Merge branch 'develop' of https://github.com/borglab/gtsam into dsf-gtsfm-to-gtsam-port
commit
8007271f4b
|
@ -43,46 +43,68 @@ if [ -z ${PYTHON_VERSION+x} ]; then
|
|||
exit 127
|
||||
fi
|
||||
|
||||
PYTHON="python${PYTHON_VERSION}"
|
||||
export PYTHON="python${PYTHON_VERSION}"
|
||||
|
||||
if [[ $(uname) == "Darwin" ]]; then
|
||||
function install_dependencies()
|
||||
{
|
||||
if [[ $(uname) == "Darwin" ]]; then
|
||||
brew install wget
|
||||
else
|
||||
else
|
||||
# Install a system package required by our library
|
||||
sudo apt-get install -y wget libicu-dev python3-pip python3-setuptools
|
||||
fi
|
||||
fi
|
||||
|
||||
PATH=$PATH:$($PYTHON -c "import site; print(site.USER_BASE)")/bin
|
||||
export PATH=$PATH:$($PYTHON -c "import site; print(site.USER_BASE)")/bin
|
||||
|
||||
[ "${GTSAM_WITH_TBB:-OFF}" = "ON" ] && install_tbb
|
||||
[ "${GTSAM_WITH_TBB:-OFF}" = "ON" ] && install_tbb
|
||||
|
||||
$PYTHON -m pip install -r $GITHUB_WORKSPACE/python/requirements.txt
|
||||
}
|
||||
|
||||
function build()
|
||||
{
|
||||
mkdir $GITHUB_WORKSPACE/build
|
||||
cd $GITHUB_WORKSPACE/build
|
||||
|
||||
BUILD_PYBIND="ON"
|
||||
|
||||
cmake $GITHUB_WORKSPACE -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} \
|
||||
-DGTSAM_BUILD_TESTS=OFF \
|
||||
-DGTSAM_BUILD_UNSTABLE=${GTSAM_BUILD_UNSTABLE:-ON} \
|
||||
-DGTSAM_USE_QUATERNIONS=OFF \
|
||||
-DGTSAM_WITH_TBB=${GTSAM_WITH_TBB:-OFF} \
|
||||
-DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF \
|
||||
-DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF \
|
||||
-DGTSAM_BUILD_PYTHON=${BUILD_PYBIND} \
|
||||
-DGTSAM_UNSTABLE_BUILD_PYTHON=${GTSAM_BUILD_UNSTABLE:-ON} \
|
||||
-DGTSAM_PYTHON_VERSION=$PYTHON_VERSION \
|
||||
-DPYTHON_EXECUTABLE:FILEPATH=$(which $PYTHON) \
|
||||
-DGTSAM_ALLOW_DEPRECATED_SINCE_V42=OFF \
|
||||
-DCMAKE_INSTALL_PREFIX=$GITHUB_WORKSPACE/gtsam_install
|
||||
|
||||
|
||||
BUILD_PYBIND="ON"
|
||||
# Set to 2 cores so that Actions does not error out during resource provisioning.
|
||||
make -j2 install
|
||||
|
||||
sudo $PYTHON -m pip install -r $GITHUB_WORKSPACE/python/requirements.txt
|
||||
cd $GITHUB_WORKSPACE/build/python
|
||||
$PYTHON -m pip install --user .
|
||||
}
|
||||
|
||||
mkdir $GITHUB_WORKSPACE/build
|
||||
cd $GITHUB_WORKSPACE/build
|
||||
function test()
|
||||
{
|
||||
cd $GITHUB_WORKSPACE/python/gtsam/tests
|
||||
$PYTHON -m unittest discover -v
|
||||
}
|
||||
|
||||
cmake $GITHUB_WORKSPACE -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} \
|
||||
-DGTSAM_BUILD_TESTS=OFF \
|
||||
-DGTSAM_BUILD_UNSTABLE=${GTSAM_BUILD_UNSTABLE:-ON} \
|
||||
-DGTSAM_USE_QUATERNIONS=OFF \
|
||||
-DGTSAM_WITH_TBB=${GTSAM_WITH_TBB:-OFF} \
|
||||
-DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF \
|
||||
-DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF \
|
||||
-DGTSAM_BUILD_PYTHON=${BUILD_PYBIND} \
|
||||
-DGTSAM_UNSTABLE_BUILD_PYTHON=${GTSAM_BUILD_UNSTABLE:-ON} \
|
||||
-DGTSAM_PYTHON_VERSION=$PYTHON_VERSION \
|
||||
-DPYTHON_EXECUTABLE:FILEPATH=$(which $PYTHON) \
|
||||
-DGTSAM_ALLOW_DEPRECATED_SINCE_V42=OFF \
|
||||
-DCMAKE_INSTALL_PREFIX=$GITHUB_WORKSPACE/gtsam_install
|
||||
|
||||
|
||||
# Set to 2 cores so that Actions does not error out during resource provisioning.
|
||||
make -j2 install
|
||||
|
||||
cd $GITHUB_WORKSPACE/build/python
|
||||
$PYTHON -m pip install --user .
|
||||
cd $GITHUB_WORKSPACE/python/gtsam/tests
|
||||
$PYTHON -m unittest discover -v
|
||||
# select between build or test
|
||||
case $1 in
|
||||
-d)
|
||||
install_dependencies
|
||||
;;
|
||||
-b)
|
||||
build
|
||||
;;
|
||||
-t)
|
||||
test
|
||||
;;
|
||||
esac
|
||||
|
|
|
@ -20,26 +20,26 @@ jobs:
|
|||
# Github Actions requires a single row to be added to the build matrix.
|
||||
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
|
||||
name: [
|
||||
ubuntu-18.04-gcc-5,
|
||||
ubuntu-18.04-gcc-9,
|
||||
ubuntu-18.04-clang-9,
|
||||
ubuntu-20.04-gcc-7,
|
||||
ubuntu-20.04-gcc-9,
|
||||
ubuntu-20.04-clang-9,
|
||||
]
|
||||
|
||||
build_type: [Debug, Release]
|
||||
build_unstable: [ON]
|
||||
include:
|
||||
- name: ubuntu-18.04-gcc-5
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-gcc-7
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "5"
|
||||
version: "7"
|
||||
|
||||
- name: ubuntu-18.04-gcc-9
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-gcc-9
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
|
||||
- name: ubuntu-18.04-clang-9
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-clang-9
|
||||
os: ubuntu-20.04
|
||||
compiler: clang
|
||||
version: "9"
|
||||
|
||||
|
@ -60,9 +60,9 @@ jobs:
|
|||
gpg -a --export $LLVM_KEY | sudo apt-key add -
|
||||
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
|
||||
fi
|
||||
sudo apt-get -y update
|
||||
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
|
||||
sudo apt-get -y update
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
|
||||
|
||||
if [ "${{ matrix.compiler }}" = "gcc" ]; then
|
||||
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib
|
||||
|
|
|
@ -19,34 +19,34 @@ jobs:
|
|||
# Github Actions requires a single row to be added to the build matrix.
|
||||
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
|
||||
name: [
|
||||
ubuntu-18.04-gcc-5,
|
||||
ubuntu-18.04-gcc-9,
|
||||
ubuntu-18.04-clang-9,
|
||||
ubuntu-20.04-gcc-7,
|
||||
ubuntu-20.04-gcc-9,
|
||||
ubuntu-20.04-clang-9,
|
||||
macOS-11-xcode-13.4.1,
|
||||
ubuntu-18.04-gcc-5-tbb,
|
||||
ubuntu-20.04-gcc-7-tbb,
|
||||
]
|
||||
|
||||
build_type: [Debug, Release]
|
||||
python_version: [3]
|
||||
include:
|
||||
- name: ubuntu-18.04-gcc-5
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-gcc-7
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "5"
|
||||
version: "7"
|
||||
|
||||
- name: ubuntu-18.04-gcc-9
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-gcc-9
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
|
||||
- name: ubuntu-18.04-clang-9
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-clang-9
|
||||
os: ubuntu-20.04
|
||||
compiler: clang
|
||||
version: "9"
|
||||
|
||||
# NOTE temporarily added this as it is a required check.
|
||||
- name: ubuntu-18.04-clang-9
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-clang-9
|
||||
os: ubuntu-20.04
|
||||
compiler: clang
|
||||
version: "9"
|
||||
build_type: Debug
|
||||
|
@ -57,10 +57,10 @@ jobs:
|
|||
compiler: xcode
|
||||
version: "13.4.1"
|
||||
|
||||
- name: ubuntu-18.04-gcc-5-tbb
|
||||
os: ubuntu-18.04
|
||||
- name: ubuntu-20.04-gcc-7-tbb
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "5"
|
||||
version: "7"
|
||||
flag: tbb
|
||||
|
||||
steps:
|
||||
|
@ -79,9 +79,9 @@ jobs:
|
|||
gpg -a --export $LLVM_KEY | sudo apt-key add -
|
||||
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
|
||||
fi
|
||||
|
||||
sudo apt-get -y update
|
||||
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libboost-all-dev
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libboost-all-dev
|
||||
|
||||
if [ "${{ matrix.compiler }}" = "gcc" ]; then
|
||||
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib
|
||||
|
@ -117,11 +117,12 @@ jobs:
|
|||
uses: pierotofy/set-swap-space@master
|
||||
with:
|
||||
swap-size-gb: 6
|
||||
- name: Build (Linux)
|
||||
if: runner.os == 'Linux'
|
||||
- name: Install Dependencies
|
||||
run: |
|
||||
bash .github/scripts/python.sh
|
||||
- name: Build (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
bash .github/scripts/python.sh -d
|
||||
- name: Build
|
||||
run: |
|
||||
bash .github/scripts/python.sh
|
||||
bash .github/scripts/python.sh -b
|
||||
- name: Test
|
||||
run: |
|
||||
bash .github/scripts/python.sh -t
|
||||
|
|
|
@ -32,31 +32,31 @@ jobs:
|
|||
|
||||
include:
|
||||
- name: ubuntu-gcc-deprecated
|
||||
os: ubuntu-18.04
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
flag: deprecated
|
||||
|
||||
- name: ubuntu-gcc-quaternions
|
||||
os: ubuntu-18.04
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
flag: quaternions
|
||||
|
||||
- name: ubuntu-gcc-tbb
|
||||
os: ubuntu-18.04
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
flag: tbb
|
||||
|
||||
- name: ubuntu-cayleymap
|
||||
os: ubuntu-18.04
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
flag: cayley
|
||||
|
||||
- name: ubuntu-system-libs
|
||||
os: ubuntu-18.04
|
||||
os: ubuntu-20.04
|
||||
compiler: gcc
|
||||
version: "9"
|
||||
flag: system-libs
|
||||
|
@ -74,9 +74,9 @@ jobs:
|
|||
gpg -a --export 15CF4D18AF4F7421 | sudo apt-key add -
|
||||
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
|
||||
fi
|
||||
sudo apt-get -y update
|
||||
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
|
||||
sudo apt-get -y update
|
||||
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
|
||||
|
||||
if [ "${{ matrix.compiler }}" = "gcc" ]; then
|
||||
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib
|
||||
|
|
25
README.md
25
README.md
|
@ -64,6 +64,29 @@ GTSAM 4.1 added a new pybind wrapper, and **removed** the deprecated functionali
|
|||
|
||||
We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md) wrappers for GTSAM. Please refer to the linked documents for more details.
|
||||
|
||||
## Citation
|
||||
|
||||
If you are using GTSAM for academic work, please use the following citation:
|
||||
|
||||
```
|
||||
@software{gtsam,
|
||||
author = {Frank Dellaert and Richard Roberts and Varun Agrawal and Alex Cunningham and Chris Beall and Duy-Nguyen Ta and Fan Jiang and lucacarlone and nikai and Jose Luis Blanco-Claraco and Stephen Williams and ydjian and John Lambert and Andy Melim and Zhaoyang Lv and Akshay Krishnan and Jing Dong and Gerry Chen and Krunal Chande and balderdash-devil and DiffDecisionTrees and Sungtae An and mpaluri and Ellon Paiva Mendes and Mike Bosse and Akash Patel and Ayush Baid and Paul Furgale and matthewbroadwaynavenio and roderick-koehle},
|
||||
title = {borglab/gtsam},
|
||||
month = may,
|
||||
year = 2022,
|
||||
publisher = {Zenodo},
|
||||
version = {4.2a7},
|
||||
doi = {10.5281/zenodo.5794541},
|
||||
url = {https://doi.org/10.5281/zenodo.5794541}
|
||||
}
|
||||
```
|
||||
|
||||
You can also get the latest citation available from Zenodo below:
|
||||
|
||||
[](https://doi.org/10.5281/zenodo.5794541)
|
||||
|
||||
Specific formats are available in the bottom-right corner of the Zenodo page.
|
||||
|
||||
## The Preintegrated IMU Factor
|
||||
|
||||
GTSAM includes a state of the art IMU handling scheme based on
|
||||
|
@ -73,7 +96,7 @@ GTSAM includes a state of the art IMU handling scheme based on
|
|||
Our implementation improves on this using integration on the manifold, as detailed in
|
||||
|
||||
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, _"Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors"_, Int. Conf. on Robotics and Automation (ICRA), 2014. [[link]](https://ieeexplore.ieee.org/abstract/document/6907483)
|
||||
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
|
||||
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, _"IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation"_, Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
|
||||
|
||||
If you are using the factor in academic work, please cite the publications above.
