<Index> relinKeys;
|
||||
|
||||
if(relinearizeThreshold.type() == typeid(double)) {
|
||||
|
@ -202,8 +191,8 @@ FastSet<Index> ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::CheckRelinearization(const
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask) {
|
||||
static const bool debug = false;
|
||||
// does the separator contain any of the variables?
|
||||
bool found = false;
|
||||
|
@ -223,41 +212,8 @@ void ISAM2<CONDITIONAL,VALUES,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITI
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Internal class used in ExpmapMasked()
|
||||
// This debug version sets delta entries that are applied to "Inf". The
|
||||
// idea is that if a delta is applied, the variable is being relinearized,
|
||||
// so the same delta should not be re-applied because it will be recalc-
|
||||
// ulated. This is a debug check to prevent against a mix-up of indices
|
||||
// or not keeping track of recalculated variables.
|
||||
struct _SelectiveExpmapAndClear {
|
||||
const Permuted<VectorValues>& delta;
|
||||
const Ordering& ordering;
|
||||
const vector<bool>& mask;
|
||||
const boost::optional<Permuted<VectorValues>&> invalidate;
|
||||
_SelectiveExpmapAndClear(const Permuted<VectorValues>& _delta, const Ordering& _ordering, const vector<bool>& _mask, boost::optional<Permuted<VectorValues>&> _invalidate) :
|
||||
delta(_delta), ordering(_ordering), mask(_mask), invalidate(_invalidate) {}
|
||||
template<typename I>
|
||||
void operator()(I it_x) {
|
||||
Index var = ordering[it_x->first];
|
||||
if(ISDEBUG("ISAM2 update verbose")) {
|
||||
if(mask[var])
|
||||
cout << "expmap " << (string)it_x->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
|
||||
else
|
||||
cout << " " << (string)it_x->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
|
||||
}
|
||||
assert(delta[var].size() == (int)it_x->second.dim());
|
||||
assert(delta[var].unaryExpr(&isfinite<double>).all());
|
||||
if(mask[var]) {
|
||||
it_x->second = it_x->second.retract(delta[var]);
|
||||
if(invalidate)
|
||||
(*invalidate)[var].operator=(Vector::Constant(delta[var].rows(), numeric_limits<double>::infinity())); // Strange syntax to work with clang++ (bug in clang?)
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
void ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl::ExpmapMasked(VALUES& values, const Permuted<VectorValues>& delta,
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL, GRAPH>::Impl::ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
|
||||
const Ordering& ordering, const vector<bool>& mask, boost::optional<Permuted<VectorValues>&> invalidateIfDebug) {
|
||||
// If debugging, invalidate if requested, otherwise do not invalidate.
|
||||
// Invalidating means setting expmapped entries to Inf, to trigger assertions
|
||||
|
@ -266,14 +222,35 @@ void ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl::ExpmapMasked(VALUES& values, const
|
|||
invalidateIfDebug = boost::optional<Permuted<VectorValues>&>();
|
||||
#endif
|
||||
|
||||
_SelectiveExpmapAndClear selectiveExpmapper(delta, ordering, mask, invalidateIfDebug);
|
||||
values.apply(selectiveExpmapper);
|
||||
assert(values.size() == ordering.size());
|
||||
Values::iterator key_value;
|
||||
Ordering::const_iterator key_index;
|
||||
for(key_value = values.begin(), key_index = ordering.begin();
|
||||
key_value != values.end() && key_index != ordering.end(); ++key_value, ++key_index) {
|
||||
assert(key_value->first == key_index->first);
|
||||
const Index var = key_index->second;
|
||||
if(ISDEBUG("ISAM2 update verbose")) {
|
||||
if(mask[var])
|
||||
cout << "expmap " << (string)key_value->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
|
||||
else
|
||||
cout << " " << (string)key_value->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
|
||||
}
|
||||
assert(delta[var].size() == (int)key_value->second.dim());
|
||||
assert(delta[var].unaryExpr(&isfinite<double>).all());
|
||||
if(mask[var]) {
|
||||
Value* retracted = key_value->second.retract_(delta[var]);
|
||||
key_value->second = *retracted;
|
||||
retracted->deallocate_();
|
||||
if(invalidateIfDebug)
|
||||
(*invalidateIfDebug)[var].operator=(Vector::Constant(delta[var].rows(), numeric_limits<double>::infinity())); // Strange syntax to work with clang++ (bug in clang?)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
typename ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl::PartialSolveResult
|
||||
ISAM2<CONDITIONAL, VALUES, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
typename ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolveResult
|
||||
ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
|
||||
const FastSet<Index>& keys, const ReorderingMode& reorderingMode) {
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
|
|
@ -39,8 +39,8 @@ static const bool disableReordering = false;
|
|||
static const double batchThreshold = 0.65;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
ISAM2<CONDITIONAL, VALUES, GRAPH>::ISAM2(const ISAM2Params& params):
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2<CONDITIONAL, GRAPH>::ISAM2(const ISAM2Params& params):
|
||||
delta_(Permutation(), deltaUnpermuted_), params_(params) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
|
@ -48,8 +48,8 @@ ISAM2<CONDITIONAL, VALUES, GRAPH>::ISAM2(const ISAM2Params& params):
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
ISAM2<CONDITIONAL, VALUES, GRAPH>::ISAM2():
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2<CONDITIONAL, GRAPH>::ISAM2():
|
||||
delta_(Permutation(), deltaUnpermuted_) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
|
@ -57,14 +57,14 @@ ISAM2<CONDITIONAL, VALUES, GRAPH>::ISAM2():
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
FastList<size_t> ISAM2<CONDITIONAL, VALUES, GRAPH>::getAffectedFactors(const FastList<Index>& keys) const {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastList<size_t> ISAM2<CONDITIONAL, GRAPH>::getAffectedFactors(const FastList<Index>& keys) const {
|
||||
static const bool debug = false;
|
||||
if(debug) cout << "Getting affected factors for ";
|
||||
if(debug) { BOOST_FOREACH(const Index key, keys) { cout << key << " "; } }
|
||||
if(debug) cout << endl;
|
||||
|
||||
FactorGraph<NonlinearFactor<VALUES> > allAffected;
|
||||
FactorGraph<NonlinearFactor > allAffected;
|
||||
FastList<size_t> indices;
|
||||
BOOST_FOREACH(const Index key, keys) {
|
||||
// const list<size_t> l = nonlinearFactors_.factors(key);
|
||||
|
@ -86,9 +86,9 @@ FastList<size_t> ISAM2<CONDITIONAL, VALUES, GRAPH>::getAffectedFactors(const Fas
|
|||
/* ************************************************************************* */
|
||||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FactorGraph<GaussianFactor>::shared_ptr
|
||||
ISAM2<CONDITIONAL, VALUES, GRAPH>::relinearizeAffectedFactors(const FastList<Index>& affectedKeys) const {
|
||||
ISAM2<CONDITIONAL, GRAPH>::relinearizeAffectedFactors(const FastList<Index>& affectedKeys) const {
|
||||
|
||||
tic(1,"getAffectedFactors");
|
||||
FastList<size_t> candidates = getAffectedFactors(affectedKeys);
|
||||
|
@ -125,9 +125,9 @@ ISAM2<CONDITIONAL, VALUES, GRAPH>::relinearizeAffectedFactors(const FastList<Ind
|
|||
|
||||
/* ************************************************************************* */
|
||||
// find intermediate (linearized) factors from cache that are passed into the affected area
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
FactorGraph<typename ISAM2<CONDITIONAL, VALUES, GRAPH>::CacheFactor>
|
||||
ISAM2<CONDITIONAL, VALUES, GRAPH>::getCachedBoundaryFactors(Cliques& orphans) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FactorGraph<typename ISAM2<CONDITIONAL, GRAPH>::CacheFactor>
|
||||
ISAM2<CONDITIONAL, GRAPH>::getCachedBoundaryFactors(Cliques& orphans) {
|
||||
|
||||
static const bool debug = false;
|
||||
|
||||
|
@ -151,8 +151,8 @@ ISAM2<CONDITIONAL, VALUES, GRAPH>::getCachedBoundaryFactors(Cliques& orphans) {
|
|||
return cachedBoundary;
|
||||
}
|
||||
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
boost::shared_ptr<FastSet<Index> > ISAM2<CONDITIONAL, VALUES, GRAPH>::recalculate(
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
boost::shared_ptr<FastSet<Index> > ISAM2<CONDITIONAL, GRAPH>::recalculate(
|
||||
const FastSet<Index>& markedKeys, const FastVector<Index>& newKeys, const FactorGraph<GaussianFactor>::shared_ptr newFactors,
|
||||
const boost::optional<FastSet<Index> >& constrainKeys, ISAM2Result& result) {
|
||||
|
||||
|
@ -395,8 +395,8 @@ boost::shared_ptr<FastSet<Index> > ISAM2<CONDITIONAL, VALUES, GRAPH>::recalculat
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
ISAM2Result ISAM2<CONDITIONAL, VALUES, GRAPH>::update(
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2Result ISAM2<CONDITIONAL, GRAPH>::update(
|
||||
const GRAPH& newFactors, const Values& newTheta, const FastVector<size_t>& removeFactorIndices,
|
||||
const boost::optional<FastSet<Symbol> >& constrainedKeys, bool force_relinearize) {
|
||||
|
||||
|
@ -579,36 +579,36 @@ ISAM2Result ISAM2<CONDITIONAL, VALUES, GRAPH>::update(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
VALUES ISAM2<CONDITIONAL, VALUES, GRAPH>::calculateEstimate() const {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
Values ISAM2<CONDITIONAL, GRAPH>::calculateEstimate() const {
|
||||
// We use ExpmapMasked here instead of regular expmap because the former
|
||||
// handles Permuted<VectorValues>
|
||||
VALUES ret(theta_);
|
||||
Values ret(theta_);
|
||||
vector<bool> mask(ordering_.nVars(), true);
|
||||
Impl::ExpmapMasked(ret, delta_, ordering_, mask);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
template<class KEY>
|
||||
typename KEY::Value ISAM2<CONDITIONAL, VALUES, GRAPH>::calculateEstimate(const KEY& key) const {
|
||||
typename KEY::Value ISAM2<CONDITIONAL, GRAPH>::calculateEstimate(const KEY& key) const {
|
||||
const Index index = getOrdering()[key];
|
||||
const SubVector delta = getDelta()[index];
|
||||
return getLinearizationPoint()[key].retract(delta);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
VALUES ISAM2<CONDITIONAL, VALUES, GRAPH>::calculateBestEstimate() const {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
Values ISAM2<CONDITIONAL, GRAPH>::calculateBestEstimate() const {
|
||||
VectorValues delta(theta_.dims(ordering_));
|
||||
optimize2(this->root(), delta);
|
||||
return theta_.retract(delta, ordering_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
VectorValues optimize(const ISAM2<CONDITIONAL,VALUES,GRAPH>& isam) {
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
VectorValues optimize(const ISAM2<CONDITIONAL, GRAPH>& isam) {
|
||||
VectorValues delta = *allocateVectorValues(isam);
|
||||
optimize2(isam.root(), delta);
|
||||
return delta;
|
||||
|
|
|
@ -266,13 +266,13 @@ private:
|
|||
* estimate of all variables.
|
||||
*
|
||||
*/
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH = NonlinearFactorGraph<VALUES> >
|
||||
template<class CONDITIONAL, class GRAPH = NonlinearFactorGraph>
|
||||
class ISAM2: public BayesTree<CONDITIONAL, ISAM2Clique<CONDITIONAL> > {
|
||||
|
||||
protected:
|
||||
|
||||
/** The current linearization point */
|
||||
VALUES theta_;
|
||||
Values theta_;
|
||||
|
||||
/** VariableIndex lets us look up factors by involved variable and keeps track of dimensions */
|
||||
VariableIndex variableIndex_;
|
||||
|
@ -314,8 +314,8 @@ private:
|
|||
public:
|
||||
|
||||
typedef BayesTree<CONDITIONAL,ISAM2Clique<CONDITIONAL> > Base; ///< The BayesTree base class
|
||||
typedef ISAM2<CONDITIONAL, VALUES> This; ///< This class
|
||||
typedef VALUES Values;
|
||||
typedef ISAM2<CONDITIONAL> This; ///< This class
|
||||
typedef Values Values;
|
||||
typedef GRAPH Graph;
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
|
@ -368,19 +368,19 @@ public:
|
|||
* (Params::relinearizeSkip).
|
||||
* @return An ISAM2Result struct containing information about the update
|
||||
*/
|
||||
ISAM2Result update(const GRAPH& newFactors = GRAPH(), const VALUES& newTheta = VALUES(),
|
||||
ISAM2Result update(const GRAPH& newFactors = GRAPH(), const Values& newTheta = Values(),
|
||||
const FastVector<size_t>& removeFactorIndices = FastVector<size_t>(),
|
||||
const boost::optional<FastSet<Symbol> >& constrainedKeys = boost::none,
|
||||
bool force_relinearize = false);
|
||||
|
||||
/** Access the current linearization point */
|
||||
const VALUES& getLinearizationPoint() const {return theta_;}
|
||||
const Values& getLinearizationPoint() const {return theta_;}
|
||||
|
||||
/** Compute an estimate from the incomplete linear delta computed during the last update.
|
||||
* This delta is incomplete because it was not updated below wildfire_threshold. If only
|
||||
* a single variable is needed, it is faster to call calculateEstimate(const KEY&).
|
||||
*/
|
||||
VALUES calculateEstimate() const;
|
||||
Values calculateEstimate() const;
|
||||
|
||||
/** Compute an estimate for a single variable using its incomplete linear delta computed
|
||||
* during the last update. This is faster than calling the no-argument version of
|
||||
|
@ -399,7 +399,7 @@ public:
|
|||
|
||||
/** Compute an estimate using a complete delta computed by a full back-substitution.
|
||||
*/
|
||||
VALUES calculateBestEstimate() const;
|
||||
Values calculateBestEstimate() const;
|
||||
|
||||
/** Access the current delta, computed during the last call to update */
|
||||
const Permuted<VectorValues>& getDelta() const { return delta_; }
|
||||
|
@ -435,8 +435,8 @@ private:
|
|||
}; // ISAM2
|
||||
|
||||
/** Get the linear delta for the ISAM2 object, unpermuted the delta returned by ISAM2::getDelta() */
|
||||
template<class CONDITIONAL, class VALUES, class GRAPH>
|
||||
VectorValues optimize(const ISAM2<CONDITIONAL,VALUES,GRAPH>& isam);
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
VectorValues optimize(const ISAM2<CONDITIONAL, GRAPH>& isam);
|
||||
|
||||
} /// namespace gtsam
|
||||
|
||||
|
|
|
@ -31,6 +31,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
// Forward declarations
|
||||
class Symbol;
|
||||
|
||||
/**
|
||||
* TypedSymbol key class is templated on
|
||||
* 1) the type T it is supposed to retrieve, for extra type checking
|
||||
|
@ -76,6 +79,7 @@ public:
|
|||
std::string latex() const {
|
||||
return (boost::format("%c_{%d}") % C % j_).str();
|
||||
}
|
||||
Symbol symbol() const;
|
||||
|
||||
// logic:
|
||||
|
||||
|
@ -298,6 +302,9 @@ public:
|
|||
std::string label_s = (boost::format("%1%") % label_).str();
|
||||
return (boost::format("%c%s_{%d}") % C % label_s % this->j_).str();
|
||||
}
|
||||
Symbol symbol() const {
|
||||
return Symbol(*this);
|
||||
}
|
||||
|
||||
// Needed for conversion to LabeledSymbol
|
||||
size_t convertLabel() const {
|
||||
|
@ -354,5 +361,11 @@ private:
|
|||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class T, char C>
|
||||
Symbol TypedSymbol<T,C>::symbol() const {
|
||||
return Symbol(*this);
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
|
|
|
@ -16,15 +16,16 @@ check_PROGRAMS =
|
|||
#----------------------------------------------------------------------------------------------------
|
||||
|
||||
# Lie Groups
|
||||
headers += Values.h Values-inl.h TupleValues.h TupleValues-inl.h
|
||||
headers += Values-inl.h
|
||||
sources += Values.cpp
|
||||
check_PROGRAMS += tests/testValues tests/testKey tests/testOrdering
|
||||
|
||||
# Nonlinear nonlinear
|
||||
headers += Key.h
|
||||
headers += NonlinearFactorGraph.h NonlinearFactorGraph-inl.h
|
||||
headers += NonlinearFactorGraph.h
|
||||
headers += NonlinearOptimizer-inl.h NonlinearOptimization.h NonlinearOptimization-inl.h
|
||||
headers += NonlinearFactor.h
|
||||
sources += NonlinearOptimizer.cpp Ordering.cpp DoglegOptimizerImpl.cpp NonlinearOptimizationParameters.cpp
|
||||
sources += NonlinearFactorGraph.cpp NonlinearOptimizer.cpp Ordering.cpp DoglegOptimizerImpl.cpp NonlinearOptimizationParameters.cpp
|
||||
headers += DoglegOptimizer.h DoglegOptimizer-inl.h
|
||||
|
||||
# Nonlinear iSAM(2)
|
||||
|
@ -62,7 +63,7 @@ AM_CXXFLAGS =
|
|||
#----------------------------------------------------------------------------------------------------
|
||||
TESTS = $(check_PROGRAMS)
|
||||
AM_LDFLAGS += $(boost_serialization)
|
||||
LDADD = libnonlinear.la ../linear/liblinear.la ../inference/libinference.la ../base/libbase.la ../3rdparty/libccolamd.la
|
||||
LDADD = libnonlinear.la ../linear/liblinear.la ../inference/libinference.la ../geometry/libgeometry.la ../base/libbase.la ../3rdparty/libccolamd.la
|
||||
LDADD += ../../CppUnitLite/libCppUnitLite.a
|
||||
AM_DEFAULT_SOURCE_EXT = .cpp
|
||||
|
||||
|
|
|
@ -47,8 +47,8 @@ namespace gtsam {
|
|||
*
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class NonlinearEquality: public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
class NonlinearEquality: public NonlinearFactor1<KEY> {
|
||||
|
||||
public:
|
||||
typedef typename KEY::Value T;
|
||||
|
@ -71,7 +71,7 @@ namespace gtsam {
|
|||
*/
|
||||
bool (*compare_)(const T& a, const T& b);
|
||||
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base;
|
||||
typedef NonlinearFactor1<KEY> Base;
|
||||
|
||||
/** default constructor - only for serialization */
|
||||
NonlinearEquality() {}
|
||||
|
@ -110,7 +110,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** Check if two factors are equal */
|
||||
bool equals(const NonlinearEquality<VALUES,KEY>& f, double tol = 1e-9) const {
|
||||
bool equals(const NonlinearEquality<KEY>& f, double tol = 1e-9) const {
|
||||
if (!Base::equals(f)) return false;
|
||||
return feasible_.equals(f.feasible_, tol) &&
|
||||
fabs(error_gain_ - f.error_gain_) < tol;
|
||||
|
@ -121,7 +121,7 @@ namespace gtsam {
|
|||
/// @{
|
||||
|
||||
/** actual error function calculation */
|
||||
virtual double error(const VALUES& c) const {
|
||||
virtual double error(const Values& c) const {
|
||||
const T& xj = c[this->key_];
|
||||
Vector e = this->unwhitenedError(c);
|
||||
if (allow_error_ || !compare_(xj, feasible_)) {
|
||||
|
@ -148,7 +148,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
// Linearize is over-written, because base linearization tries to whiten
|
||||
virtual GaussianFactor::shared_ptr linearize(const VALUES& x, const Ordering& ordering) const {
|
||||
virtual GaussianFactor::shared_ptr linearize(const Values& x, const Ordering& ordering) const {
|
||||
const T& xj = x[this->key_];
|
||||
Matrix A;
|
||||
Vector b = evaluateError(xj, A);
|
||||
|
@ -177,14 +177,14 @@ namespace gtsam {
|
|||
/**
|
||||
* Simple unary equality constraint - fixes a value for a variable
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class NonlinearEquality1 : public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
class NonlinearEquality1 : public NonlinearFactor1<KEY> {
|
||||
|
||||
public:
|
||||
typedef typename KEY::Value X;
|
||||
|
||||
protected:
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base;
|
||||
typedef NonlinearFactor1<KEY> Base;
|
||||
|
||||
/** default constructor to allow for serialization */
|
||||
NonlinearEquality1() {}
|
||||
|
@ -196,7 +196,7 @@ namespace gtsam {
|
|||
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<NonlinearEquality1<VALUES, KEY> > shared_ptr;
|
||||
typedef boost::shared_ptr<NonlinearEquality1<KEY> > shared_ptr;
|
||||
|
||||
///TODO: comment
|
||||
NonlinearEquality1(const X& value, const KEY& key1, double mu = 1000.0)
|
||||
|
@ -236,13 +236,13 @@ namespace gtsam {
|
|||
* Simple binary equality constraint - this constraint forces two factors to
|
||||
* be the same.
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class NonlinearEquality2 : public NonlinearFactor2<VALUES, KEY, KEY> {
|
||||
template<class KEY>
|
||||
class NonlinearEquality2 : public NonlinearFactor2<KEY, KEY> {
|
||||
public:
|
||||
typedef typename KEY::Value X;
|
||||
|
||||
protected:
|
||||
typedef NonlinearFactor2<VALUES, KEY, KEY> Base;
|
||||
typedef NonlinearFactor2<KEY, KEY> Base;
|
||||
|
||||
GTSAM_CONCEPT_MANIFOLD_TYPE(X);
|
||||
|
||||
|
@ -251,7 +251,7 @@ namespace gtsam {
|
|||
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<NonlinearEquality2<VALUES, KEY> > shared_ptr;
|
||||
typedef boost::shared_ptr<NonlinearEquality2<KEY> > shared_ptr;
|
||||
|
||||
///TODO: comment
|
||||
NonlinearEquality2(const KEY& key1, const KEY& key2, double mu = 1000.0)
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
#include <gtsam/linear/SharedNoiseModel.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -57,18 +58,17 @@ inline void __fill_from_tuple<boost::tuples::null_type>(std::vector<Symbol>& vec
|
|||
* which are objects in non-linear manifolds (Lie groups).
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<class VALUES>
|
||||
class NonlinearFactor: public Factor<Symbol> {
|
||||
|
||||
protected:
|
||||
|
||||
// Some handy typedefs
|
||||
typedef Factor<Symbol> Base;
|
||||
typedef NonlinearFactor<VALUES> This;
|
||||
typedef NonlinearFactor This;
|
||||
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<NonlinearFactor<VALUES> > shared_ptr;
|
||||
typedef boost::shared_ptr<NonlinearFactor > shared_ptr;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
@ -120,7 +120,7 @@ public:
|
|||
* This is typically equal to log-likelihood, e.g. 0.5(h(x)-z)^2/sigma^2 in case of Gaussian.
|
||||
* You can override this for systems with unusual noise models.
|
||||
*/
|
||||
virtual double error(const VALUES& c) const = 0;
|
||||
virtual double error(const Values& c) const = 0;
|
||||
|
||||
/** get the dimension of the factor (number of rows on linearization) */
|
||||
virtual size_t dim() const = 0;
|
||||
|
@ -135,11 +135,11 @@ public:
|
|||
* when the constraint is *NOT* fulfilled.
|
||||
* @return true if the constraint is active
|
||||
*/
|
||||
virtual bool active(const VALUES& c) const { return true; }
|
||||
virtual bool active(const Values& c) const { return true; }
|
||||
|
||||
/** linearize to a GaussianFactor */
|
||||
virtual boost::shared_ptr<GaussianFactor>
|
||||
linearize(const VALUES& c, const Ordering& ordering) const = 0;
|
||||
linearize(const Values& c, const Ordering& ordering) const = 0;
|
||||
|
||||
/**
|
||||
* Create a symbolic factor using the given ordering to determine the
|
||||
|
@ -165,20 +165,19 @@ public:
|
|||
|
||||
* The noise model is typically Gaussian, but robust and constrained error models are also supported.
|
||||
*/
|
||||
template<class VALUES>
|
||||
class NoiseModelFactor: public NonlinearFactor<VALUES> {
|
||||
class NoiseModelFactor: public NonlinearFactor {
|
||||
|
||||
protected:
|
||||
|
||||
// handy typedefs
|
||||
typedef NonlinearFactor<VALUES> Base;
|
||||
typedef NoiseModelFactor<VALUES> This;
|
||||
typedef NonlinearFactor Base;
|
||||
typedef NoiseModelFactor This;
|
||||
|
||||
SharedNoiseModel noiseModel_; /** Noise model */
|
||||
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<NoiseModelFactor<VALUES> > shared_ptr;
|
||||
typedef boost::shared_ptr<NoiseModelFactor > shared_ptr;
|
||||
|
||||
/** Default constructor for I/O only */
|
||||
NoiseModelFactor() {
|
||||
|
@ -225,7 +224,7 @@ public:
|
|||
}
|
||||
|
||||
/** Check if two factors are equal */
|
||||
virtual bool equals(const NoiseModelFactor<VALUES>& f, double tol = 1e-9) const {
|
||||
virtual bool equals(const NoiseModelFactor& f, double tol = 1e-9) const {
|
||||
return noiseModel_->equals(*f.noiseModel_, tol) && Base::equals(f, tol);
|
||||
}
|
||||
|
||||
|
@ -245,13 +244,13 @@ public:
|
|||
* If any of the optional Matrix reference arguments are specified, it should compute
|
||||
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3...).
|
||||
*/
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const = 0;
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const = 0;
|
||||
|
||||
/**
|
||||
* Vector of errors, whitened
|
||||
* This is the raw error, i.e., i.e. \f$ (h(x)-z)/\sigma \f$ in case of a Gaussian
|
||||
*/
|
||||
Vector whitenedError(const VALUES& c) const {
|
||||
Vector whitenedError(const Values& c) const {
|
||||
return noiseModel_->whiten(unwhitenedError(c));
|
||||
}
|
||||
|
||||
|
@ -261,7 +260,7 @@ public:
|
|||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
*/
|
||||
virtual double error(const VALUES& c) const {
|
||||
virtual double error(const Values& c) const {
|
||||
if (this->active(c))
|
||||
return 0.5 * noiseModel_->distance(unwhitenedError(c));
|
||||
else
|
||||
|
@ -273,7 +272,7 @@ public:
|
|||
* \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
|
||||
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearize(const VALUES& x, const Ordering& ordering) const {
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& x, const Ordering& ordering) const {
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(x))
|
||||
return boost::shared_ptr<JacobianFactor>();
|
||||
|
@ -321,8 +320,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 1
|
||||
* variable. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY>
|
||||
class NonlinearFactor1: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY>
|
||||
class NonlinearFactor1: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -334,8 +333,8 @@ protected:
|
|||
// The value of the key. Not const to allow serialization
|
||||
KEY key_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor1<VALUES, KEY> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor1<KEY> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -357,7 +356,7 @@ public:
|
|||
|
||||
/** Calls the 1-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
const X& x1 = x[key_];
|
||||
if(H) {
|
||||
|
@ -400,8 +399,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 2
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY1, class KEY2>
|
||||
class NonlinearFactor2: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY1, class KEY2>
|
||||
class NonlinearFactor2: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -415,8 +414,8 @@ protected:
|
|||
KEY1 key1_;
|
||||
KEY2 key2_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor2<VALUES, KEY1, KEY2> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor2<KEY1, KEY2> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -441,7 +440,7 @@ public:
|
|||
|
||||
/** Calls the 2-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
const X1& x1 = x[key1_];
|
||||
const X2& x2 = x[key2_];
|
||||
|
@ -488,8 +487,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 3
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY1, class KEY2, class KEY3>
|
||||
class NonlinearFactor3: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY1, class KEY2, class KEY3>
|
||||
class NonlinearFactor3: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -505,8 +504,8 @@ protected:
|
|||
KEY2 key2_;
|
||||
KEY3 key3_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor3<VALUES, KEY1, KEY2, KEY3> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor3<KEY1, KEY2, KEY3> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -533,7 +532,7 @@ public:
|
|||
|
||||
/** Calls the 3-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
if(H)
|
||||
return evaluateError(x[key1_], x[key2_], x[key3_], (*H)[0], (*H)[1], (*H)[2]);
|
||||
|
@ -582,8 +581,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 4
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4>
|
||||
class NonlinearFactor4: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY1, class KEY2, class KEY3, class KEY4>
|
||||
class NonlinearFactor4: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -601,8 +600,8 @@ protected:
|
|||
KEY3 key3_;
|
||||
KEY4 key4_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor4<VALUES, KEY1, KEY2, KEY3, KEY4> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor4<KEY1, KEY2, KEY3, KEY4> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -631,7 +630,7 @@ public:
|
|||
|
||||
/** Calls the 4-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
if(H)
|
||||
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], (*H)[0], (*H)[1], (*H)[2], (*H)[3]);
|
||||
|
@ -682,8 +681,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 5
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4, class KEY5>
|
||||
class NonlinearFactor5: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY1, class KEY2, class KEY3, class KEY4, class KEY5>
|
||||
class NonlinearFactor5: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -703,8 +702,8 @@ protected:
|
|||
KEY4 key4_;
|
||||
KEY5 key5_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor5<VALUES, KEY1, KEY2, KEY3, KEY4, KEY5> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor5<KEY1, KEY2, KEY3, KEY4, KEY5> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -735,7 +734,7 @@ public:
|
|||
|
||||
/** Calls the 5-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
if(H)
|
||||
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_], (*H)[0], (*H)[1], (*H)[2], (*H)[3], (*H)[4]);
|
||||
|
@ -789,8 +788,8 @@ private:
|
|||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 6
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4, class KEY5, class KEY6>
|
||||
class NonlinearFactor6: public NoiseModelFactor<VALUES> {
|
||||
template<class KEY1, class KEY2, class KEY3, class KEY4, class KEY5, class KEY6>
|
||||
class NonlinearFactor6: public NoiseModelFactor {
|
||||
|
||||
public:
|
||||
|
||||
|
@ -812,8 +811,8 @@ protected:
|
|||
KEY5 key5_;
|
||||
KEY6 key6_;
|
||||
|
||||
typedef NoiseModelFactor<VALUES> Base;
|
||||
typedef NonlinearFactor6<VALUES, KEY1, KEY2, KEY3, KEY4, KEY5, KEY6> This;
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef NonlinearFactor6<KEY1, KEY2, KEY3, KEY4, KEY5, KEY6> This;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -846,7 +845,7 @@ public:
|
|||
|
||||
/** Calls the 6-key specific version of evaluateError, which is pure virtual
|
||||
* so must be implemented in the derived class. */
|
||||
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
virtual Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
if(this->active(x)) {
|
||||
if(H)
|
||||
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_], x[key6_], (*H)[0], (*H)[1], (*H)[2], (*H)[3], (*H)[4], (*H)[5]);
|
||||
|
|
|
@ -10,39 +10,35 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file NonlinearFactorGraph-inl.h
|
||||
* @file NonlinearFactorGraph.cpp
|
||||
* @brief Factor Graph Consisting of non-linear factors
|
||||
* @author Frank Dellaert
|
||||
* @author Carlos Nieto
|
||||
* @author Christian Potthast
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/inference.h>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <cmath>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
double NonlinearFactorGraph<VALUES>::probPrime(const VALUES& c) const {
|
||||
double NonlinearFactorGraph::probPrime(const Values& c) const {
|
||||
return exp(-0.5 * error(c));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
void NonlinearFactorGraph<VALUES>::print(const std::string& str) const {
|
||||
void NonlinearFactorGraph::print(const std::string& str) const {
|
||||
Base::print(str);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
double NonlinearFactorGraph<VALUES>::error(const VALUES& c) const {
|
||||
double NonlinearFactorGraph::error(const Values& c) const {
|
||||
double total_error = 0.;
|
||||
// iterate over all the factors_ to accumulate the log probabilities
|
||||
BOOST_FOREACH(const sharedFactor& factor, this->factors_) {
|
||||
|
@ -53,8 +49,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
std::set<Symbol> NonlinearFactorGraph<VALUES>::keys() const {
|
||||
std::set<Symbol> NonlinearFactorGraph::keys() const {
|
||||
std::set<Symbol> keys;
|
||||
BOOST_FOREACH(const sharedFactor& factor, this->factors_) {
|
||||
if(factor)
|
||||
|
@ -64,9 +59,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
Ordering::shared_ptr NonlinearFactorGraph<VALUES>::orderingCOLAMD(
|
||||
const VALUES& config) const {
|
||||
Ordering::shared_ptr NonlinearFactorGraph::orderingCOLAMD(
|
||||
const Values& config) const {
|
||||
|
||||
// Create symbolic graph and initial (iterator) ordering
|
||||
SymbolicFactorGraph::shared_ptr symbolic;
|
||||
|
@ -91,8 +85,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
SymbolicFactorGraph::shared_ptr NonlinearFactorGraph<VALUES>::symbolic(const Ordering& ordering) const {
|
||||
SymbolicFactorGraph::shared_ptr NonlinearFactorGraph::symbolic(const Ordering& ordering) const {
|
||||
// Generate the symbolic factor graph
|
||||
SymbolicFactorGraph::shared_ptr symbolicfg(new SymbolicFactorGraph);
|
||||
symbolicfg->reserve(this->size());
|
||||
|
@ -108,21 +101,19 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
pair<SymbolicFactorGraph::shared_ptr, Ordering::shared_ptr> NonlinearFactorGraph<
|
||||
VALUES>::symbolic(const VALUES& config) const {
|
||||
pair<SymbolicFactorGraph::shared_ptr, Ordering::shared_ptr> NonlinearFactorGraph::symbolic(
|
||||
const Values& config) const {
|
||||
// Generate an initial key ordering in iterator order
|
||||
Ordering::shared_ptr ordering(config.orderingArbitrary());
|
||||
return make_pair(symbolic(*ordering), ordering);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES>
|
||||
typename GaussianFactorGraph::shared_ptr NonlinearFactorGraph<VALUES>::linearize(
|
||||
const VALUES& config, const Ordering& ordering) const {
|
||||
GaussianFactorGraph::shared_ptr NonlinearFactorGraph::linearize(
|
||||
const Values& config, const Ordering& ordering) const {
|
||||
|
||||
// create an empty linear FG
|
||||
typename GaussianFactorGraph::shared_ptr linearFG(new GaussianFactorGraph);
|
||||
GaussianFactorGraph::shared_ptr linearFG(new GaussianFactorGraph);
|
||||
linearFG->reserve(this->size());
|
||||
|
||||
// linearize all factors
|
|
@ -28,42 +28,37 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* A non-linear factor graph is templated on a values structure, but the factor type
|
||||
* is fixed as a NonlinearFactor. The values structures are typically (in SAM) more general
|
||||
* A non-linear factor graph is a graph of non-Gaussian, i.e. non-linear factors,
|
||||
* which derive from NonlinearFactor. The values structures are typically (in SAM) more general
|
||||
* than just vectors, e.g., Rot3 or Pose3, which are objects in non-linear manifolds.
|
||||
* Linearizing the non-linear factor graph creates a linear factor graph on the
|
||||
* tangent vector space at the linearization point. Because the tangent space is a true
|
||||
* vector space, the config type will be an VectorValues in that linearized factor graph.
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<class VALUES>
|
||||
class NonlinearFactorGraph: public FactorGraph<NonlinearFactor<VALUES> > {
|
||||
class NonlinearFactorGraph: public FactorGraph<NonlinearFactor> {
|
||||
|
||||
public:
|
||||
|
||||
typedef VALUES Values;
|
||||
typedef FactorGraph<NonlinearFactor<VALUES> > Base;
|
||||
typedef boost::shared_ptr<NonlinearFactorGraph<VALUES> > shared_ptr;
|
||||
typedef boost::shared_ptr<NonlinearFactor<VALUES> > sharedFactor;
|
||||
|
||||
/// @name Testable
|
||||
/// @{
|
||||
typedef FactorGraph<NonlinearFactor> Base;
|
||||
typedef boost::shared_ptr<NonlinearFactorGraph> shared_ptr;
|
||||
typedef boost::shared_ptr<NonlinearFactor> sharedFactor;
|
||||
|
||||
/** print just calls base class */
|
||||
void print(const std::string& str = "NonlinearFactorGraph: ") const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/** return keys in some random order */
|
||||
std::set<Symbol> keys() const;
|
||||
|
||||
/** unnormalized error */
|
||||
double error(const VALUES& c) const;
|
||||
double error(const Values& c) const;
|
||||
|
||||
/** Unnormalized probability. O(n) */
|
||||
double probPrime(const VALUES& c) const;
|
||||
double probPrime(const Values& c) const;
|
||||
|
||||
template<class F>
|
||||
void add(const F& factor) {
|
||||
this->push_back(boost::shared_ptr<F>(new F(factor)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a symbolic factor graph using an existing ordering
|
||||
|
@ -77,31 +72,20 @@ namespace gtsam {
|
|||
* ordering is found.
|
||||
*/
|
||||
std::pair<SymbolicFactorGraph::shared_ptr, Ordering::shared_ptr>
|
||||
symbolic(const VALUES& config) const;
|
||||
symbolic(const Values& config) const;
|
||||
|
||||
/**
|
||||
* Compute a fill-reducing ordering using COLAMD. This returns the
|
||||
* ordering and a VariableIndex, which can later be re-used to save
|
||||
* computation.
|
||||
*/
|
||||
Ordering::shared_ptr orderingCOLAMD(const VALUES& config) const;
|
||||
Ordering::shared_ptr orderingCOLAMD(const Values& config) const;
|
||||
|
||||
/**
|
||||
* linearize a nonlinear factor graph
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactorGraph >
|
||||
linearize(const VALUES& config, const Ordering& ordering) const;
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
template<class F>
|
||||
void add(const F& factor) {
|
||||
this->push_back(boost::shared_ptr<F>(new F(factor)));
|
||||
}
|
||||
|
||||
/// @}
|
||||
linearize(const Values& config, const Ordering& ordering) const;
|
||||
|
||||
private:
|
||||
|
||||
|
@ -116,4 +100,3 @@ namespace gtsam {
|
|||
|
||||
} // namespace
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
|
||||
|
|
|
@ -29,8 +29,8 @@ using namespace std;
|
|||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class GRAPH>
|
||||
void NonlinearISAM<VALUES,GRAPH>::update(const Factors& newFactors,
|
||||
template<class GRAPH>
|
||||
void NonlinearISAM<GRAPH>::update(const Factors& newFactors,
|
||||
const Values& initialValues) {
|
||||
|
||||
if(newFactors.size() > 0) {
|
||||
|
@ -62,8 +62,8 @@ void NonlinearISAM<VALUES,GRAPH>::update(const Factors& newFactors,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class GRAPH>
|
||||
void NonlinearISAM<VALUES,GRAPH>::reorder_relinearize() {
|
||||
template<class GRAPH>
|
||||
void NonlinearISAM<GRAPH>::reorder_relinearize() {
|
||||
|
||||
// cout << "Reordering, relinearizing..." << endl;
|
||||
|
||||
|
@ -89,8 +89,8 @@ void NonlinearISAM<VALUES,GRAPH>::reorder_relinearize() {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class GRAPH>
|
||||
VALUES NonlinearISAM<VALUES,GRAPH>::estimate() const {
|
||||
template<class GRAPH>
|
||||
Values NonlinearISAM<GRAPH>::estimate() const {
|
||||
if(isam_.size() > 0)
|
||||
return linPoint_.retract(optimize(isam_), ordering_);
|
||||
else
|
||||
|
@ -98,14 +98,14 @@ VALUES NonlinearISAM<VALUES,GRAPH>::estimate() const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class GRAPH>
|
||||
Matrix NonlinearISAM<VALUES,GRAPH>::marginalCovariance(const Symbol& key) const {
|
||||
template<class GRAPH>
|
||||
Matrix NonlinearISAM<GRAPH>::marginalCovariance(const Symbol& key) const {
|
||||
return isam_.marginalCovariance(ordering_[key]);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class VALUES, class GRAPH>
|
||||
void NonlinearISAM<VALUES,GRAPH>::print(const std::string& s) const {
|
||||
template<class GRAPH>
|
||||
void NonlinearISAM<GRAPH>::print(const std::string& s) const {
|
||||
cout << "ISAM - " << s << ":" << endl;
|
||||
cout << " ReorderInterval: " << reorderInterval_ << " Current Count: " << reorderCounter_ << endl;
|
||||
isam_.print("GaussianISAM");
|
||||
|
|
|
@ -24,11 +24,10 @@ namespace gtsam {
|
|||
/**
|
||||
* Wrapper class to manage ISAM in a nonlinear context
|
||||
*/
|
||||
template<class VALUES, class GRAPH = gtsam::NonlinearFactorGraph<VALUES> >
|
||||
template<class GRAPH = gtsam::NonlinearFactorGraph >
|
||||
class NonlinearISAM {
|
||||
public:
|
||||
|
||||
typedef VALUES Values;
|
||||
typedef GRAPH Factors;
|
||||
|
||||
protected:
|
||||
|
|
|
@ -34,17 +34,17 @@ namespace gtsam {
|
|||
/**
|
||||
* The Elimination solver
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimizeSequential(const G& graph, const T& initialEstimate,
|
||||
template<class G>
|
||||
Values optimizeSequential(const G& graph, const Values& initialEstimate,
|
||||
const NonlinearOptimizationParameters& parameters, bool useLM) {
|
||||
|
||||
// Use a variable ordering from COLAMD
|
||||
Ordering::shared_ptr ordering = graph.orderingCOLAMD(initialEstimate);
|
||||
|
||||
// Create an nonlinear Optimizer that uses a Sequential Solver
|
||||
typedef NonlinearOptimizer<G, T, GaussianFactorGraph, GaussianSequentialSolver> Optimizer;
|
||||
typedef NonlinearOptimizer<G, GaussianFactorGraph, GaussianSequentialSolver> Optimizer;
|
||||
Optimizer optimizer(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(initialEstimate), ordering,
|
||||
boost::make_shared<const Values>(initialEstimate), ordering,
|
||||
boost::make_shared<NonlinearOptimizationParameters>(parameters));
|
||||
|
||||
// Now optimize using either LM or GN methods.
|
||||
|
@ -57,17 +57,17 @@ namespace gtsam {
|
|||
/**
|
||||
* The multifrontal solver
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimizeMultiFrontal(const G& graph, const T& initialEstimate,
|
||||
template<class G>
|
||||
Values optimizeMultiFrontal(const G& graph, const Values& initialEstimate,
|
||||
const NonlinearOptimizationParameters& parameters, bool useLM) {
|
||||
|
||||
// Use a variable ordering from COLAMD
|
||||
Ordering::shared_ptr ordering = graph.orderingCOLAMD(initialEstimate);
|
||||
|
||||
// Create an nonlinear Optimizer that uses a Multifrontal Solver
|
||||
typedef NonlinearOptimizer<G, T, GaussianFactorGraph, GaussianMultifrontalSolver> Optimizer;
|
||||
typedef NonlinearOptimizer<G, GaussianFactorGraph, GaussianMultifrontalSolver> Optimizer;
|
||||
Optimizer optimizer(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(initialEstimate), ordering,
|
||||
boost::make_shared<const Values>(initialEstimate), ordering,
|
||||
boost::make_shared<NonlinearOptimizationParameters>(parameters));
|
||||
|
||||
// now optimize using either LM or GN methods
|
||||
|
@ -81,20 +81,20 @@ namespace gtsam {
|
|||
/**
|
||||
* The sparse preconditioned conjugate gradient solver
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimizeSPCG(const G& graph, const T& initialEstimate,
|
||||
template<class G>
|
||||
Values optimizeSPCG(const G& graph, const Values& initialEstimate,
|
||||
const NonlinearOptimizationParameters& parameters = NonlinearOptimizationParameters(),
|
||||
bool useLM = true) {
|
||||
|
||||
// initial optimization state is the same in both cases tested
|
||||
typedef SubgraphSolver<G,GaussianFactorGraph,T> Solver;
|
||||
typedef SubgraphSolver<G,GaussianFactorGraph,Values> Solver;
|
||||
typedef boost::shared_ptr<Solver> shared_Solver;
|
||||
typedef NonlinearOptimizer<G, T, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
typedef NonlinearOptimizer<G, GaussianFactorGraph, Solver> SPCGOptimizer;
|
||||
shared_Solver solver = boost::make_shared<Solver>(
|
||||
graph, initialEstimate, IterativeOptimizationParameters());
|
||||
SPCGOptimizer optimizer(
|
||||
boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(initialEstimate),
|
||||
boost::make_shared<const Values>(initialEstimate),
|
||||
solver->ordering(),
|
||||
solver,
|
||||
boost::make_shared<NonlinearOptimizationParameters>(parameters));
|
||||
|
@ -110,20 +110,20 @@ namespace gtsam {
|
|||
/**
|
||||
* optimization that returns the values
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimize(const G& graph, const T& initialEstimate, const NonlinearOptimizationParameters& parameters,
|
||||
template<class G>
|
||||
Values optimize(const G& graph, const Values& initialEstimate, const NonlinearOptimizationParameters& parameters,
|
||||
const LinearSolver& solver,
|
||||
const NonlinearOptimizationMethod& nonlinear_method) {
|
||||
switch (solver) {
|
||||
case SEQUENTIAL:
|
||||
return optimizeSequential<G,T>(graph, initialEstimate, parameters,
|
||||
return optimizeSequential<G>(graph, initialEstimate, parameters,
|
||||
nonlinear_method == LM);
|
||||
case MULTIFRONTAL:
|
||||
return optimizeMultiFrontal<G,T>(graph, initialEstimate, parameters,
|
||||
return optimizeMultiFrontal<G>(graph, initialEstimate, parameters,
|
||||
nonlinear_method == LM);
|
||||
#if ENABLE_SPCG
|
||||
case SPCG:
|
||||
// return optimizeSPCG<G,T>(graph, initialEstimate, parameters,
|
||||
// return optimizeSPCG<G,Values>(graph, initialEstimate, parameters,
|
||||
// nonlinear_method == LM);
|
||||
throw runtime_error("optimize: SPCG not supported yet due to the specific pose constraint");
|
||||
#endif
|
||||
|
|
|
@ -44,8 +44,8 @@ namespace gtsam {
|
|||
/**
|
||||
* optimization that returns the values
|
||||
*/
|
||||
template<class G, class T>
|
||||
T optimize(const G& graph, const T& initialEstimate,
|
||||
template<class G>
|
||||
Values optimize(const G& graph, const Values& initialEstimate,
|
||||
const NonlinearOptimizationParameters& parameters = NonlinearOptimizationParameters(),
|
||||
const LinearSolver& solver = MULTIFRONTAL,
|
||||
const NonlinearOptimizationMethod& nonlinear_method = LM);
|
||||
|
|
|
@ -30,8 +30,8 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
shared_values values, shared_ordering ordering, shared_parameters parameters) :
|
||||
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
|
||||
parameters_(parameters), iterations_(0),
|
||||
|
@ -47,8 +47,8 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
// FIXME: remove this constructor
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
shared_values values, shared_ordering ordering,
|
||||
shared_solver spcg_solver, shared_parameters parameters) :
|
||||
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
|
||||
|
@ -66,8 +66,8 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
// One iteration of Gauss Newton
|
||||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W> NonlinearOptimizer<G, C, L, S, W>::iterate() const {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterate() const {
|
||||
|
||||
Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
|
||||
|
@ -86,7 +86,7 @@ namespace gtsam {
|
|||
if (verbosity >= Parameters::DELTA) delta.print("delta");
|
||||
|
||||
// take old values and update it
|
||||
shared_values newValues(new C(values_->retract(delta, *ordering_)));
|
||||
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
|
||||
|
||||
// maybe show output
|
||||
if (verbosity >= Parameters::VALUES) newValues->print("newValues");
|
||||
|
@ -99,8 +99,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W> NonlinearOptimizer<G, C, L, S, W>::gaussNewton() const {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::gaussNewton() const {
|
||||
static W writer(error_);
|
||||
|
||||
if (error_ < parameters_->sumError_ ) {
|
||||
|
@ -130,8 +130,8 @@ namespace gtsam {
|
|||
// TODO: in theory we can't infinitely recurse, but maybe we should put a max.
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class T, class L, class S, class W>
|
||||
NonlinearOptimizer<G, T, L, S, W> NonlinearOptimizer<G, T, L, S, W>::try_lambda(const L& linearSystem) {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::try_lambda(const L& linearSystem) {
|
||||
|
||||
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
const Parameters::LambdaMode lambdaMode = parameters_->lambdaMode_ ;
|
||||
|
@ -178,7 +178,7 @@ namespace gtsam {
|
|||
if (verbosity >= Parameters::TRYDELTA) delta.print("delta");
|
||||
|
||||
// update values
|
||||
shared_values newValues(new T(values_->retract(delta, *ordering_)));
|
||||
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
|
||||
|
||||
// create new optimization state with more adventurous lambda
|
||||
double error = graph_->error(*newValues);
|
||||
|
@ -228,8 +228,8 @@ namespace gtsam {
|
|||
// One iteration of Levenberg Marquardt
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class T, class L, class S, class W>
|
||||
NonlinearOptimizer<G, T, L, S, W> NonlinearOptimizer<G, T, L, S, W>::iterateLM() {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateLM() {
|
||||
|
||||
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
const double lambda = parameters_->lambda_ ;
|
||||
|
@ -253,8 +253,8 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class T, class L, class S, class W>
|
||||
NonlinearOptimizer<G, T, L, S, W> NonlinearOptimizer<G, T, L, S, W>::levenbergMarquardt() {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::levenbergMarquardt() {
|
||||
|
||||
// Initialize
|
||||
bool converged = false;
|
||||
|
@ -299,20 +299,20 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class T, class L, class S, class W>
|
||||
NonlinearOptimizer<G, T, L, S, W> NonlinearOptimizer<G, T, L, S, W>::iterateDogLeg() {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateDogLeg() {
|
||||
|
||||
S solver(*graph_->linearize(*values_, *ordering_), parameters_->useQR_);
|
||||
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
|
||||
parameters_->lambda_, DoglegOptimizerImpl::ONE_STEP_PER_ITERATION, *solver.eliminate(),
|
||||
*graph_, *values_, *ordering_, error_, parameters_->verbosity_ > Parameters::ERROR);
|
||||
shared_values newValues(new T(values_->retract(result.dx_d, *ordering_)));
|
||||
shared_values newValues(new Values(values_->retract(result.dx_d, *ordering_)));
|
||||
return newValuesErrorLambda_(newValues, result.f_error, result.Delta);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class T, class L, class S, class W>
|
||||
NonlinearOptimizer<G, T, L, S, W> NonlinearOptimizer<G, T, L, S, W>::dogLeg() {
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::dogLeg() {
|
||||
static W writer(error_);
|
||||
|
||||
// check if we're already close enough
|
||||
|
|
|
@ -37,20 +37,20 @@ public:
|
|||
* and then one of the optimization routines is called. These iterate
|
||||
* until convergence. All methods are functional and return a new state.
|
||||
*
|
||||
* The class is parameterized by the Graph type $G$, Values class type $T$,
|
||||
* The class is parameterized by the Graph type $G$, Values class type $Values$,
|
||||
* linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
*
|
||||
* The values class type $T$ is in order to be able to optimize over non-vector values structures.
|
||||
* The values class type $Values$ is in order to be able to optimize over non-vector values structures.
|
||||
*
|
||||
* A nonlinear system solver $S$
|
||||
* Concept NonLinearSolver<G,T,L> implements
|
||||
* linearize: G * T -> L
|
||||
* solve : L -> T
|
||||
* Concept NonLinearSolver<G,Values,L> implements
|
||||
* linearize: G * Values -> L
|
||||
* solve : L -> Values
|
||||
*
|
||||
* The writer $W$ generates output to disk or the screen.
|
||||
*
|
||||
* For example, in a 2D case, $G$ can be Pose2Graph, $T$ can be Pose2Values,
|
||||
* $L$ can be GaussianFactorGraph and $S$ can be Factorization<Pose2Graph, Pose2Values>.
|
||||
* For example, in a 2D case, $G$ can be pose2SLAM::Graph, $Values$ can be Pose2Values,
|
||||
* $L$ can be GaussianFactorGraph and $S$ can be Factorization<pose2SLAM::Graph, Pose2Values>.
|
||||
* The solver class has two main functions: linearize and optimize. The first one
|
||||
* linearizes the nonlinear cost function around the current estimate, and the second
|
||||
* one optimizes the linearized system using various methods.
|
||||
|
@ -58,12 +58,12 @@ public:
|
|||
* To use the optimizer in code, include <gtsam/NonlinearOptimizer-inl.h> in your cpp file
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<class G, class T, class L = GaussianFactorGraph, class GS = GaussianMultifrontalSolver, class W = NullOptimizerWriter>
|
||||
template<class G, class L = GaussianFactorGraph, class GS = GaussianMultifrontalSolver, class W = NullOptimizerWriter>
|
||||
class NonlinearOptimizer {
|
||||
public:
|
||||
|
||||
// For performance reasons in recursion, we store values in a shared_ptr
|
||||
typedef boost::shared_ptr<const T> shared_values; ///Prevent memory leaks in Values
|
||||
typedef boost::shared_ptr<const Values> shared_values; ///Prevent memory leaks in Values
|
||||
typedef boost::shared_ptr<const G> shared_graph; /// Prevent memory leaks in Graph
|
||||
typedef boost::shared_ptr<L> shared_linear; /// Not sure
|
||||
typedef boost::shared_ptr<const Ordering> shared_ordering; ///ordering parameters
|
||||
|
@ -74,7 +74,7 @@ public:
|
|||
|
||||
private:
|
||||
|
||||
typedef NonlinearOptimizer<G, T, L, GS> This;
|
||||
typedef NonlinearOptimizer<G, L, GS> This;
|
||||
typedef boost::shared_ptr<const std::vector<size_t> > shared_dimensions;
|
||||
|
||||
/// keep a reference to const version of the graph
|
||||
|
@ -182,7 +182,7 @@ public:
|
|||
/**
|
||||
* Copy constructor
|
||||
*/
|
||||
NonlinearOptimizer(const NonlinearOptimizer<G, T, L, GS> &optimizer) :
|
||||
NonlinearOptimizer(const NonlinearOptimizer<G, L, GS> &optimizer) :
|
||||
graph_(optimizer.graph_), values_(optimizer.values_), error_(optimizer.error_),
|
||||
ordering_(optimizer.ordering_), parameters_(optimizer.parameters_),
|
||||
iterations_(optimizer.iterations_), dimensions_(optimizer.dimensions_), structure_(optimizer.structure_) {}
|
||||
|
@ -248,7 +248,7 @@ public:
|
|||
|
||||
/**
|
||||
* linearize and optimize
|
||||
* This returns an VectorValues, i.e., vectors in tangent space of T
|
||||
* This returns an VectorValues, i.e., vectors in tangent space of Values
|
||||
*/
|
||||
VectorValues linearizeAndOptimizeForDelta() const {
|
||||
return *createSolver()->optimize();
|
||||
|
@ -340,19 +340,19 @@ public:
|
|||
* Static interface to LM optimization (no shared_ptr arguments) - see above
|
||||
*/
|
||||
static shared_values optimizeLM(const G& graph,
|
||||
const T& values,
|
||||
const Values& values,
|
||||
const Parameters parameters = Parameters()) {
|
||||
return optimizeLM(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(values),
|
||||
boost::make_shared<const Values>(values),
|
||||
boost::make_shared<Parameters>(parameters));
|
||||
}
|
||||
|
||||
///TODO: comment
|
||||
static shared_values optimizeLM(const G& graph,
|
||||
const T& values,
|
||||
const Values& values,
|
||||
Parameters::verbosityLevel verbosity) {
|
||||
return optimizeLM(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(values),
|
||||
boost::make_shared<const Values>(values),
|
||||
verbosity);
|
||||
}
|
||||
|
||||
|
@ -392,19 +392,19 @@ public:
|
|||
* Static interface to Dogleg optimization (no shared_ptr arguments) - see above
|
||||
*/
|
||||
static shared_values optimizeDogLeg(const G& graph,
|
||||
const T& values,
|
||||
const Values& values,
|
||||
const Parameters parameters = Parameters()) {
|
||||
return optimizeDogLeg(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(values),
|
||||
boost::make_shared<const Values>(values),
|
||||
boost::make_shared<Parameters>(parameters));
|
||||
}
|
||||
|
||||
///TODO: comment
|
||||
static shared_values optimizeDogLeg(const G& graph,
|
||||
const T& values,
|
||||
const Values& values,
|
||||
Parameters::verbosityLevel verbosity) {
|
||||
return optimizeDogLeg(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(values),
|
||||
boost::make_shared<const Values>(values),
|
||||
verbosity);
|
||||
}
|
||||
|
||||
|
@ -431,9 +431,9 @@ public:
|
|||
/**
|
||||
* Static interface to GN optimization (no shared_ptr arguments) - see above
|
||||
*/
|
||||
static shared_values optimizeGN(const G& graph, const T& values, const Parameters parameters = Parameters()) {
|
||||
static shared_values optimizeGN(const G& graph, const Values& values, const Parameters parameters = Parameters()) {
|
||||
return optimizeGN(boost::make_shared<const G>(graph),
|
||||
boost::make_shared<const T>(values),
|
||||
boost::make_shared<const Values>(values),
|
||||
boost::make_shared<Parameters>(parameters));
|
||||
}
|
||||
};
|
||||
|
|
|
@ -1,165 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file TupleValues-inl.h
|
||||
* @author Richard Roberts
|
||||
* @author Manohar Paluri
|
||||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValuesN Implementations */
|
||||
/* ************************************************************************* */
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 1 */
|
||||
template<class VALUES1>
|
||||
TupleValues1<VALUES1>::TupleValues1(const TupleValues1<VALUES1>& values) :
|
||||
TupleValuesEnd<VALUES1> (values) {}
|
||||
|
||||
template<class VALUES1>
|
||||
TupleValues1<VALUES1>::TupleValues1(const VALUES1& cfg1) :
|
||||
TupleValuesEnd<VALUES1> (cfg1) {}
|
||||
|
||||
template<class VALUES1>
|
||||
TupleValues1<VALUES1>::TupleValues1(const TupleValuesEnd<VALUES1>& values) :
|
||||
TupleValuesEnd<VALUES1>(values) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 2 */
|
||||
template<class VALUES1, class VALUES2>
|
||||
TupleValues2<VALUES1, VALUES2>::TupleValues2(const TupleValues2<VALUES1, VALUES2>& values) :
|
||||
TupleValues<VALUES1, TupleValuesEnd<VALUES2> >(values) {}
|
||||
|
||||
template<class VALUES1, class VALUES2>
|
||||
TupleValues2<VALUES1, VALUES2>::TupleValues2(const VALUES1& cfg1, const VALUES2& cfg2) :
|
||||
TupleValues<VALUES1, TupleValuesEnd<VALUES2> >(
|
||||
cfg1, TupleValuesEnd<VALUES2>(cfg2)) {}
|
||||
|
||||
template<class VALUES1, class VALUES2>
|
||||
TupleValues2<VALUES1, VALUES2>::TupleValues2(const TupleValues<VALUES1, TupleValuesEnd<VALUES2> >& values) :
|
||||
TupleValues<VALUES1, TupleValuesEnd<VALUES2> >(values) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 3 */
|
||||
template<class VALUES1, class VALUES2, class VALUES3>
|
||||
TupleValues3<VALUES1, VALUES2, VALUES3>::TupleValues3(
|
||||
const TupleValues3<VALUES1, VALUES2, VALUES3>& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValuesEnd<VALUES3> > >(values) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3>
|
||||
TupleValues3<VALUES1, VALUES2, VALUES3>::TupleValues3(
|
||||
const VALUES1& cfg1, const VALUES2& cfg2, const VALUES3& cfg3) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValuesEnd<VALUES3> > >(
|
||||
cfg1, TupleValues<VALUES2, TupleValuesEnd<VALUES3> >(
|
||||
cfg2, TupleValuesEnd<VALUES3>(cfg3))) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3>
|
||||
TupleValues3<VALUES1, VALUES2, VALUES3>::TupleValues3(
|
||||
const TupleValues<VALUES1, TupleValues<VALUES2, TupleValuesEnd<VALUES3> > >& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValuesEnd<VALUES3> > >(values) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 4 */
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4>
|
||||
TupleValues4<VALUES1, VALUES2, VALUES3, VALUES4>::TupleValues4(
|
||||
const TupleValues4<VALUES1, VALUES2, VALUES3, VALUES4>& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2,
|
||||
TupleValues<VALUES3, TupleValuesEnd<VALUES4> > > >(values) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4>
|
||||
TupleValues4<VALUES1, VALUES2, VALUES3, VALUES4>::TupleValues4(
|
||||
const VALUES1& cfg1, const VALUES2& cfg2,
|
||||
const VALUES3& cfg3,const VALUES4& cfg4) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2,
|
||||
TupleValues<VALUES3, TupleValuesEnd<VALUES4> > > >(
|
||||
cfg1, TupleValues<VALUES2, TupleValues<VALUES3, TupleValuesEnd<VALUES4> > >(
|
||||
cfg2, TupleValues<VALUES3, TupleValuesEnd<VALUES4> >(
|
||||
cfg3, TupleValuesEnd<VALUES4>(cfg4)))) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4>
|
||||
TupleValues4<VALUES1, VALUES2, VALUES3, VALUES4>::TupleValues4(
|
||||
const TupleValues<VALUES1, TupleValues<VALUES2,
|
||||
TupleValues<VALUES3, TupleValuesEnd<VALUES4> > > >& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2,TupleValues<VALUES3,
|
||||
TupleValuesEnd<VALUES4> > > >(values) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 5 */
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4, class VALUES5>
|
||||
TupleValues5<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5>::TupleValues5(
|
||||
const TupleValues5<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5>& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValuesEnd<VALUES5> > > > >(values) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4, class VALUES5>
|
||||
TupleValues5<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5>::TupleValues5(
|
||||
const VALUES1& cfg1, const VALUES2& cfg2, const VALUES3& cfg3,
|
||||
const VALUES4& cfg4, const VALUES5& cfg5) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2,
|
||||
TupleValues<VALUES3, TupleValues<VALUES4,
|
||||
TupleValuesEnd<VALUES5> > > > >(
|
||||
cfg1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValuesEnd<VALUES5> > > >(
|
||||
cfg2, TupleValues<VALUES3, TupleValues<VALUES4, TupleValuesEnd<VALUES5> > >(
|
||||
cfg3, TupleValues<VALUES4, TupleValuesEnd<VALUES5> >(
|
||||
cfg4, TupleValuesEnd<VALUES5>(cfg5))))) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3, class VALUES4, class VALUES5>
|
||||
TupleValues5<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5>::TupleValues5(
|
||||
const TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValuesEnd<VALUES5> > > > >& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValuesEnd<VALUES5> > > > >(values) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** TupleValues 6 */
|
||||
template<class VALUES1, class VALUES2, class VALUES3,
|
||||
class VALUES4, class VALUES5, class VALUES6>
|
||||
TupleValues6<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5, VALUES6>::TupleValues6(
|
||||
const TupleValues6<VALUES1, VALUES2, VALUES3,
|
||||
VALUES4, VALUES5, VALUES6>& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValues<VALUES5,
|
||||
TupleValuesEnd<VALUES6> > > > > >(values) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3,
|
||||
class VALUES4, class VALUES5, class VALUES6>
|
||||
TupleValues6<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5, VALUES6>::TupleValues6(
|
||||
const VALUES1& cfg1, const VALUES2& cfg2, const VALUES3& cfg3,
|
||||
const VALUES4& cfg4, const VALUES5& cfg5, const VALUES6& cfg6) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValues<VALUES5, TupleValuesEnd<VALUES6> > > > > >(
|
||||
cfg1, TupleValues<VALUES2, TupleValues<VALUES3, TupleValues<VALUES4,
|
||||
TupleValues<VALUES5, TupleValuesEnd<VALUES6> > > > >(
|
||||
cfg2, TupleValues<VALUES3, TupleValues<VALUES4, TupleValues<VALUES5,
|
||||
TupleValuesEnd<VALUES6> > > >(
|
||||
cfg3, TupleValues<VALUES4, TupleValues<VALUES5,
|
||||
TupleValuesEnd<VALUES6> > >(
|
||||
cfg4, TupleValues<VALUES5, TupleValuesEnd<VALUES6> >(
|
||||
cfg5, TupleValuesEnd<VALUES6>(cfg6)))))) {}
|
||||
|
||||
template<class VALUES1, class VALUES2, class VALUES3,
|
||||
class VALUES4, class VALUES5, class VALUES6>
|
||||
TupleValues6<VALUES1, VALUES2, VALUES3, VALUES4, VALUES5, VALUES6>::TupleValues6(
|
||||
const TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValues<VALUES5,
|
||||
TupleValuesEnd<VALUES6> > > > > >& values) :
|
||||
TupleValues<VALUES1, TupleValues<VALUES2, TupleValues<VALUES3,
|
||||
TupleValues<VALUES4, TupleValues<VALUES5,
|
||||
TupleValuesEnd<VALUES6> > > > > >(values) {}
|
||||
|
||||
}
|
|
@ -1,550 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file TupleValues.h
|
||||
* @author Richard Roberts
|
||||
* @author Manohar Paluri
|
||||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* TupleValues are a structure to manage heterogenous Values, so as to
|
||||
* enable different types of variables/keys to be used simultaneously. We
|
||||
* do this with recursive templates (instead of blind pointer casting) to
|
||||
* reduce run-time overhead and keep static type checking. The interface
|
||||
* mimics that of a single Values.
|
||||
*
|
||||
* This uses a recursive structure of values pairs to form a lisp-like
|
||||
* list, with a special case (TupleValuesEnd) that contains only one values
|
||||
* at the end. Because this recursion is done at compile time, there is no
|
||||
* runtime performance hit to using this structure.
|
||||
*
|
||||
* For an easy interface, there are TupleValuesN classes, which wrap
|
||||
* the recursive TupleValues together as a single class, so you can have
|
||||
* mixed-type classes from 2-6 types. Note that a TupleValues2 is equivalent
|
||||
* to the previously used PairValues.
|
||||
*
|
||||
* Design and extension note:
|
||||
* To implement a recursively templated data structure, note that most operations
|
||||
* have two versions: one with templates and one without. The templated one allows
|
||||
* for the arguments to be passed to the next values, while the specialized one
|
||||
* operates on the "first" values. TupleValuesEnd contains only the specialized version.