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -190,7 +190,7 @@ if(${CMAKE_CXX_COMPILER_ID} STREQUAL "Clang")
|
|||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" ON)
|
||||
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" OFF)
|
||||
if(GTSAM_BUILD_WITH_MARCH_NATIVE AND (APPLE AND NOT CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64"))
|
||||
# Add as public flag so all dependant projects also use it, as required
|
||||
# by Eigen to avid crashes due to SIMD vectorization:
|
||||
|
|
|
@ -1,7 +1,10 @@
|
|||
###############################################################################
|
||||
# Option for using system Eigen or GTSAM-bundled Eigen
|
||||
|
||||
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" OFF)
|
||||
# Default: Use system's Eigen if found automatically:
|
||||
find_package(Eigen3 QUIET)
|
||||
set(USE_SYSTEM_EIGEN_INITIAL_VALUE ${Eigen3_FOUND})
|
||||
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" ${USE_SYSTEM_EIGEN_INITIAL_VALUE})
|
||||
unset(USE_SYSTEM_EIGEN_INITIAL_VALUE)
|
||||
|
||||
if(NOT GTSAM_USE_SYSTEM_EIGEN)
|
||||
# This option only makes sense if using the embedded copy of Eigen, it is
|
||||
|
@ -11,7 +14,7 @@ endif()
|
|||
|
||||
# Switch for using system Eigen or GTSAM-bundled Eigen
|
||||
if(GTSAM_USE_SYSTEM_EIGEN)
|
||||
find_package(Eigen3 REQUIRED)
|
||||
find_package(Eigen3 REQUIRED) # need to find again as REQUIRED
|
||||
|
||||
# Use generic Eigen include paths e.g. <Eigen/Core>
|
||||
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "${EIGEN3_INCLUDE_DIR}")
|
||||
|
|
|
@ -33,6 +33,7 @@ print_build_options_for_target(gtsam)
|
|||
|
||||
print_config("Use System Eigen" "${GTSAM_USE_SYSTEM_EIGEN} (Using version: ${GTSAM_EIGEN_VERSION})")
|
||||
print_config("Use System Metis" "${GTSAM_USE_SYSTEM_METIS}")
|
||||
print_config("Using Boost version" "${Boost_VERSION}")
|
||||
|
||||
if(GTSAM_USE_TBB)
|
||||
print_config("Use Intel TBB" "Yes (Version: ${TBB_VERSION})")
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
88
doc/refs.bib
88
doc/refs.bib
|
@ -1,26 +1,72 @@
|
|||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% https://bibdesk.sourceforge.io/
|
||||
|
||||
%% Created for Varun Agrawal at 2021-09-27 17:39:09 -0400
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
||||
|
||||
|
||||
@article{Lupton12tro,
|
||||
author = {Lupton, Todd and Sukkarieh, Salah},
|
||||
date-added = {2021-09-27 17:38:56 -0400},
|
||||
date-modified = {2021-09-27 17:39:09 -0400},
|
||||
doi = {10.1109/TRO.2011.2170332},
|
||||
journal = {IEEE Transactions on Robotics},
|
||||
number = {1},
|
||||
pages = {61-76},
|
||||
title = {Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions},
|
||||
volume = {28},
|
||||
year = {2012},
|
||||
Bdsk-Url-1 = {https://doi.org/10.1109/TRO.2011.2170332}}
|
||||
|
||||
@inproceedings{Forster15rss,
|
||||
author = {Christian Forster and Luca Carlone and Frank Dellaert and Davide Scaramuzza},
|
||||
booktitle = {Robotics: Science and Systems},
|
||||
date-added = {2021-09-26 20:44:41 -0400},
|
||||
date-modified = {2021-09-26 20:45:03 -0400},
|
||||
title = {IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation},
|
||||
year = {2015}}
|
||||
|
||||
@article{Iserles00an,
|
||||
title = {Lie-group methods},
|
||||
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
|
||||
N{\o}rsett, Syvert P and Zanna, Antonella},
|
||||
journal = {Acta Numerica 2000},
|
||||
volume = {9},
|
||||
pages = {215--365},
|
||||
year = {2000},
|
||||
publisher = {Cambridge Univ Press}
|
||||
}
|
||||
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and N{\o}rsett, Syvert P and Zanna, Antonella},
|
||||
journal = {Acta Numerica 2000},
|
||||
pages = {215--365},
|
||||
publisher = {Cambridge Univ Press},
|
||||
title = {Lie-group methods},
|
||||
volume = {9},
|
||||
year = {2000}}
|
||||
|
||||
@book{Murray94book,
|
||||
title = {A mathematical introduction to robotic manipulation},
|
||||
author = {Murray, Richard M and Li, Zexiang and Sastry, S
|
||||
Shankar and Sastry, S Shankara},
|
||||
year = {1994},
|
||||
publisher = {CRC press}
|
||||
}
|
||||
author = {Murray, Richard M and Li, Zexiang and Sastry, S Shankar and Sastry, S Shankara},
|
||||
publisher = {CRC press},
|
||||
title = {A mathematical introduction to robotic manipulation},
|
||||
year = {1994}}
|
||||
|
||||
@book{Spivak65book,
|
||||
title = {Calculus on manifolds},
|
||||
author = {Spivak, Michael},
|
||||
volume = {1},
|
||||
year = {1965},
|
||||
publisher = {WA Benjamin New York}
|
||||
}
|
||||
author = {Spivak, Michael},
|
||||
publisher = {WA Benjamin New York},
|
||||
title = {Calculus on manifolds},
|
||||
volume = {1},
|
||||
year = {1965}}
|
||||
|
||||
@phdthesis{Nikolic16thesis,
|
||||
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
|
||||
author={Nikolic, Janosch},
|
||||
year={2016},
|
||||
school={ETH Zurich}
|
||||
}
|
||||
|
||||
@book{Simon06book,
|
||||
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
|
||||
author={Simon, Dan},
|
||||
year={2006},
|
||||
publisher={John Wiley \& Sons}
|
||||
}
|
||||
|
||||
@inproceedings{Trawny05report_IndirectKF,
|
||||
title={Indirect Kalman Filter for 3 D Attitude Estimation},
|
||||
author={Nikolas Trawny and Stergios I. Roumeliotis},
|
||||
year={2005}
|
||||
}
|
||||
|
|
|
@ -60,13 +60,14 @@ namespace po = boost::program_options;
|
|||
|
||||
po::variables_map parseOptions(int argc, char* argv[]) {
|
||||
po::options_description desc;
|
||||
desc.add_options()("help,h", "produce help message")(
|
||||
"data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
|
||||
"path to the CSV file with the IMU data")(
|
||||
"output_filename",
|
||||
po::value<string>()->default_value("imuFactorExampleResults.csv"),
|
||||
"path to the result file to use")("use_isam", po::bool_switch(),
|
||||
"use ISAM as the optimizer");
|
||||
desc.add_options()("help,h", "produce help message") // help message
|
||||
("data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
|
||||
"path to the CSV file with the IMU data") // path to the data file
|
||||
("output_filename",
|
||||
po::value<string>()->default_value("imuFactorExampleResults.csv"),
|
||||
"path to the result file to use") // filename to save results to
|
||||
("use_isam", po::bool_switch(),
|
||||
"use ISAM as the optimizer"); // flag for ISAM optimizer
|
||||
|
||||
po::variables_map vm;
|
||||
po::store(po::parse_command_line(argc, argv, desc), vm);
|
||||
|
@ -106,7 +107,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
|
|||