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<class VALUES1, class VALUES2>
|
||||
class TupleValues {
|
||||
|
||||
protected:
|
||||
// Data for internal valuess
|
||||
VALUES1 first_; /// Arbitrary values
|
||||
VALUES2 second_; /// A TupleValues or TupleValuesEnd, which wraps an arbitrary values
|
||||
|
||||
/** concept checks */
|
||||
GTSAM_CONCEPT_TESTABLE_TYPE(VALUES1)
|
||||
GTSAM_CONCEPT_TESTABLE_TYPE(VALUES2)
|
||||
|
||||
public:
|
||||
// typedefs for values subtypes
|
||||
typedef typename VALUES1::Key Key1;
|
||||
typedef typename VALUES1::Value Value1;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/** default constructor */
|
||||
TupleValues() {}
|
||||
|
||||
/** Copy constructor */
|
||||
TupleValues(const TupleValues<VALUES1, VALUES2>& values) :
|
||||
first_(values.first_), second_(values.second_) {}
|
||||
|
||||
/** Construct from valuess */
|
||||
TupleValues(const VALUES1& cfg1, const VALUES2& cfg2) :
|
||||
first_(cfg1), second_(cfg2) {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/** Print */
|
||||
void print(const std::string& s = "") const {
|
||||
first_.print(s);
|
||||
second_.print();
|
||||
}
|
||||
|
||||
/** Equality with tolerance for keys and values */
|
||||
bool equals(const TupleValues<VALUES1, VALUES2>& c, double tol=1e-9) const {
|
||||
return first_.equals(c.first_, tol) && second_.equals(c.second_, tol);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* Insert a key/value pair to the values.
|
||||
* Note: if the key is already in the values, the values will not be changed.
|
||||
* Use update() to allow for changing existing values.
|
||||
* @param key is the key - can be an int (second version) if the can can be initialized from an int
|
||||
* @param value is the value to insert
|
||||
*/
|
||||
template<class KEY, class VALUE>
|
||||
void insert(const KEY& key, const VALUE& value) {second_.insert(key, value);}
|
||||
void insert(int key, const Value1& value) {first_.insert(Key1(key), value);} ///<TODO: comment
|
||||
void insert(const Key1& key, const Value1& value) {first_.insert(key, value);} ///<TODO: comment
|
||||
|
||||
/**
|
||||
* Insert a complete values at a time.
|
||||
* Note: if the key is already in the values, the values will not be changed.
|
||||
* Use update() to allow for changing existing values.
|
||||
* @param values is a full values to add
|
||||
*/
|
||||
template<class CFG1, class CFG2>
|
||||
void insert(const TupleValues<CFG1, CFG2>& values) { second_.insert(values); }
|
||||
void insert(const TupleValues<VALUES1, VALUES2>& values) { ///<TODO: comment
|
||||
first_.insert(values.first_);
|
||||
second_.insert(values.second_);
|
||||
}
|
||||
|
||||
/**
|
||||
* Update function for whole valuess - this will change existing values
|
||||
* @param values is a values to add
|
||||
*/
|
||||
template<class CFG1, class CFG2>
|
||||
void update(const TupleValues<CFG1, CFG2>& values) { second_.update(values); }
|
||||
void update(const TupleValues<VALUES1, VALUES2>& values) { ///<TODO: comment
|
||||
first_.update(values.first_);
|
||||
second_.update(values.second_);
|
||||
}
|
||||
|
||||
/**
|
||||
* Update function for single key/value pairs - will change existing values
|
||||
* @param key is the variable identifier
|
||||
* @param value is the variable value to update
|
||||
*/
|
||||
template<class KEY, class VALUE>
|
||||
void update(const KEY& key, const VALUE& value) { second_.update(key, value); }
|
||||
void update(const Key1& key, const Value1& value) { first_.update(key, value); } ///<TODO: comment
|
||||
|
||||
/**
|
||||
* Insert a subvalues
|
||||
* @param values is the values to insert
|
||||
*/
|
||||
template<class CFG>
|
||||
void insertSub(const CFG& values) { second_.insertSub(values); }
|
||||
void insertSub(const VALUES1& values) { first_.insert(values); } ///<TODO: comment
|
||||
|
||||
/** erase an element by key */
|
||||
template<class KEY>
|
||||
void erase(const KEY& j) { second_.erase(j); }
|
||||
void erase(const Key1& j) { first_.erase(j); } ///<TODO: comment
|
||||
|
||||
/** clears the values */
|
||||
void clear() { first_.clear(); second_.clear(); }
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/** determine whether an element exists */
|
||||
template<class KEY>
|
||||
bool exists(const KEY& j) const { return second_.exists(j); }
|
||||
bool exists(const Key1& j) const { return first_.exists(j); } ///<TODO: comment
|
||||
|
||||
/** a variant of exists */
|
||||
template<class KEY>
|
||||
boost::optional<typename KEY::Value> exists_(const KEY& j) const { return second_.exists_(j); }
|
||||
boost::optional<Value1> exists_(const Key1& j) const { return first_.exists_(j); } ///<TODO: comment
|
||||
|
||||
/** access operator */
|
||||
template<class KEY>
|
||||
const typename KEY::Value & operator[](const KEY& j) const { return second_[j]; }
|
||||
const Value1& operator[](const Key1& j) const { return first_[j]; } ///<TODO: comment
|
||||
|
||||
/** at access function */
|
||||
template<class KEY>
|
||||
const typename KEY::Value & at(const KEY& j) const { return second_.at(j); }
|
||||
const Value1& at(const Key1& j) const { return first_.at(j); } ///<TODO: comment
|
||||
|
||||
/** direct values access */
|
||||
const VALUES1& values() const { return first_; }
|
||||
const VALUES2& rest() const { return second_; } ///<TODO: comment
|
||||
|
||||
/** zero: create VectorValues of appropriate structure */
|
||||
VectorValues zero(const Ordering& ordering) const {
|
||||
return VectorValues::Zero(this->dims(ordering));
|
||||
}
|
||||
|
||||
/** @return number of key/value pairs stored */
|
||||
size_t size() const { return first_.size() + second_.size(); }
|
||||
|
||||
/** @return true if values is empty */
|
||||
bool empty() const { return first_.empty() && second_.empty(); }
|
||||
|
||||
/**
|
||||
* Generate a default ordering, simply in key sort order. To instead
|
||||
* create a fill-reducing ordering, use
|
||||
* NonlinearFactorGraph::orderingCOLAMD(). Alternatively, you may permute
|
||||
* this ordering yourself (as orderingCOLAMD() does internally).
|
||||
*/
|
||||
Ordering::shared_ptr orderingArbitrary(Index firstVar = 0) const {
|
||||
// Generate an initial key ordering in iterator order
|
||||
_ValuesKeyOrderer keyOrderer(firstVar);
|
||||
this->apply(keyOrderer);
|
||||
return keyOrderer.ordering;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply a class with an application operator() to a const_iterator over
|
||||
* every <key,value> pair. The operator must be able to handle such an
|
||||
* iterator for every type in the Values, (i.e. through templating).
|
||||
*/
|
||||
template<typename A>
|
||||
void apply(A& operation) {
|
||||
first_.apply(operation);
|
||||
second_.apply(operation);
|
||||
}
|
||||
|
||||
/**
|
||||
* TODO: comment
|
||||
*/
|
||||
template<typename A>
|
||||
void apply(A& operation) const {
|
||||
first_.apply(operation);
|
||||
second_.apply(operation);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
||||
/** @return The dimensionality of the tangent space */
|
||||
size_t dim() const { return first_.dim() + second_.dim(); }
|
||||
|
||||
/** Create an array of variable dimensions using the given ordering */
|
||||
std::vector<size_t> dims(const Ordering& ordering) const {
|
||||
_ValuesDimensionCollector dimCollector(ordering);
|
||||
this->apply(dimCollector);
|
||||
return dimCollector.dimensions;
|
||||
}
|
||||
|
||||
/** Expmap */
|
||||
TupleValues<VALUES1, VALUES2> retract(const VectorValues& delta, const Ordering& ordering) const {
|
||||
return TupleValues(first_.retract(delta, ordering), second_.retract(delta, ordering));
|
||||
}
|
||||
|
||||
/** logmap each element */
|
||||
VectorValues localCoordinates(const TupleValues<VALUES1, VALUES2>& cp, const Ordering& ordering) const {
|
||||
VectorValues delta(this->dims(ordering));
|
||||
localCoordinates(cp, ordering, delta);
|
||||
return delta;
|
||||
}
|
||||
|
||||
/** logmap each element */
|
||||
void localCoordinates(const TupleValues<VALUES1, VALUES2>& cp, const Ordering& ordering, VectorValues& delta) const {
|
||||
first_.localCoordinates(cp.first_, ordering, delta);
|
||||
second_.localCoordinates(cp.second_, ordering, delta);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(first_);
|
||||
ar & BOOST_SERIALIZATION_NVP(second_);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* End of a recursive TupleValues - contains only one values
|
||||
*
|
||||
* Do not use this class directly - it should only be used as a part
|
||||
* of a recursive structure
|
||||
*/
|
||||
template<class VALUES>
|
||||
class TupleValuesEnd {
|
||||
|
||||
protected:
|
||||
// Data for internal valuess
|
||||
VALUES first_;
|
||||
|
||||
public:
|
||||
// typedefs
|
||||
typedef typename VALUES::Key Key1;
|
||||
typedef typename VALUES::Value Value1;
|
||||
|
||||
TupleValuesEnd() {}
|
||||
|
||||
TupleValuesEnd(const TupleValuesEnd<VALUES>& values) :
|
||||
first_(values.first_) {}
|
||||
|
||||
TupleValuesEnd(const VALUES& cfg) :
|
||||
first_(cfg) {}
|
||||
|
||||
void print(const std::string& s = "") const {
|
||||
first_.print();
|
||||
}
|
||||
|
||||
bool equals(const TupleValuesEnd<VALUES>& c, double tol=1e-9) const {
|
||||
return first_.equals(c.first_, tol);
|
||||
}
|
||||
|
||||
void insert(const Key1& key, const Value1& value) {first_.insert(key, value); }
|
||||
void insert(int key, const Value1& value) {first_.insert(Key1(key), value);}
|
||||
|
||||
void insert(const TupleValuesEnd<VALUES>& values) {first_.insert(values.first_); }
|
||||
|
||||
void update(const TupleValuesEnd<VALUES>& values) {first_.update(values.first_); }
|
||||
|
||||
void update(const Key1& key, const Value1& value) { first_.update(key, value); }
|
||||
|
||||
void insertSub(const VALUES& values) {first_.insert(values); }
|
||||
|
||||
const Value1& operator[](const Key1& j) const { return first_[j]; }
|
||||
|
||||
const VALUES& values() const { return first_; }
|
||||
|
||||
void erase(const Key1& j) { first_.erase(j); }
|
||||
|
||||
void clear() { first_.clear(); }
|
||||
|
||||
bool empty() const { return first_.empty(); }
|
||||
|
||||
bool exists(const Key1& j) const { return first_.exists(j); }
|
||||
|
||||
boost::optional<Value1> exists_(const Key1& j) const { return first_.exists_(j); }
|
||||
|
||||
const Value1& at(const Key1& j) const { return first_.at(j); }
|
||||
|
||||
VectorValues zero(const Ordering& ordering) const {
|
||||
return VectorValues::Zero(this->dims(ordering));
|
||||
}
|
||||
|
||||
size_t size() const { return first_.size(); }
|
||||
|
||||
size_t dim() const { return first_.dim(); }
|
||||
|
||||
TupleValuesEnd<VALUES> retract(const VectorValues& delta, const Ordering& ordering) const {
|
||||
return TupleValuesEnd(first_.retract(delta, ordering));
|
||||
}
|
||||
|
||||
VectorValues localCoordinates(const TupleValuesEnd<VALUES>& cp, const Ordering& ordering) const {
|
||||
VectorValues delta(this->dims(ordering));
|
||||
localCoordinates(cp, ordering, delta);
|
||||
return delta;
|
||||
}
|
||||
|
||||
void localCoordinates(const TupleValuesEnd<VALUES>& cp, const Ordering& ordering, VectorValues& delta) const {
|
||||
first_.localCoordinates(cp.first_, ordering, delta);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply a class with an application operator() to a const_iterator over
|
||||
* every <key,value> pair. The operator must be able to handle such an
|
||||
* iterator for every type in the Values, (i.e. through templating).
|
||||
*/
|
||||
template<typename A>
|
||||
void apply(A& operation) {
|
||||
first_.apply(operation);
|
||||
}
|
||||
template<typename A>
|
||||
void apply(A& operation) const {
|
||||
first_.apply(operation);
|
||||
}
|
||||
|
||||
/** Create an array of variable dimensions using the given ordering */
|
||||
std::vector<size_t> dims(const Ordering& ordering) const {
|
||||
_ValuesDimensionCollector dimCollector(ordering);
|
||||
this->apply(dimCollector);
|
||||
return dimCollector.dimensions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a default ordering, simply in key sort order. To instead
|
||||
* create a fill-reducing ordering, use
|
||||
* NonlinearFactorGraph::orderingCOLAMD(). Alternatively, you may permute
|
||||
* this ordering yourself (as orderingCOLAMD() does internally).
|
||||
*/
|
||||
Ordering::shared_ptr orderingArbitrary(Index firstVar = 0) const {
|
||||
// Generate an initial key ordering in iterator order
|
||||
_ValuesKeyOrderer keyOrderer(firstVar);
|
||||
this->apply(keyOrderer);
|
||||
return keyOrderer.ordering;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(first_);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Wrapper classes to act as containers for valuess. Note that these can be cascaded
|
||||
* recursively, as they are TupleValues, and are primarily a short form of the values
|
||||
* structure to make use of the TupleValues easier.
|
||||
*
|
||||
* The interface is designed to mimic PairValues, but for 2-6 values types.
|
||||
*/
|
||||
|
||||
template<class C1>
|
||||
class TupleValues1 : public TupleValuesEnd<C1> {
|
||||
public:
|
||||
// typedefs
|
||||
typedef C1 Values1;
|
||||
|
||||
typedef TupleValuesEnd<C1> Base;
|
||||
typedef TupleValues1<C1> This;
|
||||
|
||||
TupleValues1() {}
|
||||
TupleValues1(const This& values);
|
||||
TupleValues1(const Base& values);
|
||||
TupleValues1(const Values1& cfg1);
|
||||
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
};
|
||||
|
||||
template<class C1, class C2>
|
||||
class TupleValues2 : public TupleValues<C1, TupleValuesEnd<C2> > {
|
||||
public:
|
||||
// typedefs
|
||||
typedef C1 Values1;
|
||||
typedef C2 Values2;
|
||||
|
||||
typedef TupleValues<C1, TupleValuesEnd<C2> > Base;
|
||||
typedef TupleValues2<C1, C2> This;
|
||||
|
||||
TupleValues2() {}
|
||||
TupleValues2(const This& values);
|
||||
TupleValues2(const Base& values);
|
||||
TupleValues2(const Values1& cfg1, const Values2& cfg2);
|
||||
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
inline const Values2& second() const { return this->rest().values(); }
|
||||
};
|
||||
|
||||
template<class C1, class C2, class C3>
|
||||
class TupleValues3 : public TupleValues<C1, TupleValues<C2, TupleValuesEnd<C3> > > {
|
||||
public:
|
||||
// typedefs
|
||||
typedef C1 Values1;
|
||||
typedef C2 Values2;
|
||||
typedef C3 Values3;
|
||||
|
||||
typedef TupleValues<C1, TupleValues<C2, TupleValuesEnd<C3> > > Base;
|
||||
typedef TupleValues3<C1, C2, C3> This;
|
||||
|
||||
TupleValues3() {}
|
||||
TupleValues3(const Base& values);
|
||||
TupleValues3(const This& values);
|
||||
TupleValues3(const Values1& cfg1, const Values2& cfg2, const Values3& cfg3);
|
||||
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
inline const Values2& second() const { return this->rest().values(); }
|
||||
inline const Values3& third() const { return this->rest().rest().values(); }
|
||||
};
|
||||
|
||||
template<class C1, class C2, class C3, class C4>
|
||||
class TupleValues4 : public TupleValues<C1, TupleValues<C2,TupleValues<C3, TupleValuesEnd<C4> > > > {
|
||||
public:
|
||||
// typedefs
|
||||
typedef C1 Values1;
|
||||
typedef C2 Values2;
|
||||
typedef C3 Values3;
|
||||
typedef C4 Values4;
|
||||
|
||||
typedef TupleValues<C1, TupleValues<C2,TupleValues<C3, TupleValuesEnd<C4> > > > Base;
|
||||
typedef TupleValues4<C1, C2, C3, C4> This;
|
||||
|
||||
TupleValues4() {}
|
||||
TupleValues4(const This& values);
|
||||
TupleValues4(const Base& values);
|
||||
TupleValues4(const Values1& cfg1, const Values2& cfg2, const Values3& cfg3,const Values4& cfg4);
|
||||
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
inline const Values2& second() const { return this->rest().values(); }
|
||||
inline const Values3& third() const { return this->rest().rest().values(); }
|
||||
inline const Values4& fourth() const { return this->rest().rest().rest().values(); }
|
||||
};
|
||||
|
||||
template<class C1, class C2, class C3, class C4, class C5>
|
||||
class TupleValues5 : public TupleValues<C1, TupleValues<C2, TupleValues<C3, TupleValues<C4, TupleValuesEnd<C5> > > > > {
|
||||
public:
|
||||
typedef C1 Values1;
|
||||
typedef C2 Values2;
|
||||
typedef C3 Values3;
|
||||
typedef C4 Values4;
|
||||
typedef C5 Values5;
|
||||
|
||||
typedef TupleValues<C1, TupleValues<C2, TupleValues<C3, TupleValues<C4, TupleValuesEnd<C5> > > > > Base;
|
||||
typedef TupleValues5<C1, C2, C3, C4, C5> This;
|
||||
|
||||
TupleValues5() {}
|
||||
TupleValues5(const This& values);
|
||||
TupleValues5(const Base& values);
|
||||
TupleValues5(const Values1& cfg1, const Values2& cfg2, const Values3& cfg3,
|
||||
const Values4& cfg4, const Values5& cfg5);
|
||||
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
inline const Values2& second() const { return this->rest().values(); }
|
||||
inline const Values3& third() const { return this->rest().rest().values(); }
|
||||
inline const Values4& fourth() const { return this->rest().rest().rest().values(); }
|
||||
inline const Values5& fifth() const { return this->rest().rest().rest().rest().values(); }
|
||||
};
|
||||
|
||||
template<class C1, class C2, class C3, class C4, class C5, class C6>
|
||||
class TupleValues6 : public TupleValues<C1, TupleValues<C2, TupleValues<C3, TupleValues<C4, TupleValues<C5, TupleValuesEnd<C6> > > > > > {
|
||||
public:
|
||||
typedef C1 Values1;
|
||||
typedef C2 Values2;
|
||||
typedef C3 Values3;
|
||||
typedef C4 Values4;
|
||||
typedef C5 Values5;
|
||||
typedef C6 Values6;
|
||||
|
||||
typedef TupleValues<C1, TupleValues<C2, TupleValues<C3, TupleValues<C4, TupleValues<C5, TupleValuesEnd<C6> > > > > > Base;
|
||||
typedef TupleValues6<C1, C2, C3, C4, C5, C6> This;
|
||||
|
||||
TupleValues6() {}
|
||||
TupleValues6(const This& values);
|
||||
TupleValues6(const Base& values);
|
||||
TupleValues6(const Values1& cfg1, const Values2& cfg2, const Values3& cfg3,
|
||||
const Values4& cfg4, const Values5& cfg5, const Values6& cfg6);
|
||||
// access functions
|
||||
inline const Values1& first() const { return this->values(); }
|
||||
inline const Values2& second() const { return this->rest().values(); }
|
||||
inline const Values3& third() const { return this->rest().rest().values(); }
|
||||
inline const Values4& fourth() const { return this->rest().rest().rest().values(); }
|
||||
inline const Values5& fifth() const { return this->rest().rest().rest().rest().values(); }
|
||||
inline const Values6& sixth() const { return this->rest().rest().rest().rest().rest().values(); }
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#include <gtsam/nonlinear/TupleValues-inl.h>
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
@ -10,222 +10,87 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Values.cpp
|
||||
* @file Values.h
|
||||
* @author Richard Roberts
|
||||
*
|
||||
* @brief A non-templated config holding any types of Manifold-group elements
|
||||
*
|
||||
* Detailed story:
|
||||
* A values structure is a map from keys to values. It is used to specify the value of a bunch
|
||||
* of variables in a factor graph. A Values is a values structure which can hold variables that
|
||||
* are elements on manifolds, not just vectors. It then, as a whole, implements a aggregate type
|
||||
* which is also a manifold element, and hence supports operations dim, retract, and localCoordinates.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility>
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
#include <gtsam/base/Lie-inl.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
using namespace std;
|
||||
#include <gtsam/nonlinear/Values.h> // Only so Eclipse finds class definition
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::print(const string &s) const {
|
||||
cout << "Values " << s << ", size " << values_.size() << "\n";
|
||||
BOOST_FOREACH(const KeyValuePair& v, values_) {
|
||||
gtsam::print(v.second, (string)(v.first));
|
||||
}
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
class ValueCloneAllocator {
|
||||
public:
|
||||
static Value* allocate_clone(const Value& a) { return a.clone_(); }
|
||||
static void deallocate_clone(const Value* a) { a->deallocate_(); }
|
||||
private:
|
||||
ValueCloneAllocator() {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
bool Values<J>::equals(const Values<J>& expected, double tol) const {
|
||||
if (values_.size() != expected.values_.size()) return false;
|
||||
BOOST_FOREACH(const KeyValuePair& v, values_) {
|
||||
if (!expected.exists(v.first)) return false;
|
||||
if(!gtsam::equal(v.second, expected[v.first], tol))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
template<typename ValueType>
|
||||
const ValueType& Values::at(const Symbol& j) const {
|
||||
// Find the item
|
||||
KeyValueMap::const_iterator item = values_.find(j);
|
||||
|
||||
// Throw exception if it does not exist
|
||||
if(item == values_.end())
|
||||
throw ValuesKeyDoesNotExist("retrieve", j);
|
||||
|
||||
// Check the type and throw exception if incorrect
|
||||
if(typeid(*item->second) != typeid(ValueType))
|
||||
throw ValuesIncorrectType(j, typeid(*item->second), typeid(ValueType));
|
||||
|
||||
// We have already checked the type, so do a "blind" static_cast, not dynamic_cast
|
||||
return static_cast<const ValueType&>(*item->second);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
const typename J::Value& Values<J>::at(const J& j) const {
|
||||
const_iterator it = values_.find(j);
|
||||
if (it == values_.end()) throw KeyDoesNotExist<J>("retrieve", j);
|
||||
else return it->second;
|
||||
template<typename TypedKey>
|
||||
const typename TypedKey::Value& Values::at(const TypedKey& j) const {
|
||||
// Convert to Symbol
|
||||
const Symbol symbol(j.symbol());
|
||||
|
||||
// Call at with the Value type from the key
|
||||
return at<typename TypedKey::Value>(symbol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
size_t Values<J>::dim() const {
|
||||
size_t n = 0;
|
||||
BOOST_FOREACH(const KeyValuePair& value, values_)
|
||||
n += value.second.dim();
|
||||
return n;
|
||||
}
|
||||
template<typename ValueType>
|
||||
boost::optional<const ValueType&> Values::exists(const Symbol& j) const {
|
||||
// Find the item
|
||||
KeyValueMap::const_iterator item = values_.find(j);
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
VectorValues Values<J>::zero(const Ordering& ordering) const {
|
||||
return VectorValues::Zero(this->dims(ordering));
|
||||
}
|
||||
if(item != values_.end()) {
|
||||
// Check the type and throw exception if incorrect
|
||||
if(typeid(*item->second) != typeid(ValueType))
|
||||
throw ValuesIncorrectType(j, typeid(*item->second), typeid(ValueType));
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::insert(const J& name, const typename J::Value& val) {
|
||||
if(!values_.insert(make_pair(name, val)).second)
|
||||
throw KeyAlreadyExists<J>(name, val);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::insert(const Values<J>& cfg) {
|
||||
BOOST_FOREACH(const KeyValuePair& v, cfg.values_)
|
||||
insert(v.first, v.second);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::update(const Values<J>& cfg) {
|
||||
BOOST_FOREACH(const KeyValuePair& v, values_) {
|
||||
boost::optional<typename J::Value> t = cfg.exists_(v.first);
|
||||
if (t) values_[v.first] = *t;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::update(const J& j, const typename J::Value& val) {
|
||||
values_[j] = val;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
std::list<J> Values<J>::keys() const {
|
||||
std::list<J> ret;
|
||||
BOOST_FOREACH(const KeyValuePair& v, values_)
|
||||
ret.push_back(v.first);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::erase(const J& j) {
|
||||
size_t dim; // unused
|
||||
erase(j, dim);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::erase(const J& j, size_t& dim) {
|
||||
iterator it = values_.find(j);
|
||||
if (it == values_.end())
|
||||
throw KeyDoesNotExist<J>("erase", j);
|
||||
dim = it->second.dim();
|
||||
values_.erase(it);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// todo: insert for every element is inefficient
|
||||
template<class J>
|
||||
Values<J> Values<J>::retract(const VectorValues& delta, const Ordering& ordering) const {
|
||||
Values<J> newValues;
|
||||
typedef pair<J,typename J::Value> KeyValue;
|
||||
BOOST_FOREACH(const KeyValue& value, this->values_) {
|
||||
const J& j = value.first;
|
||||
const typename J::Value& pj = value.second;
|
||||
Index index;
|
||||
if(ordering.tryAt(j,index)) {
|
||||
newValues.insert(j, pj.retract(delta[index]));
|
||||
} else
|
||||
newValues.insert(j, pj);
|
||||
}
|
||||
return newValues;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
std::vector<size_t> Values<J>::dims(const Ordering& ordering) const {
|
||||
_ValuesDimensionCollector dimCollector(ordering);
|
||||
this->apply(dimCollector);
|
||||
return dimCollector.dimensions;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
Ordering::shared_ptr Values<J>::orderingArbitrary(Index firstVar) const {
|
||||
// Generate an initial key ordering in iterator order
|
||||
_ValuesKeyOrderer keyOrderer(firstVar);
|
||||
this->apply(keyOrderer);
|
||||
return keyOrderer.ordering;
|
||||
}
|
||||
|
||||
// /* ************************************************************************* */
|
||||
// // todo: insert for every element is inefficient
|
||||
// template<class J>
|
||||
// Values<J> Values<J>::retract(const Vector& delta) const {
|
||||
// if(delta.size() != dim()) {
|
||||
// cout << "Values::dim (" << dim() << ") <> delta.size (" << delta.size() << ")" << endl;
|
||||
// throw invalid_argument("Delta vector length does not match config dimensionality.");
|
||||
// }
|
||||
// Values<J> newValues;
|
||||
// int delta_offset = 0;
|
||||
// typedef pair<J,typename J::Value> KeyValue;
|
||||
// BOOST_FOREACH(const KeyValue& value, this->values_) {
|
||||
// const J& j = value.first;
|
||||
// const typename J::Value& pj = value.second;
|
||||
// int cur_dim = pj.dim();
|
||||
// newValues.insert(j,pj.retract(sub(delta, delta_offset, delta_offset+cur_dim)));
|
||||
// delta_offset += cur_dim;
|
||||
// }
|
||||
// return newValues;
|
||||
// }
|
||||
|
||||
/* ************************************************************************* */
|
||||
// todo: insert for every element is inefficient
|
||||
// todo: currently only logmaps elements in both configs
|
||||
template<class J>
|
||||
inline VectorValues Values<J>::localCoordinates(const Values<J>& cp, const Ordering& ordering) const {
|
||||
VectorValues delta(this->dims(ordering));
|
||||
localCoordinates(cp, ordering, delta);
|
||||
return delta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
void Values<J>::localCoordinates(const Values<J>& cp, const Ordering& ordering, VectorValues& delta) const {
|
||||
typedef pair<J,typename J::Value> KeyValue;
|
||||
BOOST_FOREACH(const KeyValue& value, cp) {
|
||||
assert(this->exists(value.first));
|
||||
delta[ordering[value.first]] = this->at(value.first).localCoordinates(value.second);
|
||||
// We have already checked the type, so do a "blind" static_cast, not dynamic_cast
|
||||
return static_cast<const ValueType&>(*item->second);
|
||||
} else {
|
||||
return boost::none;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
const char* KeyDoesNotExist<J>::what() const throw() {
|
||||
if(message_.empty())
|
||||
message_ =
|
||||
"Attempting to " + std::string(operation_) + " the key \"" +
|
||||
(std::string)key_ + "\", which does not exist in the Values.";
|
||||
return message_.c_str();
|
||||
}
|
||||
template<class TypedKey>
|
||||
boost::optional<const typename TypedKey::Value&> Values::exists(const TypedKey& j) const {
|
||||
// Convert to Symbol
|
||||
const Symbol symbol(j.symbol());
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
const char* KeyAlreadyExists<J>::what() const throw() {
|
||||
if(message_.empty())
|
||||
message_ =
|
||||
"Attempting to add a key-value pair with key \"" + (std::string)key_ + "\", key already exists.";
|
||||
return message_.c_str();
|
||||
// Call exists with the Value type from the key
|
||||
return exists<typename TypedKey::Value>(symbol);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,213 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Values.h
|
||||
* @author Richard Roberts
|
||||
*
|
||||
* @brief A non-templated config holding any types of Manifold-group elements
|
||||
*
|
||||
* Detailed story:
|
||||
* A values structure is a map from keys to values. It is used to specify the value of a bunch
|
||||
* of variables in a factor graph. A Values is a values structure which can hold variables that
|
||||
* are elements on manifolds, not just vectors. It then, as a whole, implements a aggregate type
|
||||
* which is also a manifold element, and hence supports operations dim, retract, and localCoordinates.
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <list>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values::Values(const Values& other) {
|
||||
this->insert(other);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::print(const string& str) const {
|
||||
cout << str << "Values with " << size() << " values:\n" << endl;
|
||||
for(const_iterator key_value = begin(); key_value != end(); ++key_value) {
|
||||
cout << " " << (string)key_value->first << ": ";
|
||||
key_value->second.print("");
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Values::equals(const Values& other, double tol) const {
|
||||
if(this->size() != other.size())
|
||||
return false;
|
||||
for(const_iterator it1=this->begin(), it2=other.begin(); it1!=this->end(); ++it1, ++it2) {
|
||||
if(typeid(it1->second) != typeid(it2->second))
|
||||
return false;
|
||||
if(it1->first != it2->first)
|
||||
return false;
|
||||
if(!it1->second.equals_(it2->second, tol))
|
||||
return false;
|
||||
}
|
||||
return true; // We return false earlier if we find anything that does not match
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Values::exists(const Symbol& j) const {
|
||||
return values_.find(j) != values_.end();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues Values::zeroVectors(const Ordering& ordering) const {
|
||||
return VectorValues::Zero(this->dims(ordering));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values Values::retract(const VectorValues& delta, const Ordering& ordering) const {
|
||||
Values result;
|
||||
|
||||
for(const_iterator key_value = begin(); key_value != end(); ++key_value) {
|
||||
const SubVector& singleDelta = delta[ordering[key_value->first]]; // Delta for this value
|
||||
Symbol key = key_value->first; // Non-const duplicate to deal with non-const insert argument
|
||||
Value* retractedValue(key_value->second.retract_(singleDelta)); // Retract
|
||||
result.values_.insert(key, retractedValue); // Add retracted result directly to result values
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues Values::localCoordinates(const Values& cp, const Ordering& ordering) const {
|
||||
VectorValues result(this->dims(ordering));
|
||||
localCoordinates(cp, ordering, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::localCoordinates(const Values& cp, const Ordering& ordering, VectorValues& result) const {
|
||||
if(this->size() != cp.size())
|
||||
throw DynamicValuesMismatched();
|
||||
for(const_iterator it1=this->begin(), it2=cp.begin(); it1!=this->end(); ++it1, ++it2) {
|
||||
if(it1->first != it2->first)
|
||||
throw DynamicValuesMismatched(); // If keys do not match
|
||||
// Will throw a dynamic_cast exception if types do not match
|
||||
result.insert(ordering[it1->first], it1->second.localCoordinates_(it2->second));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::insert(const Symbol& j, const Value& val) {
|
||||
Symbol key = j; // Non-const duplicate to deal with non-const insert argument
|
||||
std::pair<iterator,bool> insertResult = values_.insert(key, val.clone_());
|
||||
if(!insertResult.second)
|
||||
throw ValuesKeyAlreadyExists(j);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::insert(const Values& values) {
|
||||
for(const_iterator key_value = values.begin(); key_value != values.end(); ++key_value) {
|
||||
Symbol key = key_value->first; // Non-const duplicate to deal with non-const insert argument
|
||||
insert(key, key_value->second);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::update(const Symbol& j, const Value& val) {
|
||||
// Find the value to update
|
||||
KeyValueMap::iterator item = values_.find(j);
|
||||
if(item == values_.end())
|
||||
throw ValuesKeyDoesNotExist("update", j);
|
||||
|
||||
// Cast to the derived type
|
||||
if(typeid(*item->second) != typeid(val))
|
||||
throw ValuesIncorrectType(j, typeid(*item->second), typeid(val));
|
||||
|
||||
values_.replace(item, val.clone_());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::update(const Values& values) {
|
||||
for(const_iterator key_value = values.begin(); key_value != values.end(); ++key_value) {
|
||||
this->update(key_value->first, key_value->second);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Values::erase(const Symbol& j) {
|
||||
KeyValueMap::iterator item = values_.find(j);
|
||||
if(item == values_.end())
|
||||
throw ValuesKeyDoesNotExist("erase", j);
|
||||
values_.erase(item);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
FastList<Symbol> Values::keys() const {
|
||||
FastList<Symbol> result;
|
||||
for(const_iterator key_value = begin(); key_value != end(); ++key_value)
|
||||
result.push_back(key_value->first);
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values& Values::operator=(const Values& rhs) {
|
||||
this->clear();
|
||||
this->insert(rhs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
vector<size_t> Values::dims(const Ordering& ordering) const {
|
||||
vector<size_t> result(values_.size());
|
||||
BOOST_FOREACH(const ConstKeyValuePair& key_value, *this) {
|
||||
result[ordering[key_value.first]] = key_value.second.dim();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Ordering::shared_ptr Values::orderingArbitrary(Index firstVar) const {
|
||||
Ordering::shared_ptr ordering(new Ordering);
|
||||
for(const_iterator key_value = begin(); key_value != end(); ++key_value) {
|
||||
ordering->insert(key_value->first, firstVar++);
|
||||
}
|
||||
return ordering;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const char* ValuesKeyAlreadyExists::what() const throw() {
|
||||
if(message_.empty())
|
||||
message_ =
|
||||
"Attempting to add a key-value pair with key \"" + (std::string)key_ + "\", key already exists.";
|
||||
return message_.c_str();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const char* ValuesKeyDoesNotExist::what() const throw() {
|
||||
if(message_.empty())
|
||||
message_ =
|
||||
"Attempting to " + std::string(operation_) + " the key \"" +
|
||||
(std::string)key_ + "\", which does not exist in the Values.";
|
||||
return message_.c_str();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const char* ValuesIncorrectType::what() const throw() {
|
||||
if(message_.empty())
|
||||
message_ =
|
||||
"Attempting to retrieve value with key \"" + (std::string)key_ + "\", type stored in Values is " +
|
||||
std::string(storedTypeId_.name()) + " but requested type was " + std::string(requestedTypeId_.name());
|
||||
return message_.c_str();
|
||||
}
|
||||
|
||||
}
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
@ -13,115 +13,159 @@
|
|||
* @file Values.h
|
||||
* @author Richard Roberts
|
||||
*
|
||||
* @brief A templated config for Manifold-group elements
|
||||
* @brief A non-templated config holding any types of Manifold-group elements
|
||||
*
|
||||
* Detailed story:
|
||||
* A values structure is a map from keys to values. It is used to specify the value of a bunch
|
||||
* of variables in a factor graph. A Values is a values structure which can hold variables that
|
||||
* are elements on manifolds, not just vectors. It then, as a whole, implements a aggregate type
|
||||
* which is also a manifold element, and hence supports operations dim, retract, and localCoordinates.
|
||||
* \nosubgrouping
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <boost/pool/pool_alloc.hpp>
|
||||
#include <boost/ptr_container/ptr_map.hpp>
|
||||
#include <boost/iterator/transform_iterator.hpp>
|
||||
#include <boost/function.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
#include <gtsam/base/Value.h>
|
||||
#include <gtsam/base/FastMap.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/Manifold.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
namespace boost { template<class T> class optional; }
|
||||
namespace gtsam { class VectorValues; class Ordering; }
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Forward declarations
|
||||
template<class J> class KeyDoesNotExist;
|
||||
template<class J> class KeyAlreadyExists;
|
||||
class ValueCloneAllocator;
|
||||
|
||||
/**
|
||||
* Manifold type values structure
|
||||
* Takes two template types
|
||||
* J: a key type to look up values in the values structure (need to be sortable)
|
||||
*
|
||||
* Key concept:
|
||||
* The key will be assumed to be sortable, and must have a
|
||||
* typedef called "Value" with the type of the value the key
|
||||
* labels (example: Pose2, Point2, etc)
|
||||
*/
|
||||
template<class J>
|
||||
/**
|
||||
* A non-templated config holding any types of Manifold-group elements. A
|
||||
* values structure is a map from keys to values. It is used to specify the
|
||||
* value of a bunch of variables in a factor graph. A Values is a values
|
||||
* structure which can hold variables that are elements on manifolds, not just
|
||||
* vectors. It then, as a whole, implements a aggregate type which is also a
|
||||
* manifold element, and hence supports operations dim, retract, and
|
||||
* localCoordinates.
|
||||
*/
|
||||
class Values {
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Typedefs
|
||||
*/
|
||||
typedef J Key;
|
||||
typedef typename J::Value Value;
|
||||
typedef std::map<Key, Value, std::less<Key>, boost::fast_pool_allocator<std::pair<const Key, Value> > > KeyValueMap;
|
||||
// typedef FastMap<J,Value> KeyValueMap;
|
||||
typedef typename KeyValueMap::value_type KeyValuePair;
|
||||
typedef typename KeyValueMap::iterator iterator;
|
||||
typedef typename KeyValueMap::const_iterator const_iterator;
|
||||
|
||||
private:
|
||||
|
||||
/** concept check */
|
||||
GTSAM_CONCEPT_TESTABLE_TYPE(Value)
|
||||
GTSAM_CONCEPT_MANIFOLD_TYPE(Value)
|
||||
// Internally we store a boost ptr_map, with a ValueCloneAllocator (defined
|
||||
// below) to clone and deallocate the Value objects, and a boost
|
||||
// fast_pool_allocator to allocate map nodes. In this way, all memory is
|
||||
// allocated in a boost memory pool.
|
||||
typedef boost::ptr_map<
|
||||
Symbol,
|
||||
Value,
|
||||
std::less<Symbol>,
|
||||
ValueCloneAllocator,
|
||||
boost::fast_pool_allocator<std::pair<const Symbol, void*> > > KeyValueMap;
|
||||
|
||||
// The member to store the values, see just above
|
||||
KeyValueMap values_;
|
||||
|
||||
// Types obtained by iterating
|
||||
typedef KeyValueMap::const_iterator::value_type ConstKeyValuePtrPair;
|
||||
typedef KeyValueMap::iterator::value_type KeyValuePtrPair;
|
||||
|
||||
public:
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
/// A shared_ptr to this class
|
||||
typedef boost::shared_ptr<Values> shared_ptr;
|
||||
|
||||
///TODO comment
|
||||
/// A pair of const references to the key and value, the dereferenced type of the const_iterator and const_reverse_iterator
|
||||
typedef std::pair<const Symbol&, const Value&> ConstKeyValuePair;
|
||||
|
||||
/// A pair of references to the key and value, the dereferenced type of the iterator and reverse_iterator
|
||||
typedef std::pair<const Symbol&, Value&> KeyValuePair;
|
||||
|
||||
/// Mutable forward iterator, with value type KeyValuePair
|
||||
typedef boost::transform_iterator<
|
||||
boost::function1<KeyValuePair, const KeyValuePtrPair&>, KeyValueMap::iterator> iterator;
|
||||
|
||||
/// Const forward iterator, with value type ConstKeyValuePair
|
||||
typedef boost::transform_iterator<
|
||||
boost::function1<ConstKeyValuePair, const ConstKeyValuePtrPair&>, KeyValueMap::const_iterator> const_iterator;
|
||||
|
||||
/// Mutable reverse iterator, with value type KeyValuePair
|
||||
typedef boost::transform_iterator<
|
||||
boost::function1<KeyValuePair, const KeyValuePtrPair&>, KeyValueMap::reverse_iterator> reverse_iterator;
|
||||
|
||||
/// Const reverse iterator, with value type ConstKeyValuePair
|
||||
typedef boost::transform_iterator<
|
||||
boost::function1<ConstKeyValuePair, const ConstKeyValuePtrPair&>, KeyValueMap::const_reverse_iterator> const_reverse_iterator;
|
||||
|
||||
/** Default constructor creates an empty Values class */
|
||||
Values() {}
|
||||
|
||||
///TODO: comment
|
||||
Values(const Values& config) :
|
||||
values_(config.values_) {}
|
||||
/** Copy constructor duplicates all keys and values */
|
||||
Values(const Values& other);
|
||||
|
||||
///TODO: comment
|
||||
template<class J_ALT>
|
||||
Values(const Values<J_ALT>& other) {} // do nothing when initializing with wrong type
|
||||
virtual ~Values() {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/** print */
|
||||
void print(const std::string &s="") const;
|
||||
/** print method for testing and debugging */
|
||||
void print(const std::string& str = "") const;
|
||||
|
||||
/** Test whether configs are identical in keys and values */
|
||||
bool equals(const Values& expected, double tol=1e-9) const;
|
||||
/** Test whether the sets of keys and values are identical */
|
||||
bool equals(const Values& other, double tol=1e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/** Retrieve a variable by j, throws KeyDoesNotExist<J> if not found */
|
||||
const Value& at(const J& j) const;
|
||||
/** Retrieve a variable by key \c j. The type of the value associated with
|
||||
* this key is supplied as a template argument to this function.
|
||||
* @param j Retrieve the value associated with this key
|
||||
* @tparam Value The type of the value stored with this key, this method
|
||||
* throws DynamicValuesIncorrectType if this requested type is not correct.
|
||||
* @return A const reference to the stored value
|
||||
*/
|
||||
template<typename ValueType>
|
||||
const ValueType& at(const Symbol& j) const;
|
||||
|
||||
/** operator[] syntax for get, throws KeyDoesNotExist<J> if not found */
|
||||
const Value& operator[](const J& j) const {
|
||||
/** Retrieve a variable using a special key (typically TypedSymbol), which
|
||||
* contains the type of the value associated with the key, and which must
|
||||
* be conversion constructible to a Symbol, e.g.
|
||||
* <tt>Symbol(const TypedKey&)</tt>. Throws DynamicValuesKeyDoesNotExist
|
||||
* the key is not found, and DynamicValuesIncorrectType if the value type
|
||||
* associated with the requested key does not match the stored value type.
|
||||
*/
|
||||
template<class TypedKey>
|
||||
const typename TypedKey::Value& at(const TypedKey& j) const;
|
||||
|
||||
/** operator[] syntax for at(const TypedKey& j) */
|
||||
template<class TypedKey>
|
||||
const typename TypedKey::Value& operator[](const TypedKey& j) const {
|
||||
return at(j); }
|
||||
|
||||
/** Check if a variable exists */
|
||||
bool exists(const J& i) const { return values_.find(i)!=values_.end(); }
|
||||
/** Check if a value exists with key \c j. See exists<>(const Symbol& j)
|
||||
* and exists(const TypedKey& j) for versions that return the value if it
|
||||
* exists. */
|
||||
bool exists(const Symbol& j) const;
|
||||
|
||||
/** Check if a variable exists and return it if so */
|
||||
boost::optional<Value> exists_(const J& i) const {
|
||||
const_iterator it = values_.find(i);
|
||||
if (it==values_.end()) return boost::none; else return it->second;
|
||||
}
|
||||
/** Check if a value with key \c j exists, returns the value with type
|
||||
* \c Value if the key does exist, or boost::none if it does not exist.
|
||||
* Throws DynamicValuesIncorrectType if the value type associated with the
|
||||
* requested key does not match the stored value type. */
|
||||
template<typename ValueType>
|
||||
boost::optional<const ValueType&> exists(const Symbol& j) const;
|
||||
|
||||
/** Check if a value with key \c j exists, returns the value with type
|
||||
* \c Value if the key does exist, or boost::none if it does not exist.
|
||||
* Uses a special key (typically TypedSymbol), which contains the type of
|
||||
* the value associated with the key, and which must be conversion
|
||||
* constructible to a Symbol, e.g. <tt>Symbol(const TypedKey&)</tt>. Throws
|
||||
* DynamicValuesIncorrectType if the value type associated with the
|
||||
* requested key does not match the stored value type.
|
||||
*/
|
||||
template<class TypedKey>
|
||||
boost::optional<const typename TypedKey::Value&> exists(const TypedKey& j) const;
|
||||
|
||||
/** The number of variables in this config */
|
||||
size_t size() const { return values_.size(); }
|
||||
|
@ -130,10 +174,64 @@ namespace gtsam {
|
|||
bool empty() const { return values_.empty(); }
|
||||
|
||||
/** Get a zero VectorValues of the correct structure */
|
||||
VectorValues zero(const Ordering& ordering) const;
|
||||
VectorValues zeroVectors(const Ordering& ordering) const;
|
||||
|
||||
const_iterator begin() const { return values_.begin(); } ///<TODO: comment
|
||||
const_iterator end() const { return values_.end(); } ///<TODO: comment
|
||||
private:
|
||||
static std::pair<const Symbol&, const Value&> make_const_deref_pair(const KeyValueMap::const_iterator::value_type& key_value) {
|
||||
return std::make_pair<const Symbol&, const Value&>(key_value.first, *key_value.second); }
|
||||
static std::pair<const Symbol&, Value&> make_deref_pair(const KeyValueMap::iterator::value_type& key_value) {
|
||||
return std::make_pair<const Symbol&, Value&>(key_value.first, *key_value.second); }
|
||||
|
||||
public:
|
||||
const_iterator begin() const { return boost::make_transform_iterator(values_.begin(), &make_const_deref_pair); }
|
||||
const_iterator end() const { return boost::make_transform_iterator(values_.end(), &make_const_deref_pair); }
|
||||
iterator begin() { return boost::make_transform_iterator(values_.begin(), &make_deref_pair); }
|
||||
iterator end() { return boost::make_transform_iterator(values_.end(), &make_deref_pair); }
|
||||
const_reverse_iterator rbegin() const { return boost::make_transform_iterator(values_.rbegin(), &make_const_deref_pair); }
|
||||
const_reverse_iterator rend() const { return boost::make_transform_iterator(values_.rend(), &make_const_deref_pair); }
|
||||
reverse_iterator rbegin() { return boost::make_transform_iterator(values_.rbegin(), &make_deref_pair); }
|
||||
reverse_iterator rend() { return boost::make_transform_iterator(values_.rend(), &make_deref_pair); }
|
||||
|
||||
/// @name Manifold Operations
|
||||
/// @{
|
||||
|
||||
/** Add a delta config to current config and returns a new config */
|
||||
Values retract(const VectorValues& delta, const Ordering& ordering) const;
|
||||
|
||||
/** Get a delta config about a linearization point c0 (*this) */
|
||||
VectorValues localCoordinates(const Values& cp, const Ordering& ordering) const;
|
||||
|
||||
/** Get a delta config about a linearization point c0 (*this) */
|
||||
void localCoordinates(const Values& cp, const Ordering& ordering, VectorValues& delta) const;
|
||||
|
||||
///@}
|
||||
|
||||
/** Add a variable with the given j, throws KeyAlreadyExists<J> if j is already present */
|
||||
void insert(const Symbol& j, const Value& val);
|
||||
|
||||
/** Add a set of variables, throws KeyAlreadyExists<J> if a key is already present */
|
||||
void insert(const Values& values);
|
||||
|
||||
/** single element change of existing element */
|
||||
void update(const Symbol& j, const Value& val);
|
||||
|
||||
/** update the current available values without adding new ones */
|
||||
void update(const Values& values);
|
||||
|
||||
/** Remove a variable from the config, throws KeyDoesNotExist<J> if j is not present */
|
||||
void erase(const Symbol& j);
|
||||
|
||||
/**
|
||||
* Returns a set of keys in the config
|
||||
* Note: by construction, the list is ordered
|
||||
*/
|
||||
FastList<Symbol> keys() const;
|
||||
|
||||
/** Replace all keys and variables */
|
||||
Values& operator=(const Values& rhs);
|
||||
|
||||
/** Remove all variables from the config */
|
||||
void clear() { values_.clear(); }
|
||||
|
||||
/** Create an array of variable dimensions using the given ordering */
|
||||
std::vector<size_t> dims(const Ordering& ordering) const;
|
||||
|
@ -146,174 +244,97 @@ namespace gtsam {
|
|||
*/
|
||||
Ordering::shared_ptr orderingArbitrary(Index firstVar = 0) const;
|
||||
|
||||
/// @}
|
||||
/// @name Manifold Operations
|
||||
/// @{
|
||||
|
||||
/** The dimensionality of the tangent space */
|
||||
size_t dim() const;
|
||||
|
||||
/** Add a delta config to current config and returns a new config */
|
||||
Values retract(const VectorValues& delta, const Ordering& ordering) const;
|
||||
|
||||
/** Get a delta config about a linearization point c0 (*this) */
|
||||
VectorValues localCoordinates(const Values& cp, const Ordering& ordering) const;
|
||||
|
||||
/** Get a delta config about a linearization point c0 (*this) */
|
||||
void localCoordinates(const Values& cp, const Ordering& ordering, VectorValues& delta) const;
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
// imperative methods:
|
||||
|
||||
iterator begin() { return values_.begin(); } ///<TODO: comment
|
||||
iterator end() { return values_.end(); } ///<TODO: comment
|
||||
|
||||
/** Add a variable with the given j, throws KeyAlreadyExists<J> if j is already present */
|
||||
void insert(const J& j, const Value& val);
|
||||
|
||||
/** Add a set of variables, throws KeyAlreadyExists<J> if a key is already present */
|
||||
void insert(const Values& cfg);
|
||||
|
||||
/** update the current available values without adding new ones */
|
||||
void update(const Values& cfg);
|
||||
|
||||
/** single element change of existing element */
|
||||
void update(const J& j, const Value& val);
|
||||
|
||||
/** Remove a variable from the config, throws KeyDoesNotExist<J> if j is not present */
|
||||
void erase(const J& j);
|
||||
|
||||
/** Remove a variable from the config while returning the dimensionality of
|
||||
* the removed element (normally not needed by user code), throws
|
||||
* KeyDoesNotExist<J> if j is not present.
|
||||
*/
|
||||
void erase(const J& j, size_t& dim);
|
||||
|
||||
/**
|
||||
* Returns a set of keys in the config
|
||||
* Note: by construction, the list is ordered
|
||||
*/
|
||||
std::list<J> keys() const;
|
||||
|
||||
/** Replace all keys and variables */
|
||||
Values& operator=(const Values& rhs) {
|
||||
values_ = rhs.values_;
|
||||
return (*this);
|
||||
}
|
||||
|
||||
/** Remove all variables from the config */
|
||||
void clear() {
|
||||
values_.clear();
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply a class with an application operator() to a const_iterator over
|
||||
* every <key,value> pair. The operator must be able to handle such an
|
||||
* iterator for every type in the Values, (i.e. through templating).
|
||||
*/
|
||||
template<typename A>
|
||||
void apply(A& operation) {
|
||||
for(iterator it = begin(); it != end(); ++it)
|
||||
operation(it);
|
||||
}
|
||||
template<typename A>
|
||||
void apply(A& operation) const {
|
||||
for(const_iterator it = begin(); it != end(); ++it)
|
||||
operation(it);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_NVP(values_);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct _ValuesDimensionCollector {
|
||||
const Ordering& ordering;
|
||||
std::vector<size_t> dimensions;
|
||||
_ValuesDimensionCollector(const Ordering& _ordering) : ordering(_ordering), dimensions(_ordering.nVars()) {}
|
||||
template<typename I> void operator()(const I& key_value) {
|
||||
Index var;
|
||||
if(ordering.tryAt(key_value->first, var)) {
|
||||
assert(var < dimensions.size());
|
||||
dimensions[var] = key_value->second.dim();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
struct _ValuesKeyOrderer {
|
||||
Index var;
|
||||
Ordering::shared_ptr ordering;
|
||||
_ValuesKeyOrderer(Index firstVar) : var(firstVar), ordering(new Ordering) {}
|
||||
template<typename I> void operator()(const I& key_value) {
|
||||
ordering->insert(key_value->first, var);
|
||||
++ var;
|
||||
class ValuesKeyAlreadyExists : public std::exception {
|
||||
protected:
|
||||
const Symbol key_; ///< The key that already existed
|
||||
|
||||
private:
|
||||
mutable std::string message_;
|
||||
|
||||
public:
|
||||
/// Construct with the key-value pair attemped to be added
|
||||
ValuesKeyAlreadyExists(const Symbol& key) throw() :
|
||||
key_(key) {}
|
||||
|
||||
virtual ~ValuesKeyAlreadyExists() throw() {}
|
||||
|
||||
/// The duplicate key that was attemped to be added
|
||||
const Symbol& key() const throw() { return key_; }
|
||||
|
||||
/// The message to be displayed to the user
|
||||
virtual const char* what() const throw();
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
class ValuesKeyDoesNotExist : public std::exception {
|
||||
protected:
|
||||
const char* operation_; ///< The operation that attempted to access the key
|
||||
const Symbol key_; ///< The key that does not exist
|
||||
|
||||
private:
|
||||
mutable std::string message_;
|
||||
|
||||
public:
|
||||
/// Construct with the key that does not exist in the values
|
||||
ValuesKeyDoesNotExist(const char* operation, const Symbol& key) throw() :
|
||||
operation_(operation), key_(key) {}
|
||||
|
||||
virtual ~ValuesKeyDoesNotExist() throw() {}
|
||||
|
||||
/// The key that was attempted to be accessed that does not exist
|
||||
const Symbol& key() const throw() { return key_; }
|
||||
|
||||
/// The message to be displayed to the user
|
||||
virtual const char* what() const throw();
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
class ValuesIncorrectType : public std::exception {
|
||||
protected:
|
||||
const Symbol key_; ///< The key requested
|
||||
const std::type_info& storedTypeId_;
|
||||
const std::type_info& requestedTypeId_;
|
||||
|
||||
private:
|
||||
mutable std::string message_;
|
||||
|
||||
public:
|
||||
/// Construct with the key that does not exist in the values
|
||||
ValuesIncorrectType(const Symbol& key,
|
||||
const std::type_info& storedTypeId, const std::type_info& requestedTypeId) throw() :
|
||||
key_(key), storedTypeId_(storedTypeId), requestedTypeId_(requestedTypeId) {}
|
||||
|
||||
virtual ~ValuesIncorrectType() throw() {}
|
||||
|
||||
/// The key that was attempted to be accessed that does not exist
|
||||
const Symbol& key() const throw() { return key_; }
|
||||
|
||||
/// The typeid of the value stores in the Values
|
||||
const std::type_info& storedTypeId() const { return storedTypeId_; }
|
||||
|
||||
/// The requested typeid
|
||||
const std::type_info& requestedTypeId() const { return requestedTypeId_; }
|
||||
|
||||
/// The message to be displayed to the user
|
||||
virtual const char* what() const throw();
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
class DynamicValuesMismatched : public std::exception {
|
||||
|
||||
public:
|
||||
DynamicValuesMismatched() throw() {}
|
||||
|
||||
virtual ~DynamicValuesMismatched() throw() {}
|
||||
|
||||
virtual const char* what() const throw() {
|
||||
return "The Values 'this' and the argument passed to Values::localCoordinates have mismatched keys and values";
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
class KeyAlreadyExists : public std::exception {
|
||||
protected:
|
||||
const J key_; ///< The key that already existed
|
||||
const typename J::Value value_; ///< The value attempted to be inserted
|
||||
|
||||
private:
|
||||
mutable std::string message_;
|
||||
|
||||
public:
|
||||
/// Construct with the key-value pair attemped to be added
|
||||
KeyAlreadyExists(const J& key, const typename J::Value& value) throw() :
|
||||
key_(key), value_(value) {}
|
||||
|
||||
virtual ~KeyAlreadyExists() throw() {}
|
||||
|
||||
/// The duplicate key that was attemped to be added
|
||||
const J& key() const throw() { return key_; }
|
||||
|
||||
/// The value that was attempted to be added
|
||||
const typename J::Value& value() const throw() { return value_; }
|
||||
|
||||
/// The message to be displayed to the user
|
||||
virtual const char* what() const throw();
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class J>
|
||||
class KeyDoesNotExist : public std::exception {
|
||||
protected:
|
||||
const char* operation_; ///< The operation that attempted to access the key
|
||||
const J key_; ///< The key that does not exist
|
||||
|
||||
private:
|
||||
mutable std::string message_;
|
||||
|
||||
public:
|
||||
/// Construct with the key that does not exist in the values
|
||||
KeyDoesNotExist(const char* operation, const J& key) throw() :
|
||||
operation_(operation), key_(key) {}
|
||||
|
||||
virtual ~KeyDoesNotExist() throw() {}
|
||||
|
||||
/// The key that was attempted to be accessed that does not exist
|
||||
const J& key() const throw() { return key_; }
|
||||
|
||||
/// The message to be displayed to the user
|
||||
virtual const char* what() const throw();
|
||||
};
|
||||
|
||||
} // \namespace gtsam
|
||||
}
|
||||
|
||||
#include <gtsam/nonlinear/Values-inl.h>
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testValues.cpp
|
||||
* @file testDynamicValues.cpp
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
|
@ -22,6 +22,7 @@ using namespace boost::assign;
|
|||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
@ -29,27 +30,26 @@ using namespace std;
|
|||
static double inf = std::numeric_limits<double>::infinity();
|
||||
|
||||
typedef TypedSymbol<LieVector, 'v'> VecKey;
|
||||
typedef Values<VecKey> TestValues;
|
||||
|
||||
VecKey key1(1), key2(2), key3(3), key4(4);
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, equals1 )
|
||||
TEST( Values, equals1 )
|
||||
{
|
||||
TestValues expected;
|
||||
Vector v = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Values expected;
|
||||
LieVector v(3, 5.0, 6.0, 7.0);
|
||||
expected.insert(key1,v);
|
||||
TestValues actual;
|
||||
Values actual;
|
||||
actual.insert(key1,v);
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, equals2 )
|
||||
TEST( Values, equals2 )
|
||||
{
|
||||
TestValues cfg1, cfg2;
|
||||
Vector v1 = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Vector v2 = Vector_(3, 5.0, 6.0, 8.0);
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 5.0, 6.0, 8.0);
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -57,11 +57,11 @@ TEST( TestValues, equals2 )
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, equals_nan )
|
||||
TEST( Values, equals_nan )
|
||||
{
|
||||
TestValues cfg1, cfg2;
|
||||
Vector v1 = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Vector v2 = Vector_(3, inf, inf, inf);
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, inf, inf, inf);
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -69,13 +69,13 @@ TEST( TestValues, equals_nan )
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, insert_good )
|
||||
TEST( Values, insert_good )
|
||||
{
|
||||
TestValues cfg1, cfg2, expected;
|
||||
Vector v1 = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Vector v2 = Vector_(3, 8.0, 9.0, 1.0);
|
||||
Vector v3 = Vector_(3, 2.0, 4.0, 3.0);
|
||||
Vector v4 = Vector_(3, 8.0, 3.0, 7.0);
|
||||
Values cfg1, cfg2, expected;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key3, v4);
|
||||
|
@ -86,31 +86,31 @@ TEST( TestValues, insert_good )
|
|||
expected.insert(key2, v2);
|
||||
expected.insert(key3, v4);
|
||||
|
||||
CHECK(assert_equal(cfg1, expected));
|
||||
CHECK(assert_equal(expected, cfg1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, insert_bad )
|
||||
TEST( Values, insert_bad )
|
||||
{
|
||||
TestValues cfg1, cfg2;
|
||||
Vector v1 = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Vector v2 = Vector_(3, 8.0, 9.0, 1.0);
|
||||
Vector v3 = Vector_(3, 2.0, 4.0, 3.0);
|
||||
Vector v4 = Vector_(3, 8.0, 3.0, 7.0);
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key2, v3);
|
||||
cfg2.insert(key3, v4);
|
||||
|
||||
CHECK_EXCEPTION(cfg1.insert(cfg2), const KeyAlreadyExists<VecKey>);
|
||||
CHECK_EXCEPTION(cfg1.insert(cfg2), ValuesKeyAlreadyExists);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestValues, update_element )
|
||||
TEST( Values, update_element )
|
||||
{
|
||||
TestValues cfg;
|
||||
Vector v1 = Vector_(3, 5.0, 6.0, 7.0);
|
||||
Vector v2 = Vector_(3, 8.0, 9.0, 1.0);
|
||||
Values cfg;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
|
||||
cfg.insert(key1, v1);
|
||||
CHECK(cfg.size() == 1);
|
||||
|
@ -122,12 +122,12 @@ TEST( TestValues, update_element )
|
|||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST(TestValues, dim_zero)
|
||||
//TEST(Values, dim_zero)
|
||||
//{
|
||||
// TestValues config0;
|
||||
// config0.insert(key1, Vector_(2, 2.0, 3.0));
|
||||
// config0.insert(key2, Vector_(3, 5.0, 6.0, 7.0));
|
||||
// LONGS_EQUAL(5,config0.dim());
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(2, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
// LONGS_EQUAL(5, config0.dim());
|
||||
//
|
||||
// VectorValues expected;
|
||||
// expected.insert(key1, zero(2));
|
||||
|
@ -136,151 +136,130 @@ TEST( TestValues, update_element )
|
|||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(TestValues, expmap_a)
|
||||
TEST(Values, expmap_a)
|
||||
{
|
||||
TestValues config0;
|
||||
config0.insert(key1, Vector_(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, Vector_(3, 5.0, 6.0, 7.0));
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
|
||||
Ordering ordering(*config0.orderingArbitrary());
|
||||
VectorValues increment(config0.dims(ordering));
|
||||
increment[ordering[key1]] = Vector_(3, 1.0, 1.1, 1.2);
|
||||
increment[ordering[key2]] = Vector_(3, 1.3, 1.4, 1.5);
|
||||
|
||||
TestValues expected;
|
||||
expected.insert(key1, Vector_(3, 2.0, 3.1, 4.2));
|
||||
expected.insert(key2, Vector_(3, 6.3, 7.4, 8.5));
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment, ordering)));
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST(TestValues, expmap_b)
|
||||
//{
|
||||
// TestValues config0;
|
||||
// config0.insert(key1, Vector_(3, 1.0, 2.0, 3.0));
|
||||
// config0.insert(key2, Vector_(3, 5.0, 6.0, 7.0));
|
||||
//
|
||||
// Ordering ordering(*config0.orderingArbitrary());
|
||||
// VectorValues increment(config0.dims(ordering));
|
||||
// increment[ordering[key2]] = Vector_(3, 1.3, 1.4, 1.5);
|
||||
//
|
||||
// TestValues expected;
|
||||
// expected.insert(key1, Vector_(3, 1.0, 2.0, 3.0));
|
||||
// expected.insert(key2, Vector_(3, 6.3, 7.4, 8.5));
|
||||
//
|
||||
// CHECK(assert_equal(expected, config0.retract(increment, ordering)));
|
||||
//}
|
||||
/* ************************************************************************* */
|
||||
TEST(Values, expmap_b)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST(TestValues, expmap_c)
|
||||
Ordering ordering(*config0.orderingArbitrary());
|
||||
VectorValues increment(VectorValues::Zero(config0.dims(ordering)));
|
||||
increment[ordering[key2]] = LieVector(3, 1.3, 1.4, 1.5);
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment, ordering)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
//TEST(Values, expmap_c)
|
||||
//{
|
||||
// TestValues config0;
|
||||
// config0.insert(key1, Vector_(3, 1.0, 2.0, 3.0));
|
||||
// config0.insert(key2, Vector_(3, 5.0, 6.0, 7.0));
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
//
|
||||
// Vector increment = Vector_(6,
|
||||
// Vector increment = LieVector(6,
|
||||
// 1.0, 1.1, 1.2,
|
||||
// 1.3, 1.4, 1.5);
|
||||
//
|
||||
// TestValues expected;
|
||||
// expected.insert(key1, Vector_(3, 2.0, 3.1, 4.2));
|
||||
// expected.insert(key2, Vector_(3, 6.3, 7.4, 8.5));
|
||||
// Values expected;
|
||||
// expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
// expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
//
|
||||
// CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/*TEST(TestValues, expmap_d)
|
||||
TEST(Values, expmap_d)
|
||||
{
|
||||
TestValues config0;
|
||||
config0.insert(key1, Vector_(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, Vector_(3, 5.0, 6.0, 7.0));
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
//config0.print("config0");
|
||||
CHECK(equal(config0, config0));
|
||||
CHECK(config0.equals(config0));
|
||||
|
||||
TestValues<string,Pose2> poseconfig;
|
||||
poseconfig.insert("p1", Pose2(1,2,3));
|
||||
poseconfig.insert("p2", Pose2(0.3, 0.4, 0.5));
|
||||
//poseconfig.print("poseconfig");
|
||||
typedef TypedSymbol<Pose2, 'p'> PoseKey;
|
||||
Values poseconfig;
|
||||
poseconfig.insert(PoseKey(1), Pose2(1,2,3));
|
||||
poseconfig.insert(PoseKey(2), Pose2(0.3, 0.4, 0.5));
|
||||
|
||||
CHECK(equal(config0, config0));
|
||||
CHECK(config0.equals(config0));
|
||||
}*/
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/*TEST(TestValues, extract_keys)
|
||||
TEST(Values, extract_keys)
|
||||
{
|
||||
typedef TypedSymbol<Pose2, 'x'> PoseKey;
|
||||
TestValues<PoseKey, Pose2> config;
|
||||
Values config;
|
||||
|
||||
config.insert(PoseKey(1), Pose2());
|
||||
config.insert(PoseKey(2), Pose2());
|
||||
config.insert(PoseKey(4), Pose2());
|
||||
config.insert(PoseKey(5), Pose2());
|
||||
|
||||
list<PoseKey> expected, actual;
|
||||
FastList<Symbol> expected, actual;
|
||||
expected += PoseKey(1), PoseKey(2), PoseKey(4), PoseKey(5);
|
||||
actual = config.keys();
|
||||
|
||||
CHECK(actual.size() == expected.size());
|
||||
list<PoseKey>::const_iterator itAct = actual.begin(), itExp = expected.begin();
|
||||
FastList<Symbol>::const_iterator itAct = actual.begin(), itExp = expected.begin();
|
||||
for (; itAct != actual.end() && itExp != expected.end(); ++itAct, ++itExp) {
|
||||
CHECK(assert_equal(*itExp, *itAct));
|
||||
}
|
||||
}*/
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(TestValues, exists_)
|
||||
TEST(Values, exists_)
|
||||
{
|
||||
TestValues config0;
|
||||
config0.insert(key1, Vector_(1, 1.));
|
||||
config0.insert(key2, Vector_(1, 2.));
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(Vector_(1, 1.)));
|
||||
config0.insert(key2, LieVector(Vector_(1, 2.)));
|
||||
|
||||
boost::optional<LieVector> v = config0.exists_(key1);
|
||||
boost::optional<const LieVector&> v = config0.exists(key1);
|
||||
CHECK(assert_equal(Vector_(1, 1.),*v));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(TestValues, update)
|
||||
TEST(Values, update)
|
||||
{
|
||||
TestValues config0;
|
||||
config0.insert(key1, Vector_(1, 1.));
|
||||
config0.insert(key2, Vector_(1, 2.));
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(1, 1.));
|
||||
config0.insert(key2, LieVector(1, 2.));
|
||||
|
||||
TestValues superset;
|
||||
superset.insert(key1, Vector_(1, -1.));
|
||||
superset.insert(key2, Vector_(1, -2.));
|
||||
superset.insert(key3, Vector_(1, -3.));
|
||||
Values superset;
|
||||
superset.insert(key1, LieVector(1, -1.));
|
||||
superset.insert(key2, LieVector(1, -2.));
|
||||
config0.update(superset);
|
||||
|
||||
TestValues expected;
|
||||
expected.insert(key1, Vector_(1, -1.));
|
||||
expected.insert(key2, Vector_(1, -2.));
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(1, -1.));
|
||||
expected.insert(key2, LieVector(1, -2.));
|
||||
CHECK(assert_equal(expected,config0));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(TestValues, dummy_initialization)
|
||||
{
|
||||
typedef TypedSymbol<LieVector, 'z'> Key;
|
||||
typedef Values<Key> Values1;
|
||||
|
||||
Values1 init1;
|
||||
init1.insert(Key(1), Vector_(2, 1.0, 2.0));
|
||||
init1.insert(Key(2), Vector_(2, 4.0, 3.0));
|
||||
|
||||
TestValues init2;
|
||||
init2.insert(key1, Vector_(2, 1.0, 2.0));
|
||||
init2.insert(key2, Vector_(2, 4.0, 3.0));
|
||||
|
||||
Values1 actual1(init2);
|
||||
TestValues actual2(init1);
|
||||
|
||||
EXPECT(actual1.empty());
|
||||
EXPECT(actual2.empty());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -27,27 +27,26 @@ namespace gtsam {
|
|||
* linearized Hessian matrices of the original factor, but with the opposite sign. This effectively
|
||||
* cancels out any affects of the original factor during optimization."