I_3x3 * 1e-8; // error committed in integrating position from velocities
|
||||
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
|
||||
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
|
||||
Matrix66 bias_acc_omega_int =
|
||||
Matrix66 bias_acc_omega_init =
|
||||
I_6x6 * 1e-5; // error in the bias used for preintegration
|
||||
|
||||
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
|
||||
|
@ -122,7 +123,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
|
|||
// PreintegrationCombinedMeasurements params:
|
||||
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
|
||||
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
|
||||
p->biasAccOmegaInt = bias_acc_omega_int;
|
||||
p->biasAccOmegaInt = bias_acc_omega_init;
|
||||
|
||||
return p;
|
||||
}
|
||||
|
|
|
@ -94,7 +94,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
|
|||
I_3x3 * 1e-8; // error committed in integrating position from velocities
|
||||
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
|
||||
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
|
||||
Matrix66 bias_acc_omega_int =
|
||||
Matrix66 bias_acc_omega_init =
|
||||
I_6x6 * 1e-5; // error in the bias used for preintegration
|
||||
|
||||
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
|
||||
|
@ -110,7 +110,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
|
|||
// PreintegrationCombinedMeasurements params:
|
||||
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
|
||||
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
|
||||
p->biasAccOmegaInt = bias_acc_omega_int;
|
||||
p->biasAccOmegaInt = bias_acc_omega_init;
|
||||
|
||||
return p;
|
||||
}
|
||||
|
|
|
@ -33,7 +33,6 @@ The following examples illustrate some concepts from Georgia Tech's research pap
|
|||
## 2D Pose SLAM
|
||||
|
||||
* **LocalizationExample.cpp**: modeling robot motion
|
||||
* **LocalizationExample2.cpp**: example with GPS like measurements
|
||||
* **Pose2SLAMExample**: A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h
|
||||
* **Pose2SLAMExample_advanced**: same, but uses an Optimizer object
|
||||
* **Pose2SLAMwSPCG**: solve a simple 3 by 3 grid of Pose2 SLAM problem by using easy SPCG interface
|
||||
|
|
|
@ -95,7 +95,7 @@ template<class Class>
|
|||
struct MultiplicativeGroupTraits {
|
||||
typedef group_tag structure_category;
|
||||
typedef multiplicative_group_tag group_flavor;
|
||||
static Class Identity() { return Class::identity(); }
|
||||
static Class Identity() { return Class::Identity(); }
|
||||
static Class Compose(const Class &g, const Class & h) { return g * h;}
|
||||
static Class Between(const Class &g, const Class & h) { return g.inverse() * h;}
|
||||
static Class Inverse(const Class &g) { return g.inverse();}
|
||||
|
@ -111,7 +111,7 @@ template<class Class>
|
|||
struct AdditiveGroupTraits {
|
||||
typedef group_tag structure_category;
|
||||
typedef additive_group_tag group_flavor;
|
||||
static Class Identity() { return Class::identity(); }
|
||||
static Class Identity() { return Class::Identity(); }
|
||||
static Class Compose(const Class &g, const Class & h) { return g + h;}
|
||||
static Class Between(const Class &g, const Class & h) { return h - g;}
|
||||
static Class Inverse(const Class &g) { return -g;}
|
||||
|
@ -147,7 +147,7 @@ public:
|
|||
DirectProduct(const G& g, const H& h):std::pair<G,H>(g,h) {}
|
||||
|
||||
// identity
|
||||
static DirectProduct identity() { return DirectProduct(); }
|
||||
static DirectProduct Identity() { return DirectProduct(); }
|
||||
|
||||
DirectProduct operator*(const DirectProduct& other) const {
|
||||
return DirectProduct(traits<G>::Compose(this->first, other.first),
|
||||
|
@ -181,7 +181,7 @@ public:
|
|||
DirectSum(const G& g, const H& h):std::pair<G,H>(g,h) {}
|
||||
|
||||
// identity
|
||||
static DirectSum identity() { return DirectSum(); }
|
||||
static DirectSum Identity() { return DirectSum(); }
|
||||
|
||||
DirectSum operator+(const DirectSum& other) const {
|
||||
return DirectSum(g()+other.g(), h()+other.h());
|
||||
|
|
|
@ -177,7 +177,7 @@ struct LieGroupTraits: GetDimensionImpl<Class, Class::dimension> {
|
|||
/// @name Group
|
||||
/// @{
|
||||
typedef multiplicative_group_tag group_flavor;
|
||||
static Class Identity() { return Class::identity();}
|
||||
static Class Identity() { return Class::Identity();}
|
||||
/// @}
|
||||
|
||||
/// @name Manifold
|
||||
|
|
|
@ -48,7 +48,7 @@ public:
|
|||
/// @name Group
|
||||
/// @{
|
||||
typedef multiplicative_group_tag group_flavor;
|
||||
static ProductLieGroup identity() {return ProductLieGroup();}
|
||||
static ProductLieGroup Identity() {return ProductLieGroup();}
|
||||
|
||||
ProductLieGroup operator*(const ProductLieGroup& other) const {
|
||||
return ProductLieGroup(traits<G>::Compose(this->first,other.first),
|
||||
|
|
|
@ -60,6 +60,7 @@ GTSAM_MAKE_VECTOR_DEFS(9)
|
|||
GTSAM_MAKE_VECTOR_DEFS(10)
|
||||
GTSAM_MAKE_VECTOR_DEFS(11)
|
||||
GTSAM_MAKE_VECTOR_DEFS(12)
|
||||
GTSAM_MAKE_VECTOR_DEFS(15)
|
||||
|
||||
typedef Eigen::VectorBlock<Vector> SubVector;
|
||||
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
|
||||
|
|
|
@ -169,7 +169,7 @@ struct HasVectorSpacePrereqs {
|
|||
Vector v;
|
||||
|
||||
BOOST_CONCEPT_USAGE(HasVectorSpacePrereqs) {
|
||||
p = Class::identity(); // identity
|
||||
p = Class::Identity(); // identity
|
||||
q = p + p; // addition
|
||||
q = p - p; // subtraction
|
||||
v = p.vector(); // conversion to vector
|
||||
|
@ -192,7 +192,7 @@ struct VectorSpaceTraits: VectorSpaceImpl<Class, Class::dimension> {
|
|||
/// @name Group
|
||||
/// @{
|
||||
typedef additive_group_tag group_flavor;
|
||||
static Class Identity() { return Class::identity();}
|
||||
static Class Identity() { return Class::Identity();}
|
||||
/// @}
|
||||
|
||||
/// @name Manifold
|
||||
|
|
|
@ -29,7 +29,7 @@ class Symmetric: private Eigen::PermutationMatrix<N> {
|
|||
Eigen::PermutationMatrix<N>(P) {
|
||||
}
|
||||
public:
|
||||
static Symmetric identity() { return Symmetric(); }
|
||||
static Symmetric Identity() { return Symmetric(); }
|
||||
Symmetric() {
|
||||
Eigen::PermutationMatrix<N>::setIdentity();
|
||||
}
|
||||
|
|
|
@ -221,6 +221,6 @@ void PrintForest(const FOREST& forest, std::string str,
|
|||
PrintForestVisitorPre visitor(keyFormatter);
|
||||
DepthFirstForest(forest, str, visitor);
|
||||
}
|
||||
}
|
||||
} // namespace treeTraversal
|
||||
|
||||
}
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -189,9 +189,9 @@ class ParameterMatrix {
|
|||
* NOTE: The size at compile time is unknown so this identity is zero
|
||||
* length and thus not valid.
|
||||
*/
|
||||
inline static ParameterMatrix identity() {
|
||||
inline static ParameterMatrix Identity() {
|
||||
// throw std::runtime_error(
|
||||
// "ParameterMatrix::identity(): Don't use this function");
|
||||
// "ParameterMatrix::Identity(): Don't use this function");
|
||||
return ParameterMatrix(0);
|
||||
}
|
||||
|
||||
|
|
|
@ -137,7 +137,7 @@ class FitBasis {
|
|||
static gtsam::GaussianFactorGraph::shared_ptr LinearGraph(
|
||||
const std::map<double, double>& sequence,
|
||||
const gtsam::noiseModel::Base* model, size_t N);
|
||||
This::Parameters parameters() const;
|
||||
gtsam::This::Parameters parameters() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -133,7 +133,7 @@ TEST(ParameterMatrix, VectorSpace) {
|
|||
// vector
|
||||
EXPECT(assert_equal(Vector::Ones(M * N), params.vector()));
|
||||
// identity
|
||||
EXPECT(assert_equal(ParameterMatrix<M>::identity(),
|
||||
EXPECT(assert_equal(ParameterMatrix<M>::Identity(),
|
||||
ParameterMatrix<M>(Matrix::Zero(M, 0))));
|
||||
}
|
||||
|
||||
|
|
|
@ -48,4 +48,25 @@ namespace gtsam {
|
|||
return keys & key2;
|
||||
}
|
||||
|
||||
void DiscreteKeys::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
for (auto&& dkey : *this) {
|
||||
std::cout << DefaultKeyFormatter(dkey.first) << " " << dkey.second
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
bool DiscreteKeys::equals(const DiscreteKeys& other, double tol) const {
|
||||
if (this->size() != other.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < this->size(); i++) {
|
||||
if (this->at(i).first != other.at(i).first ||
|
||||
this->at(i).second != other.at(i).second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include <gtsam/global_includes.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
||||
#include <boost/serialization/vector.hpp>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
@ -69,8 +70,30 @@ namespace gtsam {
|
|||
push_back(key);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Print the keys and cardinalities.
|
||||
void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// Check equality to another DiscreteKeys object.
|
||||
bool equals(const DiscreteKeys& other, double tol = 0) const;
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& boost::serialization::make_nvp(
|
||||
"DiscreteKeys",
|
||||
boost::serialization::base_object<std::vector<DiscreteKey>>(*this));
|
||||
}
|
||||
|
||||
}; // DiscreteKeys
|
||||
|
||||
/// Create a list from two keys
|
||||
GTSAM_EXPORT DiscreteKeys operator&(const DiscreteKey& key1, const DiscreteKey& key2);
|
||||
}
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<DiscreteKeys> : public Testable<DiscreteKeys> {};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -219,6 +219,16 @@ class DiscreteBayesTree {
|
|||
};
|
||||
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
|
||||
class DiscreteLookupTable : gtsam::DiscreteConditional{
|
||||
DiscreteLookupTable(size_t nFrontals, const gtsam::DiscreteKeys& keys,
|
||||
const gtsam::DecisionTreeFactor::ADT& potentials);
|
||||
void print(
|
||||
const std::string& s = "Discrete Lookup Table: ",
|
||||
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const;
|
||||
size_t argmax(const gtsam::DiscreteValues& parentsValues) const;
|
||||
};
|
||||
|
||||
class DiscreteLookupDAG {
|
||||
DiscreteLookupDAG();
|
||||
void push_back(const gtsam::DiscreteLookupTable* table);
|
||||
|
|
|
@ -16,14 +16,29 @@
|
|||
* @author Duy-Nguyen Ta
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/discrete/DiscreteFactor.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <gtsam/discrete/DiscreteFactor.h>
|
||||
|
||||
#include <boost/assign/std/map.hpp>
|
||||
using namespace boost::assign;
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace gtsam::serializationTestHelpers;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DisreteKeys, Serialization) {
|
||||
DiscreteKeys keys;
|
||||
keys& DiscreteKey(0, 2);
|
||||
keys& DiscreteKey(1, 3);
|
||||
keys& DiscreteKey(2, 4);
|
||||
|
||||
EXPECT(equalsObj<DiscreteKeys>(keys));
|
||||
EXPECT(equalsXML<DiscreteKeys>(keys));
|
||||
EXPECT(equalsBinary<DiscreteKeys>(keys));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
|
@ -31,4 +46,3 @@ int main() {
|
|||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ public:
|
|||
/// Default constructor yields identity
|
||||
Cyclic():i_(0) {
|
||||
}
|
||||
static Cyclic identity() { return Cyclic();}
|
||||
static Cyclic Identity() { return Cyclic();}
|
||||
|
||||
/// Cast to size_t
|
||||
operator size_t() const {
|
||||
|
|
|
@ -213,7 +213,7 @@ public:
|
|||
}
|
||||
|
||||
/// for Canonical
|
||||
static PinholeCamera identity() {
|
||||
static PinholeCamera Identity() {
|
||||
return PinholeCamera(); // assumes that the default constructor is valid
|
||||
}
|
||||
|
||||
|
|
|
@ -412,7 +412,7 @@ public:
|
|||
}
|
||||
|
||||
/// for Canonical
|
||||
static PinholePose identity() {
|
||||
static PinholePose Identity() {
|
||||
return PinholePose(); // assumes that the default constructor is valid
|
||||
}
|
||||
|
||||
|
|
|
@ -119,7 +119,7 @@ public:
|
|||
/// @{
|
||||
|
||||
/// identity for group operation
|
||||
inline static Pose2 identity() { return Pose2(); }
|
||||
inline static Pose2 Identity() { return Pose2(); }
|
||||
|
||||
/// inverse
|
||||
GTSAM_EXPORT Pose2 inverse() const;
|
||||
|
|
|
@ -103,7 +103,7 @@ public:
|
|||
/// @{
|
||||
|
||||
/// identity for group operation
|
||||
static Pose3 identity() {
|
||||
static Pose3 Identity() {
|
||||
return Pose3();
|
||||
}
|
||||
|
||||
|
|
|
@ -107,8 +107,8 @@ namespace gtsam {
|
|||
/// @name Group
|
||||
/// @{
|
||||
|
||||
/** identity */
|
||||
inline static Rot2 identity() { return Rot2(); }
|
||||
/** Identity */
|
||||
inline static Rot2 Identity() { return Rot2(); }
|
||||
|
||||
/** The inverse rotation - negative angle */
|
||||
Rot2 inverse() const { return Rot2(c_, -s_);}
|
||||
|
|
|
@ -297,7 +297,7 @@ class GTSAM_EXPORT Rot3 : public LieGroup<Rot3, 3> {
|
|||
/// @{
|
||||
|
||||
/// identity rotation for group operation
|
||||
inline static Rot3 identity() {
|
||||
inline static Rot3 Identity() {
|
||||
return Rot3();
|
||||
}
|
||||
|
||||
|
|
|
@ -178,13 +178,13 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
|
|||
|
||||
/// SO<N> identity for N >= 2
|
||||
template <int N_ = N, typename = IsFixed<N_>>
|
||||
static SO identity() {
|
||||
static SO Identity() {
|
||||
return SO();
|
||||
}
|
||||
|
||||
/// SO<N> identity for N == Eigen::Dynamic
|
||||
template <int N_ = N, typename = IsDynamic<N_>>
|
||||
static SO identity(size_t n = 0) {
|
||||
static SO Identity(size_t n = 0) {
|
||||
return SO(n);
|
||||
}
|
||||
|
||||
|
|
|
@ -134,7 +134,7 @@ void Similarity2::print(const std::string& s) const {
|
|||
<< std::endl;
|
||||
}
|
||||
|
||||
Similarity2 Similarity2::identity() { return Similarity2(); }
|
||||
Similarity2 Similarity2::Identity() { return Similarity2(); }
|
||||
|
||||
Similarity2 Similarity2::operator*(const Similarity2& S) const {
|
||||
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);
|
||||
|
|
|
@ -83,7 +83,7 @@ class GTSAM_EXPORT Similarity2 : public LieGroup<Similarity2, 4> {
|
|||
/// @{
|
||||
|
||||
/// Return an identity transform
|
||||
static Similarity2 identity();
|
||||
static Similarity2 Identity();
|
||||
|
||||
/// Composition
|
||||
Similarity2 operator*(const Similarity2& S) const;
|
||||
|
|
|
@ -122,7 +122,7 @@ void Similarity3::print(const std::string& s) const {
|
|||
std::cout << "t: " << translation().transpose() << " s: " << scale() << std::endl;
|
||||
}
|
||||
|
||||
Similarity3 Similarity3::identity() {
|
||||
Similarity3 Similarity3::Identity() {
|
||||
return Similarity3();
|
||||
}
|
||||
Similarity3 Similarity3::operator*(const Similarity3& S) const {
|
||||
|
|
|
@ -84,7 +84,7 @@ class GTSAM_EXPORT Similarity3 : public LieGroup<Similarity3, 7> {
|
|||
/// @{
|
||||
|
||||
/// Return an identity transform
|
||||
static Similarity3 identity();
|
||||
static Similarity3 Identity();
|
||||
|
||||
/// Composition
|
||||
Similarity3 operator*(const Similarity3& S) const;
|
||||
|
|
|
@ -88,7 +88,7 @@ class GTSAM_EXPORT SphericalCamera {
|
|||
|
||||
/// Default constructor
|
||||
SphericalCamera()
|
||||
: pose_(Pose3::identity()), emptyCal_(boost::make_shared<EmptyCal>()) {}
|
||||
: pose_(Pose3()), emptyCal_(boost::make_shared<EmptyCal>()) {}
|
||||
|
||||
/// Constructor with pose
|
||||
explicit SphericalCamera(const Pose3& pose)
|
||||
|
@ -198,9 +198,9 @@ class GTSAM_EXPORT SphericalCamera {
|
|||
}
|
||||
|
||||
/// for Canonical
|
||||
static SphericalCamera identity() {
|
||||
static SphericalCamera Identity() {
|
||||
return SphericalCamera(
|
||||
Pose3::identity()); // assumes that the default constructor is valid
|
||||
Pose3::Identity()); // assumes that the default constructor is valid
|
||||
}
|
||||
|
||||
/// for Linear Triangulation
|
||||
|
|
|
@ -71,7 +71,7 @@ public:
|
|||
/// @{
|
||||
|
||||
/// identity
|
||||
inline static StereoPoint2 identity() {
|
||||
inline static StereoPoint2 Identity() {
|
||||
return StereoPoint2();
|
||||
}
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ class Point2 {
|
|||
bool equals(const gtsam::Point2& point, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Point2 identity();
|
||||
static gtsam::Point2 Identity();
|
||||
|
||||
// Standard Interface
|
||||
double x() const;
|
||||
|
@ -73,7 +73,7 @@ class StereoPoint2 {
|
|||
bool equals(const gtsam::StereoPoint2& point, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::StereoPoint2 identity();
|
||||
static gtsam::StereoPoint2 Identity();
|
||||
gtsam::StereoPoint2 inverse() const;
|
||||
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
|
||||
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
|
||||
|
@ -115,7 +115,7 @@ class Point3 {
|
|||
bool equals(const gtsam::Point3& p, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Point3 identity();
|
||||
static gtsam::Point3 Identity();
|
||||
|
||||
// Standard Interface
|
||||
Vector vector() const;
|
||||
|
@ -149,7 +149,7 @@ class Rot2 {
|
|||
bool equals(const gtsam::Rot2& rot, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Rot2 identity();
|
||||
static gtsam::Rot2 Identity();
|
||||
gtsam::Rot2 inverse();
|
||||
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
|
||||
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
|
||||
|
@ -198,7 +198,7 @@ class SO3 {
|
|||
bool equals(const gtsam::SO3& other, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::SO3 identity();
|
||||
static gtsam::SO3 Identity();
|
||||
gtsam::SO3 inverse() const;
|
||||
gtsam::SO3 between(const gtsam::SO3& R) const;
|
||||
gtsam::SO3 compose(const gtsam::SO3& R) const;
|
||||
|
@ -228,7 +228,7 @@ class SO4 {
|
|||
bool equals(const gtsam::SO4& other, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::SO4 identity();
|
||||
static gtsam::SO4 Identity();
|
||||
gtsam::SO4 inverse() const;
|
||||
gtsam::SO4 between(const gtsam::SO4& Q) const;
|
||||
gtsam::SO4 compose(const gtsam::SO4& Q) const;
|
||||
|
@ -258,7 +258,7 @@ class SOn {
|
|||
bool equals(const gtsam::SOn& other, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::SOn identity();
|
||||
static gtsam::SOn Identity();
|
||||
gtsam::SOn inverse() const;
|
||||
gtsam::SOn between(const gtsam::SOn& Q) const;
|
||||
gtsam::SOn compose(const gtsam::SOn& Q) const;
|
||||
|
@ -322,7 +322,7 @@ class Rot3 {
|
|||
bool equals(const gtsam::Rot3& rot, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Rot3 identity();
|
||||
static gtsam::Rot3 Identity();
|
||||
gtsam::Rot3 inverse() const;
|
||||
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
|
||||
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
|
||||
|
@ -380,7 +380,7 @@ class Pose2 {
|
|||
bool equals(const gtsam::Pose2& pose, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Pose2 identity();
|
||||
static gtsam::Pose2 Identity();
|
||||
gtsam::Pose2 inverse() const;
|
||||
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
|
||||
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
|
||||
|
@ -444,7 +444,7 @@ class Pose3 {
|
|||
bool equals(const gtsam::Pose3& pose, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::Pose3 identity();
|
||||
static gtsam::Pose3 Identity();
|
||||
gtsam::Pose3 inverse() const;
|
||||
gtsam::Pose3 inverse(Eigen::Ref<Eigen::MatrixXd> H) const;
|
||||
gtsam::Pose3 compose(const gtsam::Pose3& pose) const;
|
||||
|
@ -1126,10 +1126,10 @@ class TriangulationResult {
|
|||
Status status;
|
||||
TriangulationResult(const gtsam::Point3& p);
|
||||
const gtsam::Point3& get() const;
|
||||
static TriangulationResult Degenerate();
|
||||
static TriangulationResult Outlier();
|
||||
static TriangulationResult FarPoint();
|
||||
static TriangulationResult BehindCamera();
|
||||
static gtsam::TriangulationResult Degenerate();
|
||||
static gtsam::TriangulationResult Outlier();
|
||||
static gtsam::TriangulationResult FarPoint();
|
||||
static gtsam::TriangulationResult BehindCamera();
|
||||
bool valid() const;
|
||||
bool degenerate() const;
|
||||
bool outlier() const;
|
||||
|
|
|
@ -902,7 +902,7 @@ TEST(Pose2 , TransformCovariance3) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose2, Print) {
|
||||
Pose2 pose(Rot2::identity(), Point2(1, 2));
|
||||
Pose2 pose(Rot2::Identity(), Point2(1, 2));
|
||||
|
||||
// Generate the expected output
|
||||
string s = "Planar Pose";
|
||||
|
|
|
@ -1133,7 +1133,7 @@ Pose3 testing_interpolate(const Pose3& t1, const Pose3& t2, double gamma) { retu
|
|||
|
||||
TEST(Pose3, interpolateJacobians) {
|
||||
{
|
||||
Pose3 X = Pose3::identity();
|
||||
Pose3 X = Pose3::Identity();
|
||||
Pose3 Y(Rot3::Rz(M_PI_2), Point3(1, 0, 0));
|
||||
double t = 0.5;
|
||||
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0.5, -0.207107, 0)); // note: different from test above: this is full Pose3 interpolation
|
||||
|
@ -1147,10 +1147,10 @@ TEST(Pose3, interpolateJacobians) {
|
|||
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
|
||||
}
|
||||
{
|
||||
Pose3 X = Pose3::identity();
|
||||
Pose3 Y(Rot3::identity(), Point3(1, 0, 0));
|
||||
Pose3 X = Pose3::Identity();
|
||||
Pose3 Y(Rot3::Identity(), Point3(1, 0, 0));
|
||||
double t = 0.3;
|
||||
Pose3 expectedPoseInterp(Rot3::identity(), Point3(0.3, 0, 0));
|
||||
Pose3 expectedPoseInterp(Rot3::Identity(), Point3(0.3, 0, 0));
|
||||
Matrix actualJacobianX, actualJacobianY;
|
||||
EXPECT(assert_equal(expectedPoseInterp, interpolate(X, Y, t, actualJacobianX, actualJacobianY), 1e-5));
|
||||
|
||||
|
@ -1161,7 +1161,7 @@ TEST(Pose3, interpolateJacobians) {
|
|||
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
|
||||
}
|
||||
{
|
||||
Pose3 X = Pose3::identity();
|
||||
Pose3 X = Pose3::Identity();
|
||||
Pose3 Y(Rot3::Rz(M_PI_2), Point3(0, 0, 0));
|
||||
double t = 0.5;
|
||||
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0, 0, 0));
|
||||
|
@ -1204,7 +1204,7 @@ TEST(Pose3, Create) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3, Print) {
|
||||
Pose3 pose(Rot3::identity(), Point3(1, 2, 3));
|
||||
Pose3 pose(Rot3::Identity(), Point3(1, 2, 3));
|
||||
|
||||
// Generate the expected output
|
||||
std::string expected = "R: [\n\t1, 0, 0;\n\t0, 1, 0;\n\t0, 0, 1\n]\nt: 1 2 3\n";
|
||||
|
|
|
@ -33,8 +33,6 @@ static const Point2 P(0.2, 0.7);
|
|||
static const Rot2 R = Rot2::fromAngle(0.3);
|
||||
static const double s = 4;
|
||||
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Similarity2, Concepts) {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<Similarity2>));
|
||||
|
|
|
@ -203,11 +203,11 @@ TEST(Similarity3, ExpLogMap) {
|
|||
|
||||
Vector7 zeros;
|
||||
zeros << 0, 0, 0, 0, 0, 0, 0;
|
||||
Vector7 logIdentity = Similarity3::Logmap(Similarity3::identity());
|
||||
Vector7 logIdentity = Similarity3::Logmap(Similarity3::Identity());
|
||||
EXPECT(assert_equal(zeros, logIdentity));
|
||||
|
||||
Similarity3 expZero = Similarity3::Expmap(zeros);
|
||||
Similarity3 ident = Similarity3::identity();
|
||||
Similarity3 ident = Similarity3::Identity();
|
||||
EXPECT(assert_equal(expZero, ident));
|
||||
|
||||
// Compare to matrix exponential, using expm in Lie.h
|
||||
|
@ -391,7 +391,7 @@ TEST(Similarity3, Optimization) {
|
|||
NonlinearFactorGraph graph;
|
||||
graph.addPrior(key, prior, model);
|
||||
|
||||
// Create initial estimate with identity transform
|
||||
// Create initial estimate with Identity transform
|
||||
Values initial;
|
||||
initial.insert<Similarity3>(key, Similarity3());
|
||||
|
||||
|
|
|
@ -66,7 +66,7 @@ class KeySet {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
// Actually a vector<Key>
|
||||
// Actually a vector<Key>, needed for Matlab
|
||||
class KeyVector {
|
||||
KeyVector();
|
||||
KeyVector(const gtsam::KeyVector& other);
|
||||
|
|
|
@ -119,11 +119,36 @@ void GaussianMixture::print(const std::string &s,
|
|||
"", [&](Key k) { return formatter(k); },
|
||||
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
|
||||
RedirectCout rd;
|
||||
if (!gf->empty())
|
||||
if (gf && !gf->empty())
|
||||
gf->print("", formatter);
|
||||
else
|
||||
return {"nullptr"};
|
||||
return rd.str();
|
||||
});
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
void GaussianMixture::prune(const DecisionTreeFactor &decisionTree) {
|
||||
// Functional which loops over all assignments and create a set of
|
||||
// GaussianConditionals
|
||||
auto pruner = [&decisionTree](
|
||||
const Assignment<Key> &choices,
|
||||
const GaussianConditional::shared_ptr &conditional)
|
||||
-> GaussianConditional::shared_ptr {
|
||||
// typecast so we can use this to get probability value
|
||||
DiscreteValues values(choices);
|
||||
|
||||
if (decisionTree(values) == 0.0) {
|
||||
// empty aka null pointer
|
||||
boost::shared_ptr<GaussianConditional> null;
|
||||
return null;
|
||||
} else {
|
||||
return conditional;
|
||||
}
|
||||
};
|
||||
|
||||
auto pruned_conditionals = conditionals_.apply(pruner);
|
||||
conditionals_.root_ = pruned_conditionals.root_;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#include <gtsam/discrete/DecisionTree-inl.h>
|
||||
#include <gtsam/discrete/DecisionTree.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/inference/Conditional.h>
|
||||
|
@ -30,11 +31,14 @@ namespace gtsam {
|
|||
|
||||
/**
|
||||
* @brief A conditional of gaussian mixtures indexed by discrete variables, as
|
||||
* part of a Bayes Network.
|
||||
* part of a Bayes Network. This is the result of the elimination of a
|
||||
* continuous variable in a hybrid scheme, such that the remaining variables are
|
||||
* discrete+continuous.
|
||||
*
|
||||
* Represents the conditional density P(X | M, Z) where X is a continuous random
|
||||
* variable, M is the selection of discrete variables corresponding to a subset
|
||||
* of the Gaussian variables and Z is parent of this node
|
||||
* Represents the conditional density P(X | M, Z) where X is the set of
|
||||
* continuous random variables, M is the selection of discrete variables
|
||||
* corresponding to a subset of the Gaussian variables and Z is parent of this
|
||||
* node .
|
||||
*
|
||||
* The probability P(x|y,z,...) is proportional to
|
||||
* \f$ \sum_i k_i \exp - \frac{1}{2} |R_i x - (d_i - S_i y - T_i z - ...)|^2 \f$
|
||||
|
@ -118,7 +122,7 @@ class GTSAM_EXPORT GaussianMixture
|
|||
/// Test equality with base HybridFactor
|
||||
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
|
||||
|
||||
/* print utility */
|
||||
/// Print utility
|
||||
void print(
|
||||
const std::string &s = "GaussianMixture\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
|
@ -128,6 +132,15 @@ class GTSAM_EXPORT GaussianMixture
|
|||
/// Getter for the underlying Conditionals DecisionTree
|
||||
const Conditionals &conditionals();
|
||||
|
||||
/**
|
||||
* @brief Prune the decision tree of Gaussian factors as per the discrete
|
||||
* `decisionTree`.
|
||||
*
|
||||
* @param decisionTree A pruned decision tree of discrete keys where the
|
||||
* leaves are probabilities.
|
||||
*/
|
||||
void prune(const DecisionTreeFactor &decisionTree);
|
||||
|
||||
/**
|
||||
* @brief Merge the Gaussian Factor Graphs in `this` and `sum` while
|
||||
* maintaining the decision tree structure.
|
||||
|
|
|
@ -51,7 +51,7 @@ GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
|
|||
void GaussianMixtureFactor::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
HybridFactor::print(s, formatter);
|
||||
std::cout << "]{\n";
|
||||
std::cout << "{\n";
|
||||
factors_.print(
|
||||
"", [&](Key k) { return formatter(k); },
|
||||
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
|
||||
#include <gtsam/discrete/DecisionTree.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -108,7 +108,7 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
|
||||
|
||||
void print(
|
||||
const std::string &s = "HybridFactor\n",
|
||||
const std::string &s = "GaussianMixtureFactor\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
/// @}
|
||||
|
||||
|
|
|
@ -10,7 +10,166 @@
|
|||
* @file HybridBayesNet.cpp
|
||||
* @brief A bayes net of Gaussian Conditionals indexed by discrete keys.
|
||||
* @author Fan Jiang
|
||||
* @author Varun Agrawal
|
||||
* @author Shangjie Xue
|
||||
* @date January 2022
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Return the DiscreteKey vector as a set.
|
||||
static std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &dkeys) {
|
||||
std::set<DiscreteKey> s;
|
||||
s.insert(dkeys.begin(), dkeys.end());
|
||||
return s;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridBayesNet HybridBayesNet::prune(
|
||||
const DecisionTreeFactor::shared_ptr &discreteFactor) const {
|
||||
/* To Prune, we visitWith every leaf in the GaussianMixture.
|
||||
* For each leaf, using the assignment we can check the discrete decision tree
|
||||
* for 0.0 probability, then just set the leaf to a nullptr.
|
||||
*
|
||||
* We can later check the GaussianMixture for just nullptrs.
|
||||
*/
|
||||
|
||||
HybridBayesNet prunedBayesNetFragment;
|
||||
|
||||
// Functional which loops over all assignments and create a set of
|
||||
// GaussianConditionals
|
||||
auto pruner = [&](const Assignment<Key> &choices,
|
||||
const GaussianConditional::shared_ptr &conditional)
|
||||
-> GaussianConditional::shared_ptr {
|
||||
// typecast so we can use this to get probability value
|
||||
DiscreteValues values(choices);
|
||||
|
||||
if ((*discreteFactor)(values) == 0.0) {
|
||||
// empty aka null pointer
|
||||
boost::shared_ptr<GaussianConditional> null;
|
||||
return null;
|
||||
} else {
|
||||
return conditional;
|
||||
}
|
||||
};
|
||||
|
||||
// Go through all the conditionals in the
|
||||
// Bayes Net and prune them as per discreteFactor.
|
||||
for (size_t i = 0; i < this->size(); i++) {
|
||||
HybridConditional::shared_ptr conditional = this->at(i);
|
||||
|
||||
GaussianMixture::shared_ptr gaussianMixture =
|
||||
boost::dynamic_pointer_cast<GaussianMixture>(conditional->inner());
|
||||
|
||||
if (gaussianMixture) {
|
||||
// We may have mixtures with less discrete keys than discreteFactor so we
|
||||
// skip those since the label assignment does not exist.
|
||||
auto gmKeySet = DiscreteKeysAsSet(gaussianMixture->discreteKeys());
|
||||
auto dfKeySet = DiscreteKeysAsSet(discreteFactor->discreteKeys());
|
||||
if (gmKeySet != dfKeySet) {
|
||||
// Add the gaussianMixture which doesn't have to be pruned.
|
||||
prunedBayesNetFragment.push_back(
|
||||
boost::make_shared<HybridConditional>(gaussianMixture));
|
||||
continue;
|
||||
}
|
||||
|
||||
// Run the pruning to get a new, pruned tree
|
||||
GaussianMixture::Conditionals prunedTree =
|
||||
gaussianMixture->conditionals().apply(pruner);
|
||||
|
||||
DiscreteKeys discreteKeys = gaussianMixture->discreteKeys();
|
||||
// reverse keys to get a natural ordering
|
||||
std::reverse(discreteKeys.begin(), discreteKeys.end());
|
||||
|
||||
// Convert from boost::iterator_range to KeyVector
|
||||
// so we can pass it to constructor.
|
||||
KeyVector frontals(gaussianMixture->frontals().begin(),
|
||||
gaussianMixture->frontals().end()),
|
||||
parents(gaussianMixture->parents().begin(),
|
||||
gaussianMixture->parents().end());
|
||||
|
||||
// Create the new gaussian mixture and add it to the bayes net.
|
||||
auto prunedGaussianMixture = boost::make_shared<GaussianMixture>(
|
||||
frontals, parents, discreteKeys, prunedTree);
|
||||
|
||||
// Type-erase and add to the pruned Bayes Net fragment.
|
||||
prunedBayesNetFragment.push_back(
|
||||
boost::make_shared<HybridConditional>(prunedGaussianMixture));
|
||||
|
||||
} else {
|
||||
// Add the non-GaussianMixture conditional
|
||||
prunedBayesNetFragment.push_back(conditional);
|
||||
}
|
||||
}
|
||||
|
||||
return prunedBayesNetFragment;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianMixture::shared_ptr HybridBayesNet::atMixture(size_t i) const {
|
||||
return factors_.at(i)->asMixture();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianConditional::shared_ptr HybridBayesNet::atGaussian(size_t i) const {
|
||||
return factors_.at(i)->asGaussian();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
DiscreteConditional::shared_ptr HybridBayesNet::atDiscrete(size_t i) const {
|
||||
return factors_.at(i)->asDiscreteConditional();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianBayesNet HybridBayesNet::choose(
|
||||
const DiscreteValues &assignment) const {
|
||||
GaussianBayesNet gbn;
|
||||
for (size_t idx = 0; idx < size(); idx++) {
|
||||
if (factors_.at(idx)->isHybrid()) {
|
||||
// If factor is hybrid, select based on assignment.
|
||||
GaussianMixture gm = *this->atMixture(idx);
|
||||
gbn.push_back(gm(assignment));
|
||||
|
||||
} else if (factors_.at(idx)->isContinuous()) {
|
||||
// If continuous only, add gaussian conditional.
|
||||
gbn.push_back((this->atGaussian(idx)));
|
||||
|
||||
} else if (factors_.at(idx)->isDiscrete()) {
|
||||
// If factor at `idx` is discrete-only, we simply continue.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return gbn;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
// Solve for the MPE
|
||||
DiscreteBayesNet discrete_bn;
|
||||
for (auto &conditional : factors_) {
|
||||
if (conditional->isDiscrete()) {
|
||||
discrete_bn.push_back(conditional->asDiscreteConditional());
|
||||
}
|
||||
}
|
||||
|
||||
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
|
||||
|
||||
// Given the MPE, compute the optimal continuous values.
|
||||
GaussianBayesNet gbn = this->choose(mpe);
|
||||
return HybridValues(mpe, gbn.optimize());
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
|
||||
GaussianBayesNet gbn = this->choose(assignment);
|
||||
return gbn.optimize();
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -17,8 +17,12 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/global_includes.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -34,8 +38,94 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
using shared_ptr = boost::shared_