|
||||
*/
|
||||
template<class VALUES>
|
||||
class AntiFactor: public NonlinearFactor<VALUES> {
|
||||
class AntiFactor: public NonlinearFactor {
|
||||
|
||||
private:
|
||||
|
||||
typedef AntiFactor<VALUES> This;
|
||||
typedef NonlinearFactor<VALUES> Base;
|
||||
typedef typename NonlinearFactor<VALUES>::shared_ptr sharedFactor;
|
||||
typedef AntiFactor This;
|
||||
typedef NonlinearFactor Base;
|
||||
typedef NonlinearFactor::shared_ptr sharedFactor;
|
||||
|
||||
sharedFactor factor_;
|
||||
|
||||
public:
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef typename boost::shared_ptr<AntiFactor> shared_ptr;
|
||||
typedef boost::shared_ptr<AntiFactor> shared_ptr;
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
AntiFactor() {}
|
||||
|
||||
/** constructor - Creates the equivalent AntiFactor from an existing factor */
|
||||
AntiFactor(typename NonlinearFactor<VALUES>::shared_ptr factor) : Base(factor->begin(), factor->end()), factor_(factor) {}
|
||||
AntiFactor(NonlinearFactor::shared_ptr factor) : Base(factor->begin(), factor->end()), factor_(factor) {}
|
||||
|
||||
virtual ~AntiFactor() {}
|
||||
|
||||
|
@ -60,7 +59,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->factor_->equals(*e->factor_, tol);
|
||||
}
|
||||
|
@ -72,7 +71,7 @@ namespace gtsam {
|
|||
* For the AntiFactor, this will have the same magnitude of the original factor,
|
||||
* but the opposite sign.
|
||||
*/
|
||||
double error(const VALUES& c) const { return -factor_->error(c); }
|
||||
double error(const Values& c) const { return -factor_->error(c); }
|
||||
|
||||
/** get the dimension of the factor (same as the original factor) */
|
||||
size_t dim() const { return factor_->dim(); }
|
||||
|
@ -81,7 +80,7 @@ namespace gtsam {
|
|||
* Checks whether this factor should be used based on a set of values.
|
||||
* The AntiFactor will have the same 'active' profile as the original factor.
|
||||
*/
|
||||
bool active(const VALUES& c) const { return factor_->active(c); }
|
||||
bool active(const Values& c) const { return factor_->active(c); }
|
||||
|
||||
/**
|
||||
* Linearize to a GaussianFactor. The AntiFactor always returns a Hessian Factor
|
||||
|
@ -90,7 +89,7 @@ namespace gtsam {
|
|||
* effectively cancels the effect of the original factor on the factor graph.
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor>
|
||||
linearize(const VALUES& c, const Ordering& ordering) const {
|
||||
linearize(const Values& c, const Ordering& ordering) const {
|
||||
|
||||
// Generate the linearized factor from the contained nonlinear factor
|
||||
GaussianFactor::shared_ptr gaussianFactor = factor_->linearize(c, ordering);
|
||||
|
|
|
@ -25,16 +25,16 @@ namespace gtsam {
|
|||
/**
|
||||
* Binary factor for a bearing measurement
|
||||
*/
|
||||
template<class VALUES, class POSEKEY, class POINTKEY>
|
||||
class BearingFactor: public NonlinearFactor2<VALUES, POSEKEY, POINTKEY> {
|
||||
template<class POSEKEY, class POINTKEY>
|
||||
class BearingFactor: public NonlinearFactor2<POSEKEY, POINTKEY> {
|
||||
private:
|
||||
|
||||
typedef typename POSEKEY::Value Pose;
|
||||
typedef typename POSEKEY::Value::Rotation Rot;
|
||||
typedef typename POINTKEY::Value Point;
|
||||
|
||||
typedef BearingFactor<VALUES, POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<VALUES, POSEKEY, POINTKEY> Base;
|
||||
typedef BearingFactor<POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<POSEKEY, POINTKEY> Base;
|
||||
|
||||
Rot z_; /** measurement */
|
||||
|
||||
|
@ -68,7 +68,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->z_.equals(e->z_, tol);
|
||||
}
|
||||
|
|
|
@ -27,16 +27,16 @@ namespace gtsam {
|
|||
/**
|
||||
* Binary factor for a bearing measurement
|
||||
*/
|
||||
template<class VALUES, class POSEKEY, class POINTKEY>
|
||||
class BearingRangeFactor: public NonlinearFactor2<VALUES, POSEKEY, POINTKEY> {
|
||||
template<class POSEKEY, class POINTKEY>
|
||||
class BearingRangeFactor: public NonlinearFactor2<POSEKEY, POINTKEY> {
|
||||
private:
|
||||
|
||||
typedef typename POSEKEY::Value Pose;
|
||||
typedef typename POSEKEY::Value::Rotation Rot;
|
||||
typedef typename POINTKEY::Value Point;
|
||||
|
||||
typedef BearingRangeFactor<VALUES, POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<VALUES, POSEKEY, POINTKEY> Base;
|
||||
typedef BearingRangeFactor<POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<POSEKEY, POINTKEY> Base;
|
||||
|
||||
// the measurement
|
||||
Rot bearing_;
|
||||
|
@ -68,7 +68,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) &&
|
||||
fabs(this->range_ - e->range_) < tol &&
|
||||
|
|
|
@ -29,13 +29,13 @@ namespace gtsam {
|
|||
* KEY1::Value is the Lie Group type
|
||||
* T is the measurement type, by default the same
|
||||
*/
|
||||
template<class VALUES, class KEY1, class T = typename KEY1::Value>
|
||||
class BetweenFactor: public NonlinearFactor2<VALUES, KEY1, KEY1> {
|
||||
template<class KEY1, class T = typename KEY1::Value>
|
||||
class BetweenFactor: public NonlinearFactor2<KEY1, KEY1> {
|
||||
|
||||
private:
|
||||
|
||||
typedef BetweenFactor<VALUES, KEY1, T> This;
|
||||
typedef NonlinearFactor2<VALUES, KEY1, KEY1> Base;
|
||||
typedef BetweenFactor<KEY1, T> This;
|
||||
typedef NonlinearFactor2<KEY1, KEY1> Base;
|
||||
|
||||
T measured_; /** The measurement */
|
||||
|
||||
|
@ -71,7 +71,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->measured_.equals(e->measured_, tol);
|
||||
}
|
||||
|
@ -114,15 +114,15 @@ namespace gtsam {
|
|||
* This constraint requires the underlying type to a Lie type
|
||||
*
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class BetweenConstraint : public BetweenFactor<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
class BetweenConstraint : public BetweenFactor<KEY> {
|
||||
public:
|
||||
typedef boost::shared_ptr<BetweenConstraint<VALUES, KEY> > shared_ptr;
|
||||
typedef boost::shared_ptr<BetweenConstraint<KEY> > shared_ptr;
|
||||
|
||||
/** Syntactic sugar for constrained version */
|
||||
BetweenConstraint(const typename KEY::Value& measured,
|
||||
const KEY& key1, const KEY& key2, double mu = 1000.0)
|
||||
: BetweenFactor<VALUES, KEY>(key1, key2, measured,
|
||||
: BetweenFactor<KEY>(key1, key2, measured,
|
||||
noiseModel::Constrained::All(KEY::Value::Dim(), fabs(mu))) {}
|
||||
|
||||
private:
|
||||
|
@ -132,7 +132,7 @@ namespace gtsam {
|
|||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("BetweenFactor",
|
||||
boost::serialization::base_object<BetweenFactor<VALUES, KEY> >(*this));
|
||||
boost::serialization::base_object<BetweenFactor<KEY> >(*this));
|
||||
}
|
||||
}; // \class BetweenConstraint
|
||||
|
||||
|
|
|
@ -28,11 +28,11 @@ namespace gtsam {
|
|||
* will need to have its value function implemented to return
|
||||
* a scalar for comparison.
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
struct BoundingConstraint1: public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
struct BoundingConstraint1: public NonlinearFactor1<KEY> {
|
||||
typedef typename KEY::Value X;
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base;
|
||||
typedef boost::shared_ptr<BoundingConstraint1<VALUES, KEY> > shared_ptr;
|
||||
typedef NonlinearFactor1<KEY> Base;
|
||||
typedef boost::shared_ptr<BoundingConstraint1<KEY> > shared_ptr;
|
||||
|
||||
double threshold_;
|
||||
bool isGreaterThan_; /// flag for greater/less than
|
||||
|
@ -57,7 +57,7 @@ struct BoundingConstraint1: public NonlinearFactor1<VALUES, KEY> {
|
|||
boost::none) const = 0;
|
||||
|
||||
/** active when constraint *NOT* met */
|
||||
bool active(const VALUES& c) const {
|
||||
bool active(const Values& c) const {
|
||||
// note: still active at equality to avoid zigzagging
|
||||
double x = value(c[this->key_]);
|
||||
return (isGreaterThan_) ? x <= threshold_ : x >= threshold_;
|
||||
|
@ -95,13 +95,13 @@ private:
|
|||
* Binary scalar inequality constraint, with a similar value() function
|
||||
* to implement for specific systems
|
||||
*/
|
||||
template<class VALUES, class KEY1, class KEY2>
|
||||
struct BoundingConstraint2: public NonlinearFactor2<VALUES, KEY1, KEY2> {
|
||||
template<class KEY1, class KEY2>
|
||||
struct BoundingConstraint2: public NonlinearFactor2<KEY1, KEY2> {
|
||||
typedef typename KEY1::Value X1;
|
||||
typedef typename KEY2::Value X2;
|
||||
|
||||
typedef NonlinearFactor2<VALUES, KEY1, KEY2> Base;
|
||||
typedef boost::shared_ptr<BoundingConstraint2<VALUES, KEY1, KEY2> > shared_ptr;
|
||||
typedef NonlinearFactor2<KEY1, KEY2> Base;
|
||||
typedef boost::shared_ptr<BoundingConstraint2<KEY1, KEY2> > shared_ptr;
|
||||
|
||||
double threshold_;
|
||||
bool isGreaterThan_; /// flag for greater/less than
|
||||
|
@ -125,7 +125,7 @@ struct BoundingConstraint2: public NonlinearFactor2<VALUES, KEY1, KEY2> {
|
|||
boost::optional<Matrix&> H2 = boost::none) const = 0;
|
||||
|
||||
/** active when constraint *NOT* met */
|
||||
bool active(const VALUES& c) const {
|
||||
bool active(const Values& c) const {
|
||||
// note: still active at equality to avoid zigzagging
|
||||
double x = value(c[this->key1_], c[this->key2_]);
|
||||
return (isGreaterThan_) ? x <= threshold_ : x >= threshold_;
|
||||
|
|
|
@ -29,21 +29,21 @@ namespace gtsam {
|
|||
/**
|
||||
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is unknown here compared to GenericProjectionFactor
|
||||
*/
|
||||
template <class VALUES, class CamK, class LmK>
|
||||
template <class CamK, class LmK>
|
||||
class GeneralSFMFactor:
|
||||
public NonlinearFactor2<VALUES, CamK, LmK> {
|
||||
public NonlinearFactor2<CamK, LmK> {
|
||||
protected:
|
||||
Point2 z_; ///< the 2D measurement
|
||||
|
||||
public:
|
||||
|
||||
typedef typename CamK::Value Cam; ///< typedef for camera type
|
||||
typedef GeneralSFMFactor<VALUES, CamK, LmK> Self ; ///< typedef for this object
|
||||
typedef NonlinearFactor2<VALUES, CamK, LmK> Base; ///< typedef for the base class
|
||||
typedef GeneralSFMFactor<CamK, LmK> Self ; ///< typedef for this object
|
||||
typedef NonlinearFactor2<CamK, LmK> Base; ///< typedef for the base class
|
||||
typedef Point2 Measurement; ///< typedef for the measurement
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<GeneralSFMFactor<VALUES, LmK, CamK> > shared_ptr;
|
||||
typedef boost::shared_ptr<GeneralSFMFactor<LmK, CamK> > shared_ptr;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
|
@ -72,7 +72,7 @@ namespace gtsam {
|
|||
/**
|
||||
* equals
|
||||
*/
|
||||
bool equals(const GeneralSFMFactor<VALUES, CamK, LmK> &p, double tol = 1e-9) const {
|
||||
bool equals(const GeneralSFMFactor<CamK, LmK> &p, double tol = 1e-9) const {
|
||||
return Base::equals(p, tol) && this->z_.equals(p.z_, tol) ;
|
||||
}
|
||||
|
||||
|
|
|
@ -38,16 +38,16 @@ namespace gtsam {
|
|||
* For practical use, it would be good to subclass this factor and have the class type
|
||||
* construct the mask.
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class PartialPriorFactor: public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
class PartialPriorFactor: public NonlinearFactor1<KEY> {
|
||||
|
||||
public:
|
||||
typedef typename KEY::Value T;
|
||||
|
||||
protected:
|
||||
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base;
|
||||
typedef PartialPriorFactor<VALUES, KEY> This;
|
||||
typedef NonlinearFactor1<KEY> Base;
|
||||
typedef PartialPriorFactor<KEY> This;
|
||||
|
||||
Vector prior_; ///< measurement on logmap parameters, in compressed form
|
||||
std::vector<size_t> mask_; ///< indices of values to constrain in compressed prior vector
|
||||
|
@ -95,7 +95,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) &&
|
||||
gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
|
||||
|
|
|
@ -28,15 +28,15 @@ namespace gtsam {
|
|||
* The Key type is not arbitrary: we need to cast to a Symbol at linearize, so
|
||||
* a simple type like int will not work
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
class PriorFactor: public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY>
|
||||
class PriorFactor: public NonlinearFactor1<KEY> {
|
||||
|
||||
public:
|
||||
typedef typename KEY::Value T;
|
||||
|
||||
private:
|
||||
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base;
|
||||
typedef NonlinearFactor1<KEY> Base;
|
||||
|
||||
T prior_; /** The measurement */
|
||||
|
||||
|
@ -69,9 +69,8 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
const PriorFactor<VALUES, KEY> *e = dynamic_cast<const PriorFactor<
|
||||
VALUES, KEY>*> (&expected);
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const PriorFactor<KEY> *e = dynamic_cast<const PriorFactor<KEY>*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->prior_.equals(e->prior_, tol);
|
||||
}
|
||||
|
||||
|
|
|
@ -29,8 +29,8 @@ namespace gtsam {
|
|||
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
|
||||
* i.e. the main building block for visual SLAM.
|
||||
*/
|
||||
template<class VALUES, class LMK, class POSK>
|
||||
class GenericProjectionFactor: public NonlinearFactor2<VALUES, POSK, LMK> {
|
||||
template<class LMK, class POSK>
|
||||
class GenericProjectionFactor: public NonlinearFactor2<POSK, LMK> {
|
||||
protected:
|
||||
|
||||
// Keep a copy of measurement and calibration for I/O
|
||||
|
@ -40,10 +40,10 @@ namespace gtsam {
|
|||
public:
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef NonlinearFactor2<VALUES, POSK, LMK> Base;
|
||||
typedef NonlinearFactor2<POSK, LMK> Base;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<GenericProjectionFactor<VALUES, LMK, POSK> > shared_ptr;
|
||||
typedef boost::shared_ptr<GenericProjectionFactor<LMK, POSK> > shared_ptr;
|
||||
|
||||
/// Default constructor
|
||||
GenericProjectionFactor() :
|
||||
|
@ -73,7 +73,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const GenericProjectionFactor<VALUES, LMK, POSK>& p
|
||||
bool equals(const GenericProjectionFactor<LMK, POSK>& p
|
||||
, double tol = 1e-9) const {
|
||||
return Base::equals(p, tol) && this->z_.equals(p.z_, tol)
|
||||
&& this->K_->equals(*p.K_, tol);
|
||||
|
|
|
@ -25,14 +25,14 @@ namespace gtsam {
|
|||
/**
|
||||
* Binary factor for a range measurement
|
||||
*/
|
||||
template<class VALUES, class POSEKEY, class POINTKEY>
|
||||
class RangeFactor: public NonlinearFactor2<VALUES, POSEKEY, POINTKEY> {
|
||||
template<class POSEKEY, class POINTKEY>
|
||||
class RangeFactor: public NonlinearFactor2<POSEKEY, POINTKEY> {
|
||||
private:
|
||||
|
||||
double z_; /** measurement */
|
||||
|
||||
typedef RangeFactor<VALUES, POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<VALUES, POSEKEY, POINTKEY> Base;
|
||||
typedef RangeFactor<POSEKEY, POINTKEY> This;
|
||||
typedef NonlinearFactor2<POSEKEY, POINTKEY> Base;
|
||||
|
||||
typedef typename POSEKEY::Value Pose;
|
||||
typedef typename POINTKEY::Value Point;
|
||||
|
@ -64,7 +64,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/** equals specialized to this factor */
|
||||
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && fabs(this->z_ - e->z_) < tol;
|
||||
}
|
||||
|
|
|
@ -22,8 +22,8 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
template<class VALUES, class KEY1, class KEY2>
|
||||
class GenericStereoFactor: public NonlinearFactor2<VALUES, KEY1, KEY2> {
|
||||
template<class KEY1, class KEY2>
|
||||
class GenericStereoFactor: public NonlinearFactor2<KEY1, KEY2> {
|
||||
private:
|
||||
|
||||
// Keep a copy of measurement and calibration for I/O
|
||||
|
@ -33,7 +33,7 @@ private:
|
|||
public:
|
||||
|
||||
// shorthand for base class type
|
||||
typedef NonlinearFactor2<VALUES, KEY1, KEY2> Base; ///< typedef for base class
|
||||
typedef NonlinearFactor2<KEY1, KEY2> Base; ///< typedef for base class
|
||||
typedef boost::shared_ptr<GenericStereoFactor> shared_ptr; ///< typedef for shared pointer to this object
|
||||
typedef typename KEY1::Value CamPose; ///< typedef for Pose Lie Value type
|
||||
|
||||
|
|
|
@ -29,7 +29,6 @@ using namespace gtsam;
|
|||
#define LINESIZE 81920
|
||||
|
||||
typedef boost::shared_ptr<pose2SLAM::Graph> sharedPose2Graph;
|
||||
typedef boost::shared_ptr<pose2SLAM::Values> sharedPose2Values;
|
||||
typedef pose2SLAM::Odometry Pose2Factor; ///< Typedef for Constraint class for backwards compatibility
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -66,13 +65,13 @@ pair<string, boost::optional<SharedDiagonal> > dataset(const string& dataset, c
|
|||
|
||||
/* ************************************************************************* */
|
||||
|
||||
pair<sharedPose2Graph, sharedPose2Values> load2D(
|
||||
pair<sharedPose2Graph, Values::shared_ptr> load2D(
|
||||
pair<string, boost::optional<SharedDiagonal> > dataset,
|
||||
int maxID, bool addNoise, bool smart) {
|
||||
return load2D(dataset.first, dataset.second, maxID, addNoise, smart);
|
||||
}
|
||||
|
||||
pair<sharedPose2Graph, sharedPose2Values> load2D(const string& filename,
|
||||
pair<sharedPose2Graph, Values::shared_ptr> load2D(const string& filename,
|
||||
boost::optional<SharedDiagonal> model, int maxID, bool addNoise, bool smart) {
|
||||
cout << "Will try to read " << filename << endl;
|
||||
ifstream is(filename.c_str());
|
||||
|
@ -81,7 +80,7 @@ pair<sharedPose2Graph, sharedPose2Values> load2D(const string& filename,
|
|||
exit(-1);
|
||||
}
|
||||
|
||||
sharedPose2Values poses(new pose2SLAM::Values);
|
||||
Values::shared_ptr poses(new Values);
|
||||
sharedPose2Graph graph(new pose2SLAM::Graph);
|
||||
|
||||
string tag;
|
||||
|
@ -96,7 +95,7 @@ pair<sharedPose2Graph, sharedPose2Values> load2D(const string& filename,
|
|||
is >> id >> x >> y >> yaw;
|
||||
// optional filter
|
||||
if (maxID && id >= maxID) continue;
|
||||
poses->insert(id, Pose2(x, y, yaw));
|
||||
poses->insert(pose2SLAM::PoseKey(id), Pose2(x, y, yaw));
|
||||
}
|
||||
is.ignore(LINESIZE, '\n');
|
||||
}
|
||||
|
@ -133,8 +132,8 @@ pair<sharedPose2Graph, sharedPose2Values> load2D(const string& filename,
|
|||
l1Xl2 = l1Xl2.retract((*model)->sample());
|
||||
|
||||
// Insert vertices if pure odometry file
|
||||
if (!poses->exists(id1)) poses->insert(id1, Pose2());
|
||||
if (!poses->exists(id2)) poses->insert(id2, poses->at(id1) * l1Xl2);
|
||||
if (!poses->exists(pose2SLAM::PoseKey(id1))) poses->insert(pose2SLAM::PoseKey(id1), Pose2());
|
||||
if (!poses->exists(pose2SLAM::PoseKey(id2))) poses->insert(pose2SLAM::PoseKey(id2), poses->at(pose2SLAM::PoseKey(id1)) * l1Xl2);
|
||||
|
||||
pose2SLAM::Graph::sharedFactor factor(new Pose2Factor(id1, id2, l1Xl2, *model));
|
||||
graph->push_back(factor);
|
||||
|
@ -149,26 +148,25 @@ pair<sharedPose2Graph, sharedPose2Values> load2D(const string& filename,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void save2D(const pose2SLAM::Graph& graph, const pose2SLAM::Values& config, const SharedDiagonal model,
|
||||
void save2D(const pose2SLAM::Graph& graph, const Values& config, const SharedDiagonal model,
|
||||
const string& filename) {
|
||||
typedef pose2SLAM::Values::Key Key;
|
||||
|
||||
fstream stream(filename.c_str(), fstream::out);
|
||||
|
||||
// save poses
|
||||
pose2SLAM::Values::Key key;
|
||||
Pose2 pose;
|
||||
BOOST_FOREACH(boost::tie(key, pose), config)
|
||||
stream << "VERTEX2 " << key.index() << " " << pose.x() << " " << pose.y() << " " << pose.theta() << endl;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, config) {
|
||||
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.second);
|
||||
stream << "VERTEX2 " << key_value.first.index() << " " << pose.x() << " " << pose.y() << " " << pose.theta() << endl;
|
||||
}
|
||||
|
||||
// save edges
|
||||
Matrix R = model->R();
|
||||
Matrix RR = trans(R)*R;//prod(trans(R),R);
|
||||
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor<pose2SLAM::Values> > factor_, graph) {
|
||||
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
|
||||
boost::shared_ptr<Pose2Factor> factor = boost::dynamic_pointer_cast<Pose2Factor>(factor_);
|
||||
if (!factor) continue;
|
||||
|
||||
pose = factor->measured().inverse();
|
||||
Pose2 pose = factor->measured().inverse();
|
||||
stream << "EDGE2 " << factor->key2().index() << " " << factor->key1().index()
|
||||
<< " " << pose.x() << " " << pose.y() << " " << pose.theta()
|
||||
<< " " << RR(0, 0) << " " << RR(0, 1) << " " << RR(1, 1) << " " << RR(2, 2)
|
||||
|
|
|
@ -40,16 +40,16 @@ std::pair<std::string, boost::optional<gtsam::SharedDiagonal> >
|
|||
* @param maxID, if non-zero cut out vertices >= maxID
|
||||
* @param smart: try to reduce complexity of covariance to cheapest model
|
||||
*/
|
||||
std::pair<boost::shared_ptr<pose2SLAM::Graph>, boost::shared_ptr<pose2SLAM::Values> > load2D(
|
||||
std::pair<boost::shared_ptr<pose2SLAM::Graph>, boost::shared_ptr<Values> > load2D(
|
||||
std::pair<std::string, boost::optional<SharedDiagonal> > dataset,
|
||||
int maxID = 0, bool addNoise=false, bool smart=true);
|
||||
std::pair<boost::shared_ptr<pose2SLAM::Graph>, boost::shared_ptr<pose2SLAM::Values> > load2D(
|
||||
std::pair<boost::shared_ptr<pose2SLAM::Graph>, boost::shared_ptr<Values> > load2D(
|
||||
const std::string& filename,
|
||||
boost::optional<gtsam::SharedDiagonal> model = boost::optional<gtsam::SharedDiagonal>(),
|
||||
int maxID = 0, bool addNoise=false, bool smart=true);
|
||||
|
||||
/** save 2d graph */
|
||||
void save2D(const pose2SLAM::Graph& graph, const pose2SLAM::Values& config, const gtsam::SharedDiagonal model,
|
||||
void save2D(const pose2SLAM::Graph& graph, const Values& config, const gtsam::SharedDiagonal model,
|
||||
const std::string& filename);
|
||||
|
||||
/**
|
||||
|
|
|
@ -23,8 +23,8 @@
|
|||
// Use planarSLAM namespace for specific SLAM instance
|
||||
namespace planarSLAM {
|
||||
|
||||
Graph::Graph(const NonlinearFactorGraph<Values>& graph) :
|
||||
NonlinearFactorGraph<Values>(graph) {}
|
||||
Graph::Graph(const NonlinearFactorGraph& graph) :
|
||||
NonlinearFactorGraph(graph) {}
|
||||
|
||||
void Graph::addPrior(const PoseKey& i, const Pose2& p,
|
||||
const SharedNoiseModel& model) {
|
||||
|
|
|
@ -22,7 +22,6 @@
|
|||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam/slam/BearingFactor.h>
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimization.h>
|
||||
|
@ -39,107 +38,63 @@ namespace planarSLAM {
|
|||
|
||||
/// Typedef for a PointKey with Point2 data and 'l' symbol
|
||||
typedef TypedSymbol<Point2, 'l'> PointKey;
|
||||
|
||||
/// Typedef for Values structure with PoseKey type
|
||||
typedef Values<PoseKey> PoseValues;
|
||||
|
||||
/// Typedef for Values structure with PointKey type
|
||||
typedef Values<PointKey> PointValues;
|
||||
|
||||
/// Values class, inherited from TupleValues2, using PoseKeys and PointKeys
|
||||
struct Values: public TupleValues2<PoseValues, PointValues> {
|
||||
|
||||
/// Default constructor
|
||||
Values() {}
|
||||
|
||||
/// Copy constructor
|
||||
Values(const TupleValues2<PoseValues, PointValues>& values) :
|
||||
TupleValues2<PoseValues, PointValues>(values) {
|
||||
}
|
||||
|
||||
/// Copy constructor
|
||||
Values(const TupleValues2<PoseValues, PointValues>::Base& values) :
|
||||
TupleValues2<PoseValues, PointValues>(values) {
|
||||
}
|
||||
|
||||
/// From sub-values
|
||||
Values(const PoseValues& poses, const PointValues& points) :
|
||||
TupleValues2<PoseValues, PointValues>(poses, points) {
|
||||
}
|
||||
|
||||
// Convenience for MATLAB wrapper, which does not allow for identically named methods
|
||||
|
||||
/// get a pose
|
||||
Pose2 pose(int key) const { return (*this)[PoseKey(key)]; }
|
||||
|
||||
/// get a point
|
||||
Point2 point(int key) const { return (*this)[PointKey(key)]; }
|
||||
|
||||
/// insert a pose
|
||||
void insertPose(int key, const Pose2& pose) {insert(PoseKey(key), pose); }
|
||||
|
||||
/// insert a point
|
||||
void insertPoint(int key, const Point2& point) {insert(PointKey(key), point); }
|
||||
};
|
||||
|
||||
/**
|
||||
* List of typedefs for factors
|
||||
*/
|
||||
/// A hard constraint for PoseKeys to enforce particular values
|
||||
typedef NonlinearEquality<PoseKey> Constraint;
|
||||
/// A prior factor to bias the value of a PoseKey
|
||||
typedef PriorFactor<PoseKey> Prior;
|
||||
/// A factor between two PoseKeys set with a Pose2
|
||||
typedef BetweenFactor<PoseKey> Odometry;
|
||||
/// A factor between a PoseKey and a PointKey to express difference in rotation (set with a Rot2)
|
||||
typedef BearingFactor<PoseKey, PointKey> Bearing;
|
||||
/// A factor between a PoseKey and a PointKey to express distance between them (set with a double)
|
||||
typedef RangeFactor<PoseKey, PointKey> Range;
|
||||
/// A factor between a PoseKey and a PointKey to express difference in rotation and location
|
||||
typedef BearingRangeFactor<PoseKey, PointKey> BearingRange;
|
||||
|
||||
/// A hard constraint for PoseKeys to enforce particular values
|
||||
typedef NonlinearEquality<Values, PoseKey> Constraint;
|
||||
/// A prior factor to bias the value of a PoseKey
|
||||
typedef PriorFactor<Values, PoseKey> Prior;
|
||||
/// A factor between two PoseKeys set with a Pose2
|
||||
typedef BetweenFactor<Values, PoseKey> Odometry;
|
||||
/// A factor between a PoseKey and a PointKey to express difference in rotation (set with a Rot2)
|
||||
typedef BearingFactor<Values, PoseKey, PointKey> Bearing;
|
||||
/// A factor between a PoseKey and a PointKey to express distance between them (set with a double)
|
||||
typedef RangeFactor<Values, PoseKey, PointKey> Range;
|
||||
/// A factor between a PoseKey and a PointKey to express difference in rotation and location
|
||||
typedef BearingRangeFactor<Values, PoseKey, PointKey> BearingRange;
|
||||
/// Creates a NonlinearFactorGraph with the Values type
|
||||
struct Graph: public NonlinearFactorGraph {
|
||||
|
||||
/// Creates a NonlinearFactorGraph with the Values type
|
||||
struct Graph: public NonlinearFactorGraph<Values> {
|
||||
/// Default constructor for a NonlinearFactorGraph
|
||||
Graph(){}
|
||||
|
||||
/// Default constructor for a NonlinearFactorGraph
|
||||
Graph(){}
|
||||
/// Creates a NonlinearFactorGraph based on another NonlinearFactorGraph
|
||||
Graph(const NonlinearFactorGraph& graph);
|
||||
|
||||
/// Creates a NonlinearFactorGraph based on another NonlinearFactorGraph
|
||||
Graph(const NonlinearFactorGraph<Values>& graph);
|
||||
/// Biases the value of PoseKey key with Pose2 p given a noise model
|
||||
void addPrior(const PoseKey& key, const Pose2& pose, const SharedNoiseModel& noiseModel);
|
||||
|
||||
/// Biases the value of PoseKey key with Pose2 p given a noise model
|
||||
void addPrior(const PoseKey& key, const Pose2& pose, const SharedNoiseModel& noiseModel);
|
||||
/// Creates a hard constraint to enforce Pose2 p for PoseKey poseKey's value
|
||||
void addPoseConstraint(const PoseKey& poseKey, const Pose2& pose);
|
||||
|
||||
/// Creates a hard constraint to enforce Pose2 p for PoseKey poseKey's value
|
||||
void addPoseConstraint(const PoseKey& poseKey, const Pose2& pose);
|
||||
/// Creates a factor with a Pose2 between PoseKeys poseKey and pointKey (poseKey.e. an odometry measurement)
|
||||
void addOdometry(const PoseKey& poseKey, const PoseKey& pointKey, const Pose2& odometry,
|
||||
const SharedNoiseModel& model);
|
||||
|
||||
/// Creates a factor with a Pose2 between PoseKeys poseKey and pointKey (poseKey.e. an odometry measurement)
|
||||
void addOdometry(const PoseKey& poseKey, const PoseKey& pointKey, const Pose2& odometry,
|
||||
const SharedNoiseModel& model);
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in rotation
|
||||
void addBearing(const PoseKey& poseKey, const PointKey& pointKey, const Rot2& bearing,
|
||||
const SharedNoiseModel& model);
|
||||
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in rotation
|
||||
void addBearing(const PoseKey& poseKey, const PointKey& pointKey, const Rot2& bearing,
|
||||
const SharedNoiseModel& model);
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in location
|
||||
void addRange(const PoseKey& poseKey, const PointKey& pointKey, double range,
|
||||
const SharedNoiseModel& model);
|
||||
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in location
|
||||
void addRange(const PoseKey& poseKey, const PointKey& pointKey, double range,
|
||||
const SharedNoiseModel& model);
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in rotation and location
|
||||
void addBearingRange(const PoseKey& poseKey, const PointKey& pointKey,
|
||||
const Rot2& bearing, double range, const SharedNoiseModel& model);
|
||||
|
||||
/// Creates a factor with a Rot2 between a PoseKey poseKey and PointKey pointKey for difference in rotation and location
|
||||
void addBearingRange(const PoseKey& poseKey, const PointKey& pointKey,
|
||||
const Rot2& bearing, double range, const SharedNoiseModel& model);
|
||||
/// Optimize
|
||||
Values optimize(const Values& initialEstimate) {
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
return *Optimizer::optimizeLM(*this, initialEstimate,
|
||||
NonlinearOptimizationParameters::LAMBDA);
|
||||
}
|
||||
};
|
||||
|
||||
/// Optimize
|
||||
Values optimize(const Values& initialEstimate) {
|
||||
typedef NonlinearOptimizer<Graph, Values> Optimizer;
|
||||
return *Optimizer::optimizeLM(*this, initialEstimate,
|
||||
NonlinearOptimizationParameters::LAMBDA);
|
||||
}
|
||||
};
|
||||
|
||||
/// Optimizer
|
||||
typedef NonlinearOptimizer<Graph, Values> Optimizer;
|
||||
/// Optimizer
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
|
||||
} // planarSLAM
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
|
||||
// Use pose2SLAM namespace for specific SLAM instance
|
||||
|
||||
template class gtsam::NonlinearOptimizer<pose2SLAM::Graph, pose2SLAM::Values, gtsam::GaussianFactorGraph, gtsam::GaussianSequentialSolver>;
|
||||
template class gtsam::NonlinearOptimizer<pose2SLAM::Graph, gtsam::GaussianFactorGraph, gtsam::GaussianSequentialSolver>;
|
||||
|
||||
namespace pose2SLAM {
|
||||
|
||||
|
@ -30,7 +30,7 @@ namespace pose2SLAM {
|
|||
Values x;
|
||||
double theta = 0, dtheta = 2 * M_PI / n;
|
||||
for (size_t i = 0; i < n; i++, theta += dtheta)
|
||||
x.insert(i, Pose2(cos(theta), sin(theta), M_PI_2 + theta));
|
||||
x.insert(PoseKey(i), Pose2(cos(theta), sin(theta), M_PI_2 + theta));
|
||||
return x;
|
||||
}
|
||||
|
||||
|
|
|
@ -18,10 +18,10 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
|
@ -36,25 +36,6 @@ namespace pose2SLAM {
|
|||
/// Keys with Pose2 and symbol 'x'
|
||||
typedef TypedSymbol<Pose2, 'x'> PoseKey;
|
||||
|
||||
/// Values class, inherited from Values, using PoseKeys
|
||||
struct Values: public gtsam::Values<PoseKey> {
|
||||
|
||||
/// Default constructor
|
||||
Values() {}
|
||||
|
||||
/// Copy constructor
|
||||
Values(const gtsam::Values<PoseKey>& values) :
|
||||
gtsam::Values<PoseKey>(values) {
|
||||
}
|
||||
|
||||
// Convenience for MATLAB wrapper, which does not allow for identically named methods
|
||||
|
||||
/// get a pose
|
||||
Pose2 pose(int key) const { return (*this)[PoseKey(key)]; }
|
||||
|
||||
/// insert a pose
|
||||
void insertPose(int key, const Pose2& pose) { insert(PoseKey(key), pose); }
|
||||
};
|
||||
|
||||
/**
|
||||
* Create a circle of n 2D poses tangent to circle of radius R, first pose at (R,0)
|
||||
|
@ -70,20 +51,20 @@ namespace pose2SLAM {
|
|||
*/
|
||||
|
||||
/// A hard constraint to enforce a specific value for a pose
|
||||
typedef NonlinearEquality<Values, PoseKey> HardConstraint;
|
||||
typedef NonlinearEquality<PoseKey> HardConstraint;
|
||||
/// A prior factor on a pose with Pose2 data type.
|
||||
typedef PriorFactor<Values, PoseKey> Prior;
|
||||
typedef PriorFactor<PoseKey> Prior;
|
||||
/// A factor to add an odometry measurement between two poses.
|
||||
typedef BetweenFactor<Values, PoseKey> Odometry;
|
||||
typedef BetweenFactor<PoseKey> Odometry;
|
||||
|
||||
/// Graph
|
||||
struct Graph: public NonlinearFactorGraph<Values> {
|
||||
struct Graph: public NonlinearFactorGraph {
|
||||
|
||||
/// Default constructor for a NonlinearFactorGraph
|
||||
Graph(){}
|
||||
|
||||
/// Creates a NonlinearFactorGraph based on another NonlinearFactorGraph
|
||||
Graph(const NonlinearFactorGraph<Values>& graph);
|
||||
Graph(const NonlinearFactorGraph& graph);
|
||||
|
||||
/// Adds a Pose2 prior with a noise model to one of the keys in the nonlinear factor graph
|
||||
void addPrior(const PoseKey& i, const Pose2& p, const SharedNoiseModel& model);
|
||||
|
@ -97,18 +78,18 @@ namespace pose2SLAM {
|
|||
|
||||
/// Optimize
|
||||
Values optimize(const Values& initialEstimate) {
|
||||
typedef NonlinearOptimizer<Graph, Values> Optimizer;
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
return *Optimizer::optimizeLM(*this, initialEstimate,
|
||||
NonlinearOptimizationParameters::LAMBDA);
|
||||
}
|
||||
};
|
||||
|
||||
/// The sequential optimizer
|
||||
typedef NonlinearOptimizer<Graph, Values, GaussianFactorGraph,
|
||||
typedef NonlinearOptimizer<Graph, GaussianFactorGraph,
|
||||
GaussianSequentialSolver> OptimizerSequential;
|
||||
|
||||
/// The multifrontal optimizer
|
||||
typedef NonlinearOptimizer<Graph, Values, GaussianFactorGraph,
|
||||
typedef NonlinearOptimizer<Graph, GaussianFactorGraph,
|
||||
GaussianMultifrontalSolver> Optimizer;
|
||||
|
||||
} // pose2SLAM
|
||||
|
|
|
@ -39,7 +39,7 @@ namespace gtsam {
|
|||
Point3 gti(radius*cos(theta), radius*sin(theta), 0);
|
||||
Rot3 _0Ri = Rot3::yaw(-theta); // negative yaw goes counterclockwise, with Z down !
|
||||
Pose3 gTi(gR0 * _0Ri, gti);
|
||||
x.insert(i, gTi);
|
||||
x.insert(Key(i), gTi);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
|
@ -33,8 +32,6 @@ namespace gtsam {
|
|||
|
||||
/// Creates a Key with data Pose3 and symbol 'x'
|
||||
typedef TypedSymbol<Pose3, 'x'> Key;
|
||||
/// Creates a Values structure with type 'Key'
|
||||
typedef Values<Key> Values;
|
||||
|
||||
/**
|
||||
* Create a circle of n 3D poses tangent to circle of radius R, first pose at (R,0)
|
||||
|
@ -45,14 +42,14 @@ namespace gtsam {
|
|||
Values circle(size_t n, double R);
|
||||
|
||||
/// A prior factor on Key with Pose3 data type.
|
||||
typedef PriorFactor<Values, Key> Prior;
|
||||
typedef PriorFactor<Key> Prior;
|
||||
/// A factor to put constraints between two factors.
|
||||
typedef BetweenFactor<Values, Key> Constraint;
|
||||
typedef BetweenFactor<Key> Constraint;
|
||||
/// A hard constraint would enforce that the given key would have the input value in the results.
|
||||
typedef NonlinearEquality<Values, Key> HardConstraint;
|
||||
typedef NonlinearEquality<Key> HardConstraint;
|
||||
|
||||
/// Graph
|
||||
struct Graph: public NonlinearFactorGraph<Values> {
|
||||
struct Graph: public NonlinearFactorGraph {
|
||||
|
||||
/// Adds a factor between keys of the same type
|
||||
void addPrior(const Key& i, const Pose3& p,
|
||||
|
@ -67,14 +64,13 @@ namespace gtsam {
|
|||
};
|
||||
|
||||
/// Optimizer
|
||||
typedef NonlinearOptimizer<Graph, Values> Optimizer;
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
|
||||
} // pose3SLAM
|
||||
|
||||
/**
|
||||
* Backwards compatibility
|
||||
*/
|
||||
typedef pose3SLAM::Values Pose3Values; ///< Typedef for Values class for backwards compatibility
|
||||
typedef pose3SLAM::Prior Pose3Prior; ///< Typedef for Prior class for backwards compatibility
|
||||
typedef pose3SLAM::Constraint Pose3Factor; ///< Typedef for Constraint class for backwards compatibility
|
||||
typedef pose3SLAM::Graph Pose3Graph; ///< Typedef for Graph class for backwards compatibility
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
|
@ -32,56 +31,6 @@ namespace simulated2D {
|
|||
// Simulated2D robots have no orientation, just a position
|
||||
typedef TypedSymbol<Point2, 'x'> PoseKey;
|
||||
typedef TypedSymbol<Point2, 'l'> PointKey;
|
||||
typedef Values<PoseKey> PoseValues;
|
||||
typedef Values<PointKey> PointValues;
|
||||
|
||||
/**
|
||||
* Custom Values class that holds poses and points
|
||||
*/
|
||||
class Values: public TupleValues2<PoseValues, PointValues> {
|
||||
public:
|
||||
typedef TupleValues2<PoseValues, PointValues> Base; ///< base class
|
||||
typedef boost::shared_ptr<Point2> sharedPoint; ///< shortcut to shared Point type
|
||||
|
||||
/// Constructor
|
||||
Values() {
|
||||
}
|
||||
|
||||
/// Copy constructor
|
||||
Values(const Base& base) :
|
||||
Base(base) {
|
||||
}
|
||||
|
||||
/// Insert a pose
|
||||
void insertPose(const simulated2D::PoseKey& i, const Point2& p) {
|
||||
insert(i, p);
|
||||
}
|
||||
|
||||
/// Insert a point
|
||||
void insertPoint(const simulated2D::PointKey& j, const Point2& p) {
|
||||
insert(j, p);
|
||||
}
|
||||
|
||||
/// Number of poses
|
||||
int nrPoses() const {
|
||||
return this->first_.size();
|
||||
}
|
||||
|
||||
/// Number of points
|
||||
int nrPoints() const {
|
||||
return this->second_.size();
|
||||
}
|
||||
|
||||
/// Return pose i
|
||||
Point2 pose(const simulated2D::PoseKey& i) const {
|
||||
return (*this)[i];
|
||||
}
|
||||
|
||||
/// Return point j
|
||||
Point2 point(const simulated2D::PointKey& j) const {
|
||||
return (*this)[j];
|
||||
}
|
||||
};
|
||||
|
||||
/// Prior on a single pose
|
||||
inline Point2 prior(const Point2& x) {
|
||||
|
@ -112,18 +61,18 @@ namespace simulated2D {
|
|||
/**
|
||||
* Unary factor encoding a soft prior on a vector
|
||||
*/
|
||||
template<class VALUES = Values, class KEY = PoseKey>
|
||||
class GenericPrior: public NonlinearFactor1<VALUES, KEY> {
|
||||
template<class KEY = PoseKey>
|
||||
class GenericPrior: public NonlinearFactor1<KEY> {
|
||||
public:
|
||||
typedef NonlinearFactor1<VALUES, KEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericPrior<VALUES, KEY> > shared_ptr;
|
||||
typedef NonlinearFactor1<KEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericPrior<KEY> > shared_ptr;
|
||||
typedef typename KEY::Value Pose; ///< shortcut to Pose type
|
||||
|
||||
Pose z_; ///< prior mean
|
||||
|
||||
/// Create generic prior
|
||||
GenericPrior(const Pose& z, const SharedNoiseModel& model, const KEY& key) :
|
||||
NonlinearFactor1<VALUES, KEY>(model, key), z_(z) {
|
||||
NonlinearFactor1<KEY>(model, key), z_(z) {
|
||||
}
|
||||
|
||||
/// Return error and optional derivative
|
||||
|
@ -150,11 +99,11 @@ namespace simulated2D {
|
|||
/**
|
||||
* Binary factor simulating "odometry" between two Vectors
|
||||
*/
|
||||
template<class VALUES = Values, class KEY = PoseKey>
|
||||
class GenericOdometry: public NonlinearFactor2<VALUES, KEY, KEY> {
|
||||
template<class KEY = PoseKey>
|
||||
class GenericOdometry: public NonlinearFactor2<KEY, KEY> {
|
||||
public:
|
||||
typedef NonlinearFactor2<VALUES, KEY, KEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericOdometry<VALUES, KEY> > shared_ptr;
|
||||
typedef NonlinearFactor2<KEY, KEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericOdometry<KEY> > shared_ptr;
|
||||
typedef typename KEY::Value Pose; ///< shortcut to Pose type
|
||||
|
||||
Pose z_; ///< odometry measurement
|
||||
|
@ -162,7 +111,7 @@ namespace simulated2D {
|
|||
/// Create odometry
|
||||
GenericOdometry(const Pose& z, const SharedNoiseModel& model,
|
||||
const KEY& i1, const KEY& i2) :
|
||||
NonlinearFactor2<VALUES, KEY, KEY>(model, i1, i2), z_(z) {
|
||||
NonlinearFactor2<KEY, KEY>(model, i1, i2), z_(z) {
|
||||
}
|
||||
|
||||
/// Evaluate error and optionally return derivatives
|
||||
|
@ -190,11 +139,11 @@ namespace simulated2D {
|
|||
/**
|
||||
* Binary factor simulating "measurement" between two Vectors
|
||||
*/
|
||||
template<class VALUES = Values, class XKEY = PoseKey, class LKEY = PointKey>
|
||||
class GenericMeasurement: public NonlinearFactor2<VALUES, XKEY, LKEY> {
|
||||
template<class XKEY = PoseKey, class LKEY = PointKey>
|
||||
class GenericMeasurement: public NonlinearFactor2<XKEY, LKEY> {
|
||||
public:
|
||||
typedef NonlinearFactor2<VALUES, XKEY, LKEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericMeasurement<VALUES, XKEY, LKEY> > shared_ptr;
|
||||
typedef NonlinearFactor2<XKEY, LKEY> Base; ///< base class
|
||||
typedef boost::shared_ptr<GenericMeasurement<XKEY, LKEY> > shared_ptr;
|
||||
typedef typename XKEY::Value Pose; ///< shortcut to Pose type
|
||||
typedef typename LKEY::Value Point; ///< shortcut to Point type
|
||||
|
||||
|
@ -203,7 +152,7 @@ namespace simulated2D {
|
|||
/// Create measurement factor
|
||||
GenericMeasurement(const Point& z, const SharedNoiseModel& model,
|
||||
const XKEY& i, const LKEY& j) :
|
||||
NonlinearFactor2<VALUES, XKEY, LKEY>(model, i, j), z_(z) {
|
||||
NonlinearFactor2<XKEY, LKEY>(model, i, j), z_(z) {
|
||||
}
|
||||
|
||||
/// Evaluate error and optionally return derivatives
|
||||
|
@ -229,13 +178,13 @@ namespace simulated2D {
|
|||
};
|
||||
|
||||
/** Typedefs for regular use */
|
||||
typedef GenericPrior<Values, PoseKey> Prior;
|
||||
typedef GenericOdometry<Values, PoseKey> Odometry;
|
||||
typedef GenericMeasurement<Values, PoseKey, PointKey> Measurement;
|
||||
typedef GenericPrior<PoseKey> Prior;
|
||||
typedef GenericOdometry<PoseKey> Odometry;
|
||||
typedef GenericMeasurement<PoseKey, PointKey> Measurement;
|
||||
|
||||
// Specialization of a graph for this example domain
|
||||
// TODO: add functions to add factor types
|
||||
class Graph : public NonlinearFactorGraph<Values> {
|
||||
class Graph : public NonlinearFactorGraph {
|
||||
public:
|
||||
Graph() {}
|
||||
};
|
||||
|
|
|
@ -33,13 +33,13 @@ namespace simulated2D {
|
|||
namespace equality_constraints {
|
||||
|
||||
/** Typedefs for regular use */
|
||||
typedef NonlinearEquality1<Values, PoseKey> UnaryEqualityConstraint;
|
||||
typedef NonlinearEquality1<Values, PointKey> UnaryEqualityPointConstraint;
|
||||
typedef BetweenConstraint<Values, PoseKey> OdoEqualityConstraint;
|
||||
typedef NonlinearEquality1<PoseKey> UnaryEqualityConstraint;
|
||||
typedef NonlinearEquality1<PointKey> UnaryEqualityPointConstraint;
|
||||
typedef BetweenConstraint<PoseKey> OdoEqualityConstraint;
|
||||
|
||||
/** Equality between variables */
|
||||
typedef NonlinearEquality2<Values, PoseKey> PoseEqualityConstraint;
|
||||
typedef NonlinearEquality2<Values, PointKey> PointEqualityConstraint;
|
||||
typedef NonlinearEquality2<PoseKey> PoseEqualityConstraint;
|
||||
typedef NonlinearEquality2<PointKey> PointEqualityConstraint;
|
||||
|
||||
} // \namespace equality_constraints
|
||||
|
||||
|
@ -51,10 +51,10 @@ namespace simulated2D {
|
|||
* @tparam KEY is the key type for the variable constrained
|
||||
* @tparam IDX is an index in tangent space to constrain, must be less than KEY::VALUE::Dim()
|
||||
*/
|
||||
template<class VALUES, class KEY, unsigned int IDX>
|
||||
struct ScalarCoordConstraint1: public BoundingConstraint1<VALUES, KEY> {
|
||||
typedef BoundingConstraint1<VALUES, KEY> Base; ///< Base class convenience typedef
|
||||
typedef boost::shared_ptr<ScalarCoordConstraint1<VALUES, KEY, IDX> > shared_ptr; ///< boost::shared_ptr convenience typedef
|
||||
template<class KEY, unsigned int IDX>
|
||||
struct ScalarCoordConstraint1: public BoundingConstraint1<KEY> {
|
||||
typedef BoundingConstraint1<KEY> Base; ///< Base class convenience typedef
|
||||
typedef boost::shared_ptr<ScalarCoordConstraint1<KEY, IDX> > shared_ptr; ///< boost::shared_ptr convenience typedef
|
||||
typedef typename KEY::Value Point; ///< Constrained variable type
|
||||
|
||||
virtual ~ScalarCoordConstraint1() {}
|
||||
|
@ -68,7 +68,7 @@ namespace simulated2D {
|
|||
*/
|
||||
ScalarCoordConstraint1(const KEY& key, double c,
|
||||
bool isGreaterThan, double mu = 1000.0) :
|
||||
Base(key, c, isGreaterThan, mu) {
|
||||
Base(key, c, isGreaterThan, mu) {
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -94,8 +94,8 @@ namespace simulated2D {
|
|||
};
|
||||
|
||||
/** typedefs for use with simulated2D systems */
|
||||
typedef ScalarCoordConstraint1<Values, PoseKey, 0> PoseXInequality; ///< Simulated2D domain example factor constraining X
|
||||
typedef ScalarCoordConstraint1<Values, PoseKey, 1> PoseYInequality; ///< Simulated2D domain example factor constraining Y
|
||||
typedef ScalarCoordConstraint1<PoseKey, 0> PoseXInequality; ///< Simulated2D domain example factor constraining X
|
||||
typedef ScalarCoordConstraint1<PoseKey, 1> PoseYInequality; ///< Simulated2D domain example factor constraining Y
|
||||
|
||||
/**
|
||||
* Trait for distance constraints to provide distance
|
||||
|
@ -114,9 +114,9 @@ namespace simulated2D {
|
|||
* @tparam VALUES is the variable set for the graph
|
||||
* @tparam KEY is the type of the keys for the variables constrained
|
||||
*/
|
||||
template<class VALUES, class KEY>
|
||||
struct MaxDistanceConstraint : public BoundingConstraint2<VALUES, KEY, KEY> {
|
||||
typedef BoundingConstraint2<VALUES, KEY, KEY> Base; ///< Base class for factor
|
||||
template<class KEY>
|
||||
struct MaxDistanceConstraint : public BoundingConstraint2<KEY, KEY> {
|
||||
typedef BoundingConstraint2<KEY, KEY> Base; ///< Base class for factor
|
||||
typedef typename KEY::Value Point; ///< Type of variable constrained
|
||||
|
||||
virtual ~MaxDistanceConstraint() {}
|
||||
|
@ -129,7 +129,7 @@ namespace simulated2D {
|
|||
* @param mu is the gain for the penalty function
|
||||
*/
|
||||
MaxDistanceConstraint(const KEY& key1, const KEY& key2, double range_bound, double mu = 1000.0)
|
||||
: Base(key1, key2, range_bound, false, mu) {}
|
||||
: Base(key1, key2, range_bound, false, mu) {}
|
||||
|
||||
/**
|
||||
* computes the range with derivatives
|
||||
|
@ -148,7 +148,7 @@ namespace simulated2D {
|
|||
}
|
||||
};
|
||||
|
||||
typedef MaxDistanceConstraint<Values, PoseKey> PoseMaxDistConstraint; ///< Simulated2D domain example factor
|
||||
typedef MaxDistanceConstraint<PoseKey> PoseMaxDistConstraint; ///< Simulated2D domain example factor
|
||||
|
||||
/**
|
||||
* Binary inequality constraint forcing a minimum range
|
||||
|
@ -157,9 +157,9 @@ namespace simulated2D {
|
|||
* @tparam XKEY is the type of the pose key constrained
|
||||
* @tparam PKEY is the type of the point key constrained
|
||||
*/
|
||||
template<class VALUES, class XKEY, class PKEY>
|
||||
struct MinDistanceConstraint : public BoundingConstraint2<VALUES, XKEY, PKEY> {
|
||||
typedef BoundingConstraint2<VALUES, XKEY, PKEY> Base; ///< Base class for factor
|
||||
template<class XKEY, class PKEY>
|
||||
struct MinDistanceConstraint : public BoundingConstraint2<XKEY, PKEY> {
|
||||
typedef BoundingConstraint2<XKEY, PKEY> Base; ///< Base class for factor
|
||||
typedef typename XKEY::Value Pose; ///< Type of pose variable constrained
|
||||
typedef typename PKEY::Value Point; ///< Type of point variable constrained
|
||||
|
||||
|
@ -174,7 +174,7 @@ namespace simulated2D {
|
|||
*/
|
||||
MinDistanceConstraint(const XKEY& key1, const PKEY& key2,
|
||||
double range_bound, double mu = 1000.0)
|
||||
: Base(key1, key2, range_bound, true, mu) {}
|
||||
: Base(key1, key2, range_bound, true, mu) {}
|
||||
|
||||
/**
|
||||
* computes the range with derivatives
|
||||
|
@ -193,7 +193,7 @@ namespace simulated2D {
|
|||
}
|
||||
};
|
||||
|
||||
typedef MinDistanceConstraint<Values, PoseKey, PointKey> LandmarkAvoid; ///< Simulated2D domain example factor
|
||||
typedef MinDistanceConstraint<PoseKey, PointKey> LandmarkAvoid; ///< Simulated2D domain example factor
|
||||
|
||||
|
||||
} // \namespace inequality_constraints
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
|
@ -31,29 +30,6 @@ namespace simulated2DOriented {
|
|||
// The types that take an oriented pose2 rather than point2
|
||||
typedef TypedSymbol<Point2, 'l'> PointKey;
|
||||
typedef TypedSymbol<Pose2, 'x'> PoseKey;
|
||||
typedef Values<PoseKey> PoseValues;
|
||||
typedef Values<PointKey> PointValues;
|
||||
|
||||
/// Specialized Values structure with syntactic sugar for
|
||||
/// compatibility with matlab
|
||||
class Values: public TupleValues2<PoseValues, PointValues> {
|
||||
public:
|
||||
Values() {}
|
||||
|
||||
void insertPose(const PoseKey& i, const Pose2& p) {
|
||||
insert(i, p);
|
||||
}
|
||||
|
||||
void insertPoint(const PointKey& j, const Point2& p) {
|
||||
insert(j, p);
|
||||
}
|
||||
|
||||
int nrPoses() const { return this->first_.size(); }
|
||||
int nrPoints() const { return this->second_.size(); }
|
||||
|
||||
Pose2 pose(const PoseKey& i) const { return (*this)[i]; }
|
||||
Point2 point(const PointKey& j) const { return (*this)[j]; }
|
||||
};
|
||||
|
||||
//TODO:: point prior is not implemented right now
|
||||
|
||||
|
@ -75,15 +51,15 @@ namespace simulated2DOriented {
|
|||
boost::none, boost::optional<Matrix&> H2 = boost::none);
|
||||
|
||||
/// Unary factor encoding a soft prior on a vector
|
||||
template<class VALUES = Values, class Key = PoseKey>
|
||||
struct GenericPosePrior: public NonlinearFactor1<VALUES, Key> {
|
||||
template<class Key = PoseKey>
|
||||
struct GenericPosePrior: public NonlinearFactor1<Key> {
|
||||
|
||||
Pose2 z_; ///< measurement
|
||||
|
||||
/// Create generic pose prior
|
||||
GenericPosePrior(const Pose2& z, const SharedNoiseModel& model,
|
||||
const Key& key) :
|
||||
NonlinearFactor1<VALUES, Key>(model, key), z_(z) {
|
||||
NonlinearFactor1<Key>(model, key), z_(z) {
|
||||
}
|
||||
|
||||
/// Evaluate error and optionally derivative
|
||||
|
@ -97,8 +73,8 @@ namespace simulated2DOriented {
|
|||
/**
|
||||
* Binary factor simulating "odometry" between two Vectors
|
||||
*/
|
||||
template<class VALUES = Values, class KEY = PoseKey>
|
||||
struct GenericOdometry: public NonlinearFactor2<VALUES, KEY, KEY> {
|
||||
template<class KEY = PoseKey>
|
||||
struct GenericOdometry: public NonlinearFactor2<KEY, KEY> {
|
||||
Pose2 z_; ///< Between measurement for odometry factor
|
||||
|
||||
/**
|
||||
|
@ -106,7 +82,7 @@ namespace simulated2DOriented {
|
|||
*/
|
||||
GenericOdometry(const Pose2& z, const SharedNoiseModel& model,
|
||||
const KEY& i1, const KEY& i2) :
|
||||
NonlinearFactor2<VALUES, KEY, KEY>(model, i1, i2), z_(z) {
|
||||
NonlinearFactor2<KEY, KEY>(model, i1, i2), z_(z) {
|
||||
}
|
||||
|
||||
/// Evaluate error and optionally derivative
|
||||
|
@ -118,10 +94,10 @@ namespace simulated2DOriented {
|
|||
|
||||
};
|
||||
|
||||
typedef GenericOdometry<Values, PoseKey> Odometry;
|
||||
typedef GenericOdometry<PoseKey> Odometry;
|
||||
|
||||
/// Graph specialization for syntactic sugar use with matlab
|
||||
class Graph : public NonlinearFactorGraph<Values> {
|
||||
class Graph : public NonlinearFactorGraph {
|
||||
public:
|
||||
Graph() {}
|
||||
// TODO: add functions to add factors
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
|
||||
// \namespace
|
||||
|
||||
|
@ -40,10 +39,6 @@ namespace simulated3D {
|
|||
typedef gtsam::TypedSymbol<Point3, 'x'> PoseKey;
|
||||
typedef gtsam::TypedSymbol<Point3, 'l'> PointKey;
|
||||
|
||||
typedef Values<PoseKey> PoseValues;
|
||||
typedef Values<PointKey> PointValues;
|
||||
typedef TupleValues2<PoseValues, PointValues> Values;
|
||||
|
||||
/**
|
||||
* Prior on a single pose
|
||||
*/
|
||||
|
@ -66,7 +61,7 @@ Point3 mea(const Point3& x, const Point3& l,
|
|||
/**
|
||||
* A prior factor on a single linear robot pose
|
||||
*/
|
||||
struct PointPrior3D: public NonlinearFactor1<Values, PoseKey> {
|
||||
struct PointPrior3D: public NonlinearFactor1<PoseKey> {
|
||||
|
||||
Point3 z_; ///< The prior pose value for the variable attached to this factor
|
||||
|
||||
|
@ -78,7 +73,7 @@ struct PointPrior3D: public NonlinearFactor1<Values, PoseKey> {
|
|||
*/
|
||||
PointPrior3D(const Point3& z,
|
||||
const SharedNoiseModel& model, const PoseKey& j) :
|
||||
NonlinearFactor1<Values, PoseKey> (model, j), z_(z) {
|
||||
NonlinearFactor1<PoseKey> (model, j), z_(z) {
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -97,8 +92,7 @@ struct PointPrior3D: public NonlinearFactor1<Values, PoseKey> {
|
|||
/**
|
||||
* Models a linear 3D measurement between 3D points
|
||||
*/
|
||||
struct Simulated3DMeasurement: public NonlinearFactor2<Values,
|
||||
PoseKey, PointKey> {
|
||||
struct Simulated3DMeasurement: public NonlinearFactor2<PoseKey, PointKey> {
|
||||
|
||||
Point3 z_; ///< Linear displacement between a pose and landmark
|
||||
|
||||
|
@ -111,7 +105,7 @@ PoseKey, PointKey> {
|
|||
*/
|
||||
Simulated3DMeasurement(const Point3& z,
|
||||
const SharedNoiseModel& model, PoseKey& j1, PointKey j2) :
|
||||
NonlinearFactor2<Values, PoseKey, PointKey> (
|
||||
NonlinearFactor2<PoseKey, PointKey> (
|
||||
model, j1, j2), z_(z) {
|
||||
}
|
||||
|
||||
|
|
|
@ -39,7 +39,7 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
namespace example {
|
||||
|
||||
typedef boost::shared_ptr<NonlinearFactor<Values> > shared;
|
||||
typedef boost::shared_ptr<NonlinearFactor > shared;
|
||||
|
||||
static SharedDiagonal sigma1_0 = noiseModel::Isotropic::Sigma(2,1.0);
|
||||
static SharedDiagonal sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1);
|
||||
|
@ -195,14 +195,13 @@ namespace example {
|
|||
0.0, cos(v.y()));
|
||||
}
|
||||
|
||||
struct UnaryFactor: public gtsam::NonlinearFactor1<Values,
|
||||
simulated2D::PoseKey> {
|
||||
struct UnaryFactor: public gtsam::NonlinearFactor1<simulated2D::PoseKey> {
|
||||
|
||||
Point2 z_;
|
||||
|
||||
UnaryFactor(const Point2& z, const SharedNoiseModel& model,
|
||||
const simulated2D::PoseKey& key) :
|
||||
gtsam::NonlinearFactor1<Values, simulated2D::PoseKey>(model, key), z_(z) {
|
||||
gtsam::NonlinearFactor1<simulated2D::PoseKey>(model, key), z_(z) {
|
||||
}
|
||||
|
||||
Vector evaluateError(const Point2& x, boost::optional<Matrix&> A =
|
||||
|
@ -423,7 +422,7 @@ namespace example {
|
|||
boost::tuple<FactorGraph<GaussianFactor>, Ordering, VectorValues> planarGraph(size_t N) {
|
||||
|
||||
// create empty graph
|
||||
NonlinearFactorGraph<Values> nlfg;
|
||||
NonlinearFactorGraph nlfg;
|
||||
|
||||
// Create almost hard constraint on x11, sigma=0 will work for PCG not for normal
|
||||
shared constraint(new simulated2D::Prior(Point2(1.0, 1.0), sharedSigma(2,1e-3), key(1,1)));
|
||||
|
|
|
@ -28,8 +28,7 @@
|
|||
namespace gtsam {
|
||||
namespace example {
|
||||
|
||||
typedef simulated2D::Values Values;
|
||||
typedef NonlinearFactorGraph<Values> Graph;
|
||||
typedef NonlinearFactorGraph Graph;
|
||||
|
||||
/**
|
||||
* Create small example for non-linear factor graph
|
||||
|
|
|
@ -39,9 +39,9 @@ TEST( AntiFactor, NegativeHessian)
|
|||
SharedNoiseModel sigma(noiseModel::Unit::Create(Pose3::Dim()));
|
||||
|
||||
// Create a configuration corresponding to the ground truth
|
||||
boost::shared_ptr<pose3SLAM::Values> values(new pose3SLAM::Values());
|
||||
values->insert(1, pose1);
|
||||
values->insert(2, pose2);
|
||||
boost::shared_ptr<Values> values(new Values());
|
||||
values->insert(pose3SLAM::Key(1), pose1);
|
||||
values->insert(pose3SLAM::Key(2), pose2);
|
||||
|
||||
// Define an elimination ordering
|
||||
Ordering::shared_ptr ordering(new Ordering());
|
||||
|
@ -50,7 +50,7 @@ TEST( AntiFactor, NegativeHessian)
|
|||
|
||||
|
||||
// Create a "standard" factor
|
||||
BetweenFactor<pose3SLAM::Values,pose3SLAM::Key>::shared_ptr originalFactor(new BetweenFactor<pose3SLAM::Values,pose3SLAM::Key>(1, 2, z, sigma));
|
||||
BetweenFactor<pose3SLAM::Key>::shared_ptr originalFactor(new BetweenFactor<pose3SLAM::Key>(1, 2, z, sigma));
|
||||
|
||||
// Linearize it into a Jacobian Factor
|
||||
GaussianFactor::shared_ptr originalJacobian = originalFactor->linearize(*values, *ordering);
|
||||
|
@ -59,7 +59,7 @@ TEST( AntiFactor, NegativeHessian)
|
|||
HessianFactor::shared_ptr originalHessian = HessianFactor::shared_ptr(new HessianFactor(*originalJacobian));
|
||||
|
||||
// Create the AntiFactor version of the original nonlinear factor
|
||||
AntiFactor<pose3SLAM::Values>::shared_ptr antiFactor(new AntiFactor<pose3SLAM::Values>(originalFactor));
|
||||
AntiFactor::shared_ptr antiFactor(new AntiFactor(originalFactor));
|
||||
|
||||
// Linearize the AntiFactor into a Hessian Factor
|
||||
GaussianFactor::shared_ptr antiGaussian = antiFactor->linearize(*values, *ordering);
|
||||
|
@ -100,9 +100,9 @@ TEST( AntiFactor, EquivalentBayesNet)
|
|||
graph->addConstraint(1, 2, pose1.between(pose2), sigma);
|
||||
|
||||
// Create a configuration corresponding to the ground truth
|
||||
boost::shared_ptr<pose3SLAM::Values> values(new pose3SLAM::Values());
|
||||
values->insert(1, pose1);
|
||||
values->insert(2, pose2);
|
||||
boost::shared_ptr<Values> values(new Values());
|
||||
values->insert(pose3SLAM::Key(1), pose1);
|
||||
values->insert(pose3SLAM::Key(2), pose2);
|
||||
|
||||
// Define an elimination ordering
|
||||
Ordering::shared_ptr ordering = graph->orderingCOLAMD(*values);
|
||||
|
@ -119,7 +119,7 @@ TEST( AntiFactor, EquivalentBayesNet)
|
|||
graph->push_back(f1);
|
||||
|
||||
// Add the corresponding AntiFactor between Pose1 and Pose2
|
||||
AntiFactor<pose3SLAM::Values>::shared_ptr f2(new AntiFactor<pose3SLAM::Values>(f1));
|
||||
AntiFactor::shared_ptr f2(new AntiFactor(f1));
|
||||
graph->push_back(f2);
|
||||
|
||||
// Again, Eliminate into a BayesNet
|
||||
|
|
|
@ -21,7 +21,6 @@ using namespace boost;
|
|||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
|
||||
|
@ -31,14 +30,11 @@ using namespace gtsam;
|
|||
typedef PinholeCamera<Cal3_S2> GeneralCamera;
|
||||
typedef TypedSymbol<GeneralCamera, 'x'> CameraKey;
|
||||
typedef TypedSymbol<Point3, 'l'> PointKey;
|
||||
typedef Values<CameraKey> CameraConfig;
|
||||
typedef Values<PointKey> PointConfig;
|
||||
typedef TupleValues2<CameraConfig, PointConfig> VisualValues;
|
||||
typedef GeneralSFMFactor<VisualValues, CameraKey, PointKey> Projection;
|
||||
typedef NonlinearEquality<VisualValues, CameraKey> CameraConstraint;
|
||||
typedef NonlinearEquality<VisualValues, PointKey> Point3Constraint;
|
||||
typedef GeneralSFMFactor<CameraKey, PointKey> Projection;
|
||||
typedef NonlinearEquality<CameraKey> CameraConstraint;
|
||||
typedef NonlinearEquality<PointKey> Point3Constraint;
|
||||
|
||||
class Graph: public NonlinearFactorGraph<VisualValues> {
|
||||
class Graph: public NonlinearFactorGraph {
|
||||
public:
|
||||
void addMeasurement(const CameraKey& i, const PointKey& j, const Point2& z, const SharedNoiseModel& model) {
|
||||
push_back(boost::make_shared<Projection>(z, model, i, j));
|
||||
|
@ -71,7 +67,7 @@ double getGaussian()
|
|||
return sqrt(-2.0f * (double)log(S) / S) * V1;
|
||||
}
|
||||
|
||||
typedef NonlinearOptimizer<Graph,VisualValues> Optimizer;
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
|
||||
const SharedNoiseModel sigma1(noiseModel::Unit::Create(1));
|
||||
|
||||
|
@ -99,12 +95,12 @@ TEST( GeneralSFMFactor, error ) {
|
|||
boost::shared_ptr<Projection>
|
||||
factor(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
||||
// For the following configuration, the factor predicts 320,240
|
||||
VisualValues values;
|
||||
Values values;
|
||||
Rot3 R;
|
||||
Point3 t1(0,0,-6);
|
||||
Pose3 x1(R,t1);
|
||||
values.insert(1, GeneralCamera(x1));
|
||||
Point3 l1; values.insert(1, l1);
|
||||
values.insert(CameraKey(1), GeneralCamera(x1));
|
||||
Point3 l1; values.insert(PointKey(1), l1);
|
||||
EXPECT(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(values)));
|
||||
}
|
||||
|
||||
|
@ -172,15 +168,15 @@ TEST( GeneralSFMFactor, optimize_defaultK ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
|
@ -211,9 +207,9 @@ TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
|
@ -221,10 +217,10 @@ TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
|||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
else {
|
||||
values->insert(i, L[i]) ;
|
||||
values->insert(PointKey(i), L[i]) ;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -257,16 +253,16 @@ TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
|
|||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
//Point3 pt(L[i].x(), L[i].y(), L[i].z());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
|
@ -300,7 +296,7 @@ TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i ) {
|
||||
const double
|
||||
rot_noise = 1e-5,
|
||||
|
@ -308,7 +304,7 @@ TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|||
focal_noise = 1,
|
||||
skew_noise = 1e-5;
|
||||
if ( i == 0 ) {
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
}
|
||||
else {
|
||||
|
||||
|
@ -319,12 +315,12 @@ TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|||
skew_noise, // s
|
||||
trans_noise, trans_noise // ux, uy
|
||||
) ;
|
||||
values->insert((int)i, X[i].retract(delta)) ;
|
||||
values->insert(CameraKey((int)i), X[i].retract(delta)) ;
|
||||
}
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
values->insert(i, L[i]) ;
|
||||
values->insert(PointKey(i), L[i]) ;
|
||||
}
|
||||
|
||||
// fix X0 and all landmarks, allow only the X[1] to move
|
||||
|
@ -362,16 +358,16 @@ TEST( GeneralSFMFactor, optimize_varK_BA ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
|
|
|
@ -21,7 +21,6 @@ using namespace boost;
|
|||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
|
||||
|
@ -31,15 +30,12 @@ using namespace gtsam;
|
|||
typedef PinholeCamera<Cal3Bundler> GeneralCamera;
|
||||
typedef TypedSymbol<GeneralCamera, 'x'> CameraKey;
|
||||
typedef TypedSymbol<Point3, 'l'> PointKey;
|
||||
typedef Values<CameraKey> CameraConfig;
|
||||
typedef Values<PointKey> PointConfig;
|
||||
typedef TupleValues2<CameraConfig, PointConfig> VisualValues;
|
||||
typedef GeneralSFMFactor<VisualValues, CameraKey, PointKey> Projection;
|
||||
typedef NonlinearEquality<VisualValues, CameraKey> CameraConstraint;
|
||||
typedef NonlinearEquality<VisualValues, PointKey> Point3Constraint;
|
||||
typedef GeneralSFMFactor<CameraKey, PointKey> Projection;
|
||||
typedef NonlinearEquality<CameraKey> CameraConstraint;
|
||||
typedef NonlinearEquality<PointKey> Point3Constraint;
|
||||
|
||||
/* ************************************************************************* */
|
||||
class Graph: public NonlinearFactorGraph<VisualValues> {
|
||||
class Graph: public NonlinearFactorGraph {
|
||||
public:
|
||||
void addMeasurement(const CameraKey& i, const PointKey& j, const Point2& z, const SharedNoiseModel& model) {
|
||||
push_back(boost::make_shared<Projection>(z, model, i, j));
|
||||
|
@ -72,7 +68,7 @@ double getGaussian()
|
|||
return sqrt(-2.0f * (double)log(S) / S) * V1;
|
||||
}
|
||||
|
||||
typedef NonlinearOptimizer<Graph,VisualValues> Optimizer;
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
|
||||
const SharedNoiseModel sigma1(noiseModel::Unit::Create(1));
|
||||
|
||||
|
@ -100,12 +96,12 @@ TEST( GeneralSFMFactor, error ) {
|
|||
boost::shared_ptr<Projection>
|
||||
factor(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
||||
// For the following configuration, the factor predicts 320,240
|
||||
VisualValues values;
|
||||
Values values;
|
||||
Rot3 R;
|
||||
Point3 t1(0,0,-6);
|
||||
Pose3 x1(R,t1);
|
||||
values.insert(1, GeneralCamera(x1));
|
||||
Point3 l1; values.insert(1, l1);
|
||||
values.insert(CameraKey(1), GeneralCamera(x1));
|
||||
Point3 l1; values.insert(PointKey(1), l1);
|
||||
EXPECT(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(values)));
|
||||
}
|
||||
|
||||
|
@ -173,15 +169,15 @@ TEST( GeneralSFMFactor, optimize_defaultK ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
|
@ -212,9 +208,9 @@ TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
|
@ -222,10 +218,10 @@ TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
|||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
else {
|
||||
values->insert(i, L[i]) ;
|
||||
values->insert(PointKey(i), L[i]) ;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -258,16 +254,16 @@ TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
|
|||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
//Point3 pt(L[i].x(), L[i].y(), L[i].z());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
|
@ -301,13 +297,13 @@ TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i ) {
|
||||
const double
|
||||
rot_noise = 1e-5, trans_noise = 1e-3,
|
||||
focal_noise = 1, distort_noise = 1e-3;
|
||||
if ( i == 0 ) {
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
}
|
||||
else {
|
||||
|
||||
|
@ -316,12 +312,12 @@ TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|||
trans_noise, trans_noise, trans_noise, // translation
|
||||
focal_noise, distort_noise, distort_noise // f, k1, k2
|
||||
) ;
|
||||
values->insert((int)i, X[i].retract(delta)) ;
|
||||
values->insert(CameraKey((int)i), X[i].retract(delta)) ;
|
||||
}
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
values->insert(i, L[i]) ;
|
||||
values->insert(PointKey(i), L[i]) ;
|
||||
}
|
||||
|
||||
// fix X0 and all landmarks, allow only the X[1] to move
|
||||
|
@ -358,16 +354,16 @@ TEST( GeneralSFMFactor, optimize_varK_BA ) {
|
|||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<VisualValues> values(new VisualValues);
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
values->insert(CameraKey((int)i), X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
values->insert(PointKey(i), pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace planarSLAM;
|
||||
|
||||
// some shared test values
|
||||
static Pose2 x1, x2(1, 1, 0), x3(1, 1, M_PI_4);
|
||||
|
@ -50,9 +51,9 @@ TEST( planarSLAM, BearingFactor )
|
|||
planarSLAM::Bearing factor(2, 3, z, sigma);
|
||||
|
||||
// create config
|
||||
planarSLAM::Values c;
|
||||
c.insert(2, x2);
|
||||
c.insert(3, l3);
|
||||
Values c;
|
||||
c.insert(PoseKey(2), x2);
|
||||
c.insert(PointKey(3), l3);
|
||||
|
||||
// Check error
|
||||
Vector actual = factor.unwhitenedError(c);
|
||||
|
@ -78,9 +79,9 @@ TEST( planarSLAM, RangeFactor )
|
|||
planarSLAM::Range factor(2, 3, z, sigma);
|
||||
|
||||
// create config
|
||||
planarSLAM::Values c;
|
||||
c.insert(2, x2);
|
||||
c.insert(3, l3);
|
||||
Values c;
|
||||
c.insert(PoseKey(2), x2);
|
||||
c.insert(PointKey(3), l3);
|
||||
|
||||
// Check error
|
||||
Vector actual = factor.unwhitenedError(c);
|
||||
|
@ -105,9 +106,9 @@ TEST( planarSLAM, BearingRangeFactor )
|
|||
planarSLAM::BearingRange factor(2, 3, r, b, sigma2);
|
||||
|
||||
// create config
|
||||
planarSLAM::Values c;
|
||||
c.insert(2, x2);
|
||||
c.insert(3, l3);
|
||||
Values c;
|
||||
c.insert(PoseKey(2), x2);
|
||||
c.insert(PointKey(3), l3);
|
||||
|
||||
// Check error
|
||||
Vector actual = factor.unwhitenedError(c);
|
||||
|
@ -138,10 +139,10 @@ TEST( planarSLAM, PoseConstraint_equals )
|
|||
TEST( planarSLAM, constructor )
|
||||
{
|
||||
// create config
|
||||
planarSLAM::Values c;
|
||||
c.insert(2, x2);
|
||||
c.insert(3, x3);
|
||||
c.insert(3, l3);
|
||||
Values c;
|
||||
c.insert(PoseKey(2), x2);
|
||||
c.insert(PoseKey(3), x3);
|
||||
c.insert(PointKey(3), l3);
|
||||
|
||||
// create graph
|
||||
planarSLAM::Graph G;
|
||||
|
@ -165,8 +166,8 @@ TEST( planarSLAM, constructor )
|
|||
Vector expected2 = Vector_(1, -0.1);
|
||||
Vector expected3 = Vector_(1, 0.22);
|
||||
// Get NoiseModelFactors
|
||||
FactorGraph<NoiseModelFactor<planarSLAM::Values> > GNM =
|
||||
*G.dynamicCastFactors<FactorGraph<NoiseModelFactor<planarSLAM::Values> > >();
|
||||
FactorGraph<NoiseModelFactor > GNM =
|
||||
*G.dynamicCastFactors<FactorGraph<NoiseModelFactor > >();
|
||||
EXPECT(assert_equal(expected0, GNM[0]->unwhitenedError(c)));
|
||||
EXPECT(assert_equal(expected1, GNM[1]->unwhitenedError(c)));
|
||||
EXPECT(assert_equal(expected2, GNM[2]->unwhitenedError(c)));
|
||||
|
|
|
@ -118,8 +118,8 @@ TEST( Pose2SLAM, linearization )
|
|||
Pose2 p1(1.1,2,M_PI_2); // robot at (1.1,2) looking towards y (ground truth is at 1,2, see testPose2)
|
||||
Pose2 p2(-1,4.1,M_PI); // robot at (-1,4) looking at negative (ground truth is at 4.1,2)
|
||||
pose2SLAM::Values config;
|
||||
config.insert(1,p1);
|
||||
config.insert(2,p2);
|
||||
config.insert(pose2SLAM::PoseKey(1),p1);
|
||||
config.insert(pose2SLAM::PoseKey(2),p2);
|
||||
// Linearize
|
||||
Ordering ordering(*config.orderingArbitrary());
|
||||
boost::shared_ptr<FactorGraph<GaussianFactor> > lfg_linearized = graph.linearize(config, ordering);
|
||||
|
@ -153,23 +153,23 @@ TEST(Pose2Graph, optimize) {
|
|||
fg->addOdometry(0, 1, Pose2(1,2,M_PI_2), covariance);
|
||||
|
||||
// Create initial config
|
||||
boost::shared_ptr<pose2SLAM::Values> initial(new pose2SLAM::Values());
|
||||
initial->insert(0, Pose2(0,0,0));
|
||||
initial->insert(1, Pose2(0,0,0));
|
||||
boost::shared_ptr<Values> initial(new Values());
|
||||
initial->insert(pose2SLAM::PoseKey(0), Pose2(0,0,0));
|
||||
initial->insert(pose2SLAM::PoseKey(1), Pose2(0,0,0));
|
||||
|
||||
// Choose an ordering and optimize
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
*ordering += "x0","x1";
|
||||
typedef NonlinearOptimizer<pose2SLAM::Graph, pose2SLAM::Values> Optimizer;
|
||||
typedef NonlinearOptimizer<pose2SLAM::Graph> Optimizer;
|
||||
|
||||
NonlinearOptimizationParameters::shared_ptr params = NonlinearOptimizationParameters::newDrecreaseThresholds(1e-15, 1e-15);
|
||||
Optimizer optimizer0(fg, initial, ordering, params);
|
||||
Optimizer optimizer = optimizer0.levenbergMarquardt();
|
||||
|
||||
// Check with expected config
|
||||
pose2SLAM::Values expected;
|
||||
expected.insert(0, Pose2(0,0,0));
|
||||
expected.insert(1, Pose2(1,2,M_PI_2));
|
||||
Values expected;
|
||||
expected.insert(pose2SLAM::PoseKey(0), Pose2(0,0,0));
|
||||
expected.insert(pose2SLAM::PoseKey(1), Pose2(1,2,M_PI_2));
|
||||
CHECK(assert_equal(expected, *optimizer.values()));
|
||||
}
|
||||
|
||||
|
@ -178,8 +178,8 @@ TEST(Pose2Graph, optimize) {
|
|||
TEST(Pose2Graph, optimizeThreePoses) {
|
||||
|
||||
// Create a hexagon of poses
|
||||
pose2SLAM::Values hexagon = pose2SLAM::circle(3,1.0);
|
||||
Pose2 p0 = hexagon[0], p1 = hexagon[1];
|
||||
Values hexagon = pose2SLAM::circle(3,1.0);
|
||||
Pose2 p0 = hexagon[pose2SLAM::PoseKey(0)], p1 = hexagon[pose2SLAM::PoseKey(1)];
|
||||
|
||||
// create a Pose graph with one equality constraint and one measurement
|
||||
shared_ptr<pose2SLAM::Graph> fg(new pose2SLAM::Graph);
|
||||
|
@ -190,10 +190,10 @@ TEST(Pose2Graph, optimizeThreePoses) {
|
|||
fg->addOdometry(2, 0, delta, covariance);
|
||||
|
||||
// Create initial config
|
||||
boost::shared_ptr<pose2SLAM::Values> initial(new pose2SLAM::Values());
|
||||
initial->insert(0, p0);
|
||||
initial->insert(1, hexagon[1].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(2, hexagon[2].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
boost::shared_ptr<Values> initial(new Values());
|
||||
initial->insert(pose2SLAM::PoseKey(0), p0);
|
||||
initial->insert(pose2SLAM::PoseKey(1), hexagon[pose2SLAM::PoseKey(1)].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(pose2SLAM::PoseKey(2), hexagon[pose2SLAM::PoseKey(2)].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
|
||||
// Choose an ordering
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
|
@ -204,7 +204,7 @@ TEST(Pose2Graph, optimizeThreePoses) {
|
|||
pose2SLAM::Optimizer optimizer0(fg, initial, ordering, params);
|
||||
pose2SLAM::Optimizer optimizer = optimizer0.levenbergMarquardt();
|
||||
|
||||
pose2SLAM::Values actual = *optimizer.values();
|
||||
Values actual = *optimizer.values();
|
||||
|
||||
// Check with ground truth
|
||||
CHECK(assert_equal(hexagon, actual));
|
||||
|
@ -215,8 +215,8 @@ TEST(Pose2Graph, optimizeThreePoses) {
|
|||
TEST_UNSAFE(Pose2SLAM, optimizeCircle) {
|
||||
|
||||
// Create a hexagon of poses
|
||||
pose2SLAM::Values hexagon = pose2SLAM::circle(6,1.0);
|
||||
Pose2 p0 = hexagon[0], p1 = hexagon[1];
|
||||
Values hexagon = pose2SLAM::circle(6,1.0);
|
||||
Pose2 p0 = hexagon[pose2SLAM::PoseKey(0)], p1 = hexagon[pose2SLAM::PoseKey(1)];
|
||||
|
||||
// create a Pose graph with one equality constraint and one measurement
|
||||
shared_ptr<pose2SLAM::Graph> fg(new pose2SLAM::Graph);
|
||||
|
@ -230,13 +230,13 @@ TEST_UNSAFE(Pose2SLAM, optimizeCircle) {
|
|||
fg->addOdometry(5, 0, delta, covariance);
|
||||
|
||||
// Create initial config
|
||||
boost::shared_ptr<pose2SLAM::Values> initial(new pose2SLAM::Values());
|
||||
initial->insert(0, p0);
|
||||
initial->insert(1, hexagon[1].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(2, hexagon[2].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
initial->insert(3, hexagon[3].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(4, hexagon[4].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
initial->insert(5, hexagon[5].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
boost::shared_ptr<Values> initial(new Values());
|
||||
initial->insert(pose2SLAM::PoseKey(0), p0);
|
||||
initial->insert(pose2SLAM::PoseKey(1), hexagon[pose2SLAM::PoseKey(1)].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(pose2SLAM::PoseKey(2), hexagon[pose2SLAM::PoseKey(2)].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
initial->insert(pose2SLAM::PoseKey(3), hexagon[pose2SLAM::PoseKey(3)].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
initial->insert(pose2SLAM::PoseKey(4), hexagon[pose2SLAM::PoseKey(4)].retract(Vector_(3, 0.1,-0.1, 0.1)));
|
||||
initial->insert(pose2SLAM::PoseKey(5), hexagon[pose2SLAM::PoseKey(5)].retract(Vector_(3,-0.1, 0.1,-0.1)));
|
||||
|
||||
// Choose an ordering
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
|
@ -247,13 +247,13 @@ TEST_UNSAFE(Pose2SLAM, optimizeCircle) {
|
|||
pose2SLAM::Optimizer optimizer0(fg, initial, ordering, params);
|
||||
pose2SLAM::Optimizer optimizer = optimizer0.levenbergMarquardt();
|
||||
|
||||
pose2SLAM::Values actual = *optimizer.values();
|
||||
Values actual = *optimizer.values();
|
||||
|
||||
// Check with ground truth
|
||||
CHECK(assert_equal(hexagon, actual));
|
||||
|
||||
// Check loop closure
|
||||
CHECK(assert_equal(delta,actual[5].between(actual[0])));
|
||||
CHECK(assert_equal(delta,actual[pose2SLAM::PoseKey(5)].between(actual[pose2SLAM::PoseKey(0)])));
|
||||
|
||||
// Pose2SLAMOptimizer myOptimizer("3");
|
||||
|
||||
|
@ -281,7 +281,7 @@ TEST_UNSAFE(Pose2SLAM, optimizeCircle) {
|
|||
//
|
||||
// myOptimizer.update(x);
|
||||
//
|
||||
// pose2SLAM::Values expected;
|
||||
// Values expected;
|
||||
// expected.insert(0, Pose2(0.,0.,0.));
|
||||
// expected.insert(1, Pose2(1.,0.,0.));
|
||||
// expected.insert(2, Pose2(2.,0.,0.));
|
||||
|
@ -315,8 +315,8 @@ TEST(Pose2Graph, optimize2) {
|
|||
// G.addConstraint(1, 3, Pose2(0.,0.,0.), I3);
|
||||
// G.addConstraint(2, 3, Pose2(0.,0.,0.), I3);
|
||||
//
|
||||
// PredecessorMap<pose2SLAM::Key> tree =
|
||||
// G.findMinimumSpanningTree<pose2SLAM::Key, Pose2Factor>();
|
||||
// PredecessorMap<pose2SLAM::pose2SLAM::PoseKey> tree =
|
||||
// G.findMinimumSpanningTree<pose2SLAM::pose2SLAM::PoseKey, Pose2Factor>();
|
||||
// CHECK(tree[1] == 1);
|
||||
// CHECK(tree[2] == 1);
|
||||
// CHECK(tree[3] == 1);
|
||||
|
@ -329,12 +329,12 @@ TEST(Pose2Graph, optimize2) {
|
|||
// G.addConstraint(1, 3, Pose2(0.,0.,0.), I3);
|
||||
// G.addConstraint(2, 3, Pose2(0.,0.,0.), I3);
|
||||
//
|
||||
// PredecessorMap<pose2SLAM::Key> tree;
|
||||
// PredecessorMap<pose2SLAM::pose2SLAM::PoseKey> tree;
|
||||
// tree.insert(1,2);
|
||||
// tree.insert(2,2);
|
||||
// tree.insert(3,2);
|
||||
//
|
||||
// G.split<pose2SLAM::Key, Pose2Factor>(tree, T, C);
|
||||
// G.split<pose2SLAM::pose2SLAM::PoseKey, Pose2Factor>(tree, T, C);
|
||||
// LONGS_EQUAL(2, T.size());
|
||||
// LONGS_EQUAL(1, C.size());
|
||||
//}
|
||||
|
@ -345,13 +345,13 @@ using namespace pose2SLAM;
|
|||
TEST(Pose2Values, pose2Circle )
|
||||
{
|
||||
// expected is 4 poses tangent to circle with radius 1m
|
||||
pose2SLAM::Values expected;
|
||||
expected.insert(0, Pose2( 1, 0, M_PI_2));
|
||||
expected.insert(1, Pose2( 0, 1, - M_PI ));
|
||||
expected.insert(2, Pose2(-1, 0, - M_PI_2));
|
||||
expected.insert(3, Pose2( 0, -1, 0 ));
|
||||
Values expected;
|
||||
expected.insert(pose2SLAM::PoseKey(0), Pose2( 1, 0, M_PI_2));
|
||||
expected.insert(pose2SLAM::PoseKey(1), Pose2( 0, 1, - M_PI ));
|
||||
expected.insert(pose2SLAM::PoseKey(2), Pose2(-1, 0, - M_PI_2));
|
||||
expected.insert(pose2SLAM::PoseKey(3), Pose2( 0, -1, 0 ));
|
||||
|
||||
pose2SLAM::Values actual = pose2SLAM::circle(4,1.0);
|
||||
Values actual = pose2SLAM::circle(4,1.0);
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
|
@ -359,21 +359,21 @@ TEST(Pose2Values, pose2Circle )
|
|||
TEST(Pose2SLAM, expmap )
|
||||
{
|
||||
// expected is circle shifted to right
|
||||
pose2SLAM::Values expected;
|
||||
expected.insert(0, Pose2( 1.1, 0, M_PI_2));
|
||||
expected.insert(1, Pose2( 0.1, 1, - M_PI ));
|
||||
expected.insert(2, Pose2(-0.9, 0, - M_PI_2));
|
||||
expected.insert(3, Pose2( 0.1, -1, 0 ));
|
||||
Values expected;
|
||||
expected.insert(pose2SLAM::PoseKey(0), Pose2( 1.1, 0, M_PI_2));
|
||||
expected.insert(pose2SLAM::PoseKey(1), Pose2( 0.1, 1, - M_PI ));
|
||||
expected.insert(pose2SLAM::PoseKey(2), Pose2(-0.9, 0, - M_PI_2));
|
||||
expected.insert(pose2SLAM::PoseKey(3), Pose2( 0.1, -1, 0 ));
|
||||
|
||||
// Note expmap coordinates are in local coordinates, so shifting to right requires thought !!!
|
||||
pose2SLAM::Values circle(pose2SLAM::circle(4,1.0));
|
||||
Values circle(pose2SLAM::circle(4,1.0));
|
||||
Ordering ordering(*circle.orderingArbitrary());
|
||||
VectorValues delta(circle.dims(ordering));
|
||||
delta[ordering[PoseKey(0)]] = Vector_(3, 0.0,-0.1,0.0);
|
||||
delta[ordering[PoseKey(1)]] = Vector_(3, -0.1,0.0,0.0);
|
||||
delta[ordering[PoseKey(2)]] = Vector_(3, 0.0,0.1,0.0);
|
||||
delta[ordering[PoseKey(3)]] = Vector_(3, 0.1,0.0,0.0);
|
||||
pose2SLAM::Values actual = circle.retract(delta, ordering);
|
||||
delta[ordering[pose2SLAM::PoseKey(0)]] = Vector_(3, 0.0,-0.1,0.0);
|
||||
delta[ordering[pose2SLAM::PoseKey(1)]] = Vector_(3, -0.1,0.0,0.0);
|
||||
delta[ordering[pose2SLAM::PoseKey(2)]] = Vector_(3, 0.0,0.1,0.0);
|
||||
delta[ordering[pose2SLAM::PoseKey(3)]] = Vector_(3, 0.1,0.0,0.0);
|
||||
Values actual = circle.retract(delta, ordering);
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
|
@ -386,8 +386,8 @@ TEST( Pose2Prior, error )
|
|||
{
|
||||
// Choose a linearization point
|
||||
Pose2 p1(1, 0, 0); // robot at (1,0)
|
||||
pose2SLAM::Values x0;
|
||||
x0.insert(1, p1);
|
||||
Values x0;
|
||||
x0.insert(pose2SLAM::PoseKey(1), p1);
|
||||
|
||||
// Create factor
|
||||
pose2SLAM::Prior factor(1, p1, sigmas);
|
||||
|
@ -408,7 +408,7 @@ TEST( Pose2Prior, error )
|
|||
VectorValues addition(VectorValues::Zero(x0.dims(ordering)));
|
||||
addition[ordering["x1"]] = Vector_(3, 0.1, 0.0, 0.0);
|
||||
VectorValues plus = delta + addition;
|
||||
pose2SLAM::Values x1 = x0.retract(plus, ordering);
|
||||
Values x1 = x0.retract(plus, ordering);
|
||||
Vector error_at_plus = Vector_(3,0.1/sx,0.0,0.0); // h(x)-z = 0.1 !
|
||||
CHECK(assert_equal(error_at_plus,factor.whitenedError(x1)));
|
||||
CHECK(assert_equal(error_at_plus,linear->error_vector(plus)));
|
||||
|
@ -430,8 +430,8 @@ LieVector hprior(const Pose2& p1) {
|
|||
TEST( Pose2Prior, linearize )
|
||||
{
|
||||
// Choose a linearization point at ground truth
|
||||
pose2SLAM::Values x0;
|
||||
x0.insert(1,priorVal);
|
||||
Values x0;
|
||||
x0.insert(pose2SLAM::PoseKey(1),priorVal);
|
||||
|
||||
// Actual linearization
|
||||
Ordering ordering(*x0.orderingArbitrary());
|
||||
|
@ -450,9 +450,9 @@ TEST( Pose2Factor, error )
|
|||
// Choose a linearization point
|
||||
Pose2 p1; // robot at origin
|
||||
Pose2 p2(1, 0, 0); // robot at (1,0)
|
||||
pose2SLAM::Values x0;
|
||||
x0.insert(1, p1);
|
||||
x0.insert(2, p2);
|
||||
Values x0;
|
||||
x0.insert(pose2SLAM::PoseKey(1), p1);
|
||||
x0.insert(pose2SLAM::PoseKey(2), p2);
|
||||
|
||||
// Create factor
|
||||
Pose2 z = p1.between(p2);
|
||||
|
@ -474,7 +474,7 @@ TEST( Pose2Factor, error )
|
|||
// Check error after increasing p2
|
||||
VectorValues plus = delta;
|
||||
plus[ordering["x2"]] = Vector_(3, 0.1, 0.0, 0.0);
|
||||
pose2SLAM::Values x1 = x0.retract(plus, ordering);
|
||||
Values x1 = x0.retract(plus, ordering);
|
||||
Vector error_at_plus = Vector_(3,0.1/sx,0.0,0.0); // h(x)-z = 0.1 !
|
||||
CHECK(assert_equal(error_at_plus,factor.whitenedError(x1)));
|
||||
CHECK(assert_equal(error_at_plus,linear->error_vector(plus)));
|
||||
|
@ -491,9 +491,9 @@ TEST( Pose2Factor, rhs )
|
|||
// Choose a linearization point
|
||||
Pose2 p1(1.1,2,M_PI_2); // robot at (1.1,2) looking towards y (ground truth is at 1,2, see testPose2)
|
||||
Pose2 p2(-1,4.1,M_PI); // robot at (-1,4.1) looking at negative (ground truth is at -1,4)
|
||||
pose2SLAM::Values x0;
|
||||
x0.insert(1,p1);
|
||||
x0.insert(2,p2);
|
||||
Values x0;
|
||||
x0.insert(pose2SLAM::PoseKey(1),p1);
|
||||
x0.insert(pose2SLAM::PoseKey(2),p2);
|
||||
|
||||
// Actual linearization
|
||||
Ordering ordering(*x0.orderingArbitrary());
|
||||
|
@ -521,9 +521,9 @@ TEST( Pose2Factor, linearize )
|
|||
// Choose a linearization point at ground truth
|
||||
Pose2 p1(1,2,M_PI_2);
|
||||
Pose2 p2(-1,4,M_PI);
|
||||
pose2SLAM::Values x0;
|
||||
x0.insert(1,p1);
|
||||
x0.insert(2,p2);
|
||||
Values x0;
|
||||
x0.insert(pose2SLAM::PoseKey(1),p1);
|
||||
x0.insert(pose2SLAM::PoseKey(2),p2);
|
||||
|
||||
// expected linearization
|
||||
Matrix expectedH1 = covariance->Whiten(Matrix_(3,3,
|
||||
|
|
|
@ -36,6 +36,7 @@ using namespace boost::assign;
|
|||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace pose3SLAM;
|
||||
|
||||
// common measurement covariance
|
||||
static Matrix covariance = eye(6);
|
||||
|
@ -48,8 +49,8 @@ TEST(Pose3Graph, optimizeCircle) {
|
|||
|
||||
// Create a hexagon of poses
|
||||
double radius = 10;
|
||||
Pose3Values hexagon = pose3SLAM::circle(6,radius);
|
||||
Pose3 gT0 = hexagon[0], gT1 = hexagon[1];
|
||||
Values hexagon = pose3SLAM::circle(6,radius);
|
||||
Pose3 gT0 = hexagon[Key(0)], gT1 = hexagon[Key(1)];
|
||||
|
||||
// create a Pose graph with one equality constraint and one measurement
|
||||
shared_ptr<Pose3Graph> fg(new Pose3Graph);
|
||||
|
@ -65,13 +66,13 @@ TEST(Pose3Graph, optimizeCircle) {
|
|||
fg->addConstraint(5,0, _0T1, covariance);
|
||||
|
||||
// Create initial config
|
||||
boost::shared_ptr<Pose3Values> initial(new Pose3Values());
|
||||
initial->insert(0, gT0);
|
||||
initial->insert(1, hexagon[1].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
initial->insert(2, hexagon[2].retract(Vector_(6, 0.1,-0.1, 0.1, 0.1,-0.1, 0.1)));
|
||||
initial->insert(3, hexagon[3].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
initial->insert(4, hexagon[4].retract(Vector_(6, 0.1,-0.1, 0.1, 0.1,-0.1, 0.1)));
|
||||
initial->insert(5, hexagon[5].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
boost::shared_ptr<Values> initial(new Values());
|
||||
initial->insert(Key(0), gT0);
|
||||
initial->insert(Key(1), hexagon[Key(1)].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
initial->insert(Key(2), hexagon[Key(2)].retract(Vector_(6, 0.1,-0.1, 0.1, 0.1,-0.1, 0.1)));
|
||||
initial->insert(Key(3), hexagon[Key(3)].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
initial->insert(Key(4), hexagon[Key(4)].retract(Vector_(6, 0.1,-0.1, 0.1, 0.1,-0.1, 0.1)));
|
||||
initial->insert(Key(5), hexagon[Key(5)].retract(Vector_(6,-0.1, 0.1,-0.1,-0.1, 0.1,-0.1)));
|
||||
|
||||
// Choose an ordering and optimize
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
|
@ -80,18 +81,18 @@ TEST(Pose3Graph, optimizeCircle) {
|
|||
pose3SLAM::Optimizer optimizer0(fg, initial, ordering, params);
|
||||
pose3SLAM::Optimizer optimizer = optimizer0.levenbergMarquardt();
|
||||
|
||||
Pose3Values actual = *optimizer.values();
|
||||
Values actual = *optimizer.values();
|
||||
|
||||
// Check with ground truth
|
||||
CHECK(assert_equal(hexagon, actual,1e-4));
|
||||
|
||||
// Check loop closure
|
||||
CHECK(assert_equal(_0T1,actual[5].between(actual[0]),1e-5));
|
||||
CHECK(assert_equal(_0T1,actual[Key(5)].between(actual[Key(0)]),1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3Graph, partial_prior_height) {
|
||||
typedef PartialPriorFactor<pose3SLAM::Values, pose3SLAM::Key> Partial;
|
||||
typedef PartialPriorFactor<pose3SLAM::Key> Partial;
|
||||
|
||||
// reference: Pose3 Expmap - (0-2: Rot3) (3-5: Point3)
|
||||
|
||||
|
@ -109,13 +110,13 @@ TEST(Pose3Graph, partial_prior_height) {
|
|||
pose3SLAM::Graph graph;
|
||||
graph.add(height);
|
||||
|
||||
pose3SLAM::Values values;
|
||||
Values values;
|
||||
values.insert(key, init);
|
||||
|
||||
// linearization
|
||||
EXPECT_DOUBLES_EQUAL(2.0, height.error(values), tol);
|
||||
|
||||
pose3SLAM::Values actual = *pose3SLAM::Optimizer::optimizeLM(graph, values);
|
||||
Values actual = *pose3SLAM::Optimizer::optimizeLM(graph, values);
|
||||
EXPECT(assert_equal(expected, actual[key], tol));
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(actual), tol);
|
||||
}
|
||||
|
@ -133,9 +134,9 @@ TEST( Pose3Factor, error )
|
|||
Pose3Factor factor(1,2, z, I6);
|
||||
|
||||
// Create config
|
||||
Pose3Values x;
|
||||
x.insert(1,t1);
|
||||
x.insert(2,t2);
|
||||
Values x;
|
||||
x.insert(Key(1),t1);
|
||||
x.insert(Key(2),t2);
|
||||
|
||||
// Get error h(x)-z -> localCoordinates(z,h(x)) = localCoordinates(z,between(t1,t2))
|
||||
Vector actual = factor.unwhitenedError(x);
|
||||
|
@ -145,7 +146,7 @@ TEST( Pose3Factor, error )
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3Graph, partial_prior_xy) {
|
||||
typedef PartialPriorFactor<pose3SLAM::Values, pose3SLAM::Key> Partial;
|
||||
typedef PartialPriorFactor<pose3SLAM::Key> Partial;
|
||||
|
||||
// XY prior - full mask interface
|
||||
pose3SLAM::Key key(1);
|
||||
|
@ -164,10 +165,10 @@ TEST(Pose3Graph, partial_prior_xy) {
|
|||
pose3SLAM::Graph graph;
|
||||
graph.add(priorXY);
|
||||
|
||||
pose3SLAM::Values values;
|
||||
Values values;
|
||||
values.insert(key, init);
|
||||
|
||||
pose3SLAM::Values actual = *pose3SLAM::Optimizer::optimizeLM(graph, values);
|
||||
Values actual = *pose3SLAM::Optimizer::optimizeLM(graph, values);
|
||||
EXPECT(assert_equal(expected, actual[key], tol));
|
||||
EXPECT_DOUBLES_EQUAL(0.0, graph.error(actual), tol);
|
||||
}
|
||||
|
@ -180,27 +181,27 @@ Rot3 R3(Point3( 0,-1, 0), Point3(-1, 0, 0), Point3(0, 0, -1));
|
|||
Rot3 R4(Point3( 1, 0, 0), Point3( 0,-1, 0), Point3(0, 0, -1));
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Pose3Values, pose3Circle )
|
||||
TEST( Values, pose3Circle )
|
||||
{
|
||||
// expected is 4 poses tangent to circle with radius 1m
|
||||
Pose3Values expected;
|
||||
expected.insert(0, Pose3(R1, Point3( 1, 0, 0)));
|
||||
expected.insert(1, Pose3(R2, Point3( 0, 1, 0)));
|
||||
expected.insert(2, Pose3(R3, Point3(-1, 0, 0)));
|
||||
expected.insert(3, Pose3(R4, Point3( 0,-1, 0)));
|
||||
Values expected;
|
||||
expected.insert(Key(0), Pose3(R1, Point3( 1, 0, 0)));
|
||||
expected.insert(Key(1), Pose3(R2, Point3( 0, 1, 0)));
|
||||
expected.insert(Key(2), Pose3(R3, Point3(-1, 0, 0)));
|
||||
expected.insert(Key(3), Pose3(R4, Point3( 0,-1, 0)));
|
||||
|
||||
Pose3Values actual = pose3SLAM::circle(4,1.0);
|
||||
Values actual = pose3SLAM::circle(4,1.0);
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Pose3Values, expmap )
|
||||
TEST( Values, expmap )
|
||||
{
|
||||
Pose3Values expected;
|
||||
expected.insert(0, Pose3(R1, Point3( 1.0, 0.1, 0)));
|
||||
expected.insert(1, Pose3(R2, Point3(-0.1, 1.0, 0)));
|
||||
expected.insert(2, Pose3(R3, Point3(-1.0,-0.1, 0)));
|
||||
expected.insert(3, Pose3(R4, Point3( 0.1,-1.0, 0)));
|
||||
Values expected;
|
||||
expected.insert(Key(0), Pose3(R1, Point3( 1.0, 0.1, 0)));
|
||||
expected.insert(Key(1), Pose3(R2, Point3(-0.1, 1.0, 0)));
|
||||
expected.insert(Key(2), Pose3(R3, Point3(-1.0,-0.1, 0)));
|
||||
expected.insert(Key(3), Pose3(R4, Point3( 0.1,-1.0, 0)));
|
||||
|
||||
Ordering ordering(*expected.orderingArbitrary());
|
||||
VectorValues delta(expected.dims(ordering));
|
||||
|
@ -209,7 +210,7 @@ TEST( Pose3Values, expmap )
|
|||
0.0,0.0,0.0, 0.1, 0.0, 0.0,
|
||||
0.0,0.0,0.0, 0.1, 0.0, 0.0,
|
||||
0.0,0.0,0.0, 0.1, 0.0, 0.0);
|
||||
Pose3Values actual = pose3SLAM::circle(4,1.0).retract(delta, ordering);
|
||||
Values actual = pose3SLAM::circle(4,1.0).retract(delta, ordering);
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace visualSLAM;
|
||||
|
||||
// make cube
|
||||
static Point3
|
||||
|
@ -51,9 +52,9 @@ TEST( ProjectionFactor, error )
|
|||
factor(new visualSLAM::ProjectionFactor(z, sigma, cameraFrameNumber, landmarkNumber, sK));
|
||||
|
||||
// For the following values structure, the factor predicts 320,240
|
||||
visualSLAM::Values config;
|
||||
Rot3 R;Point3 t1(0,0,-6); Pose3 x1(R,t1); config.insert(1, x1);
|
||||
Point3 l1; config.insert(1, l1);
|
||||
Values config;
|
||||
Rot3 R;Point3 t1(0,0,-6); Pose3 x1(R,t1); config.insert(PoseKey(1), x1);
|
||||
Point3 l1; config.insert(PointKey(1), l1);
|
||||
// Point should project to Point2(320.,240.)
|
||||
CHECK(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(config)));
|
||||
|
||||
|
@ -80,13 +81,13 @@ TEST( ProjectionFactor, error )
|
|||
CHECK(assert_equal(expected_lfg,*actual_lfg));
|
||||
|
||||
// expmap on a config
|
||||
visualSLAM::Values expected_config;
|
||||
Point3 t2(1,1,-5); Pose3 x2(R,t2); expected_config.insert(1, x2);
|
||||
Point3 l2(1,2,3); expected_config.insert(1, l2);
|
||||
Values expected_config;
|
||||
Point3 t2(1,1,-5); Pose3 x2(R,t2); expected_config.insert(PoseKey(1), x2);
|
||||
Point3 l2(1,2,3); expected_config.insert(PointKey(1), l2);
|
||||
VectorValues delta(expected_config.dims(ordering));
|
||||
delta[ordering["x1"]] = Vector_(6, 0.,0.,0., 1.,1.,1.);
|
||||
delta[ordering["l1"]] = Vector_(3, 1.,2.,3.);
|
||||
visualSLAM::Values actual_config = config.retract(delta, ordering);
|
||||
Values actual_config = config.retract(delta, ordering);
|
||||
CHECK(assert_equal(expected_config,actual_config,1e-9));
|
||||
}
|
||||
|
||||
|
|
|
@ -30,9 +30,9 @@ using namespace simulated2D;
|
|||
/* ************************************************************************* */
|
||||
TEST( simulated2D, Simulated2DValues )
|
||||
{
|
||||
simulated2D::Values actual;
|
||||
actual.insertPose(1,Point2(1,1));
|
||||
actual.insertPoint(2,Point2(2,2));
|
||||
Values actual;
|
||||
actual.insert(simulated2D::PoseKey(1),Point2(1,1));
|
||||
actual.insert(simulated2D::PointKey(2),Point2(2,2));
|
||||
EXPECT(assert_equal(actual,actual,1e-9));
|
||||
}
|
||||
|
||||
|
|
|
@ -57,7 +57,7 @@ TEST( simulated2DOriented, constructor )
|
|||
SharedDiagonal model(Vector_(3, 1., 1., 1.));
|
||||
simulated2DOriented::Odometry factor(measurement, model, simulated2DOriented::PoseKey(1), simulated2DOriented::PoseKey(2));
|
||||
|
||||
simulated2DOriented::Values config;
|
||||
Values config;
|
||||
config.insert(simulated2DOriented::PoseKey(1), Pose2(1., 0., 0.2));
|
||||
config.insert(simulated2DOriented::PoseKey(2), Pose2(2., 0., 0.1));
|
||||
boost::shared_ptr<GaussianFactor> lf = factor.linearize(config, *config.orderingArbitrary());
|
||||
|
|
|
@ -29,7 +29,7 @@ using namespace simulated3D;
|
|||
/* ************************************************************************* */
|
||||
TEST( simulated3D, Values )
|
||||
{
|
||||
simulated3D::Values actual;
|
||||
Values actual;
|
||||
actual.insert(simulated3D::PointKey(1),Point3(1,1,1));
|
||||
actual.insert(simulated3D::PoseKey(2),Point3(2,2,2));
|
||||
EXPECT(assert_equal(actual,actual,1e-9));
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost;
|
||||
using namespace visualSLAM;
|
||||
|
||||
Pose3 camera1(Matrix_(3,3,
|
||||
1., 0., 0.,
|
||||
|
@ -58,15 +59,15 @@ TEST( StereoFactor, singlePoint)
|
|||
graph->add(visualSLAM::StereoFactor(z14,sigma, 1, 1, K));
|
||||
|
||||
// Create a configuration corresponding to the ground truth
|
||||
boost::shared_ptr<visualSLAM::Values> values(new visualSLAM::Values());
|
||||
values->insert(1, camera1); // add camera at z=6.25m looking towards origin
|
||||
boost::shared_ptr<Values> values(new Values());
|
||||
values->insert(PoseKey(1), camera1); // add camera at z=6.25m looking towards origin
|
||||
|
||||
Point3 l1(0, 0, 0);
|
||||
values->insert(1, l1); // add point at origin;
|
||||
values->insert(PointKey(1), l1); // add point at origin;
|
||||
|
||||
Ordering::shared_ptr ordering = graph->orderingCOLAMD(*values);
|
||||
|
||||
typedef gtsam::NonlinearOptimizer<visualSLAM::Graph,visualSLAM::Values,gtsam::GaussianFactorGraph,gtsam::GaussianMultifrontalSolver> Optimizer; // optimization engine for this domain
|
||||
typedef gtsam::NonlinearOptimizer<visualSLAM::Graph, gtsam::GaussianFactorGraph, gtsam::GaussianMultifrontalSolver> Optimizer; // optimization engine for this domain
|
||||
|
||||
double absoluteThreshold = 1e-9;
|
||||
double relativeThreshold = 1e-5;
|
||||
|
|
|
@ -32,6 +32,7 @@ using namespace boost;
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost;
|
||||
using namespace visualSLAM;
|
||||
|
||||
static SharedNoiseModel sigma(noiseModel::Unit::Create(1));
|
||||
|
||||
|
@ -90,13 +91,13 @@ TEST( Graph, optimizeLM)
|
|||
graph->addPointConstraint(3, landmark3);
|
||||
|
||||
// Create an initial values structure corresponding to the ground truth
|
||||
boost::shared_ptr<visualSLAM::Values> initialEstimate(new visualSLAM::Values);
|
||||
initialEstimate->insert(1, camera1);
|
||||
initialEstimate->insert(2, camera2);
|
||||
initialEstimate->insert(1, landmark1);
|
||||
initialEstimate->insert(2, landmark2);
|
||||
initialEstimate->insert(3, landmark3);
|
||||
initialEstimate->insert(4, landmark4);
|
||||
boost::shared_ptr<Values> initialEstimate(new Values);
|
||||
initialEstimate->insert(PoseKey(1), camera1);
|
||||
initialEstimate->insert(PoseKey(2), camera2);
|
||||
initialEstimate->insert(PointKey(1), landmark1);
|
||||
initialEstimate->insert(PointKey(2), landmark2);
|
||||
initialEstimate->insert(PointKey(3), landmark3);
|
||||
initialEstimate->insert(PointKey(4), landmark4);
|
||||
|
||||
// Create an ordering of the variables
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
|
@ -127,13 +128,13 @@ TEST( Graph, optimizeLM2)
|
|||
graph->addPoseConstraint(2, camera2);
|
||||
|
||||
// Create an initial values structure corresponding to the ground truth
|
||||
boost::shared_ptr<visualSLAM::Values> initialEstimate(new visualSLAM::Values);
|
||||
initialEstimate->insert(1, camera1);
|
||||
initialEstimate->insert(2, camera2);
|
||||
initialEstimate->insert(1, landmark1);
|
||||
initialEstimate->insert(2, landmark2);
|
||||
initialEstimate->insert(3, landmark3);
|
||||
initialEstimate->insert(4, landmark4);
|
||||
boost::shared_ptr<Values> initialEstimate(new Values);
|
||||
initialEstimate->insert(PoseKey(1), camera1);
|
||||
initialEstimate->insert(PoseKey(2), camera2);
|
||||
initialEstimate->insert(PointKey(1), landmark1);
|
||||
initialEstimate->insert(PointKey(2), landmark2);
|
||||
initialEstimate->insert(PointKey(3), landmark3);
|
||||
initialEstimate->insert(PointKey(4), landmark4);
|
||||
|
||||
// Create an ordering of the variables
|
||||
shared_ptr<Ordering> ordering(new Ordering);
|
||||
|
@ -164,13 +165,13 @@ TEST( Graph, CHECK_ORDERING)
|
|||
graph->addPoseConstraint(2, camera2);
|
||||
|
||||
// Create an initial values structure corresponding to the ground truth
|
||||
boost::shared_ptr<visualSLAM::Values> initialEstimate(new visualSLAM::Values);
|
||||
initialEstimate->insert(1, camera1);
|
||||
initialEstimate->insert(2, camera2);
|
||||
initialEstimate->insert(1, landmark1);
|
||||
initialEstimate->insert(2, landmark2);
|
||||
initialEstimate->insert(3, landmark3);
|
||||
initialEstimate->insert(4, landmark4);
|
||||
boost::shared_ptr<Values> initialEstimate(new Values);
|
||||
initialEstimate->insert(PoseKey(1), camera1);
|
||||
initialEstimate->insert(PoseKey(2), camera2);
|
||||
initialEstimate->insert(PointKey(1), landmark1);
|
||||
initialEstimate->insert(PointKey(2), landmark2);
|
||||
initialEstimate->insert(PointKey(3), landmark3);
|
||||
initialEstimate->insert(PointKey(4), landmark4);
|
||||
|
||||
Ordering::shared_ptr ordering = graph->orderingCOLAMD(*initialEstimate);
|
||||
|
||||
|
@ -192,23 +193,23 @@ TEST( Graph, CHECK_ORDERING)
|
|||
TEST( Values, update_with_large_delta) {
|
||||
// this test ensures that if the update for delta is larger than
|
||||
// the size of the config, it only updates existing variables
|
||||
visualSLAM::Values init;
|
||||
init.insert(1, Pose3());
|
||||
init.insert(1, Point3(1.0, 2.0, 3.0));
|
||||
Values init;
|
||||
init.insert(PoseKey(1), Pose3());
|
||||
init.insert(PointKey(1), Point3(1.0, 2.0, 3.0));
|
||||
|
||||
visualSLAM::Values expected;
|
||||
expected.insert(1, Pose3(Rot3(), Point3(0.1, 0.1, 0.1)));
|
||||
expected.insert(1, Point3(1.1, 2.1, 3.1));
|
||||
Values expected;
|
||||
expected.insert(PoseKey(1), Pose3(Rot3(), Point3(0.1, 0.1, 0.1)));
|
||||
expected.insert(PointKey(1), Point3(1.1, 2.1, 3.1));
|
||||
|
||||
Ordering largeOrdering;
|
||||
visualSLAM::Values largeValues = init;
|
||||
largeValues.insert(2, Pose3());
|
||||
Values largeValues = init;
|
||||
largeValues.insert(PoseKey(2), Pose3());
|
||||
largeOrdering += "x1","l1","x2";
|
||||
VectorValues delta(largeValues.dims(largeOrdering));
|
||||
delta[largeOrdering["x1"]] = Vector_(6, 0.0, 0.0, 0.0, 0.1, 0.1, 0.1);
|
||||
delta[largeOrdering["l1"]] = Vector_(3, 0.1, 0.1, 0.1);
|
||||
delta[largeOrdering["x2"]] = Vector_(6, 0.0, 0.0, 0.0, 100.1, 4.1, 9.1);
|
||||
visualSLAM::Values actual = init.retract(delta, largeOrdering);
|
||||
Values actual = init.retract(delta, largeOrdering);
|
||||
|
||||
CHECK(assert_equal(expected,actual));
|
||||
}
|
||||
|
|
|
@ -25,7 +25,6 @@
|
|||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/TupleValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
|
@ -40,25 +39,22 @@ namespace visualSLAM {
|
|||
*/
|
||||
typedef TypedSymbol<Pose3,'x'> PoseKey; ///< The key type used for poses
|
||||
typedef TypedSymbol<Point3,'l'> PointKey; ///< The key type used for points
|
||||
typedef Values<PoseKey> PoseValues; ///< Values used for poses
|
||||
typedef Values<PointKey> PointValues; ///< Values used for points
|
||||
typedef TupleValues2<PoseValues, PointValues> Values; ///< Values data structure
|
||||
typedef boost::shared_ptr<Values> shared_values; ///< shared pointer to values data structure
|
||||
|
||||
typedef NonlinearEquality<Values, PoseKey> PoseConstraint; ///< put a hard constraint on a pose
|
||||
typedef NonlinearEquality<Values, PointKey> PointConstraint; ///< put a hard constraint on a point
|
||||
typedef PriorFactor<Values, PoseKey> PosePrior; ///< put a soft prior on a Pose
|
||||
typedef PriorFactor<Values, PointKey> PointPrior; ///< put a soft prior on a point
|
||||
typedef RangeFactor<Values, PoseKey, PointKey> RangeFactor; ///< put a factor on the range from a pose to a point
|
||||
typedef NonlinearEquality<PoseKey> PoseConstraint; ///< put a hard constraint on a pose
|
||||
typedef NonlinearEquality<PointKey> PointConstraint; ///< put a hard constraint on a point
|
||||
typedef PriorFactor<PoseKey> PosePrior; ///< put a soft prior on a Pose
|
||||
typedef PriorFactor<PointKey> PointPrior; ///< put a soft prior on a point
|
||||
typedef RangeFactor<PoseKey, PointKey> RangeFactor; ///< put a factor on the range from a pose to a point
|
||||
|
||||
/// monocular and stereo camera typedefs for general use
|
||||
typedef GenericProjectionFactor<Values, PointKey, PoseKey> ProjectionFactor;
|
||||
typedef GenericStereoFactor<Values, PoseKey, PointKey> StereoFactor;
|
||||
typedef GenericProjectionFactor<PointKey, PoseKey> ProjectionFactor;
|
||||
typedef GenericStereoFactor<PoseKey, PointKey> StereoFactor;
|
||||
|
||||
/**
|
||||
* Non-linear factor graph for vanilla visual SLAM
|
||||
*/
|
||||
class Graph: public NonlinearFactorGraph<Values> {
|
||||
class Graph: public NonlinearFactorGraph {
|
||||
|
||||
public:
|
||||
/// shared pointer to this type of graph
|
||||
|
@ -70,12 +66,12 @@ namespace visualSLAM {
|
|||
|
||||
/// print out graph
|
||||
void print(const std::string& s = "") const {
|
||||
NonlinearFactorGraph<Values>::print(s);
|
||||
NonlinearFactorGraph::print(s);
|
||||
}
|
||||
|
||||
/// check if two graphs are equal
|
||||
bool equals(const Graph& p, double tol = 1e-9) const {
|
||||
return NonlinearFactorGraph<Values>::equals(p, tol);
|
||||
return NonlinearFactorGraph::equals(p, tol);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -148,6 +144,6 @@ namespace visualSLAM {
|
|||
}; // Graph
|
||||
|
||||
/// typedef for Optimizer. The current default will use the multi-frontal solver
|
||||
typedef NonlinearOptimizer<Graph, Values> Optimizer;
|
||||
typedef NonlinearOptimizer<Graph> Optimizer;
|
||||
|
||||
} // namespaces
|
||||
|
|
|
@ -16,10 +16,10 @@ check_PROGRAMS += testGaussianJunctionTree
|
|||
check_PROGRAMS += testNonlinearEquality testNonlinearFactor testNonlinearFactorGraph
|
||||
check_PROGRAMS += testNonlinearOptimizer testDoglegOptimizer
|
||||
check_PROGRAMS += testSymbolicBayesNet testSymbolicFactorGraph
|
||||
check_PROGRAMS += testTupleValues
|
||||
#check_PROGRAMS += testTupleValues
|
||||
check_PROGRAMS += testNonlinearISAM
|
||||
check_PROGRAMS += testBoundingConstraint
|
||||
check_PROGRAMS += testPose2SLAMwSPCG
|
||||
#check_PROGRAMS += testPose2SLAMwSPCG
|
||||
check_PROGRAMS += testGaussianISAM2
|
||||
check_PROGRAMS += testExtendedKalmanFilter
|
||||
check_PROGRAMS += testRot3Optimization
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue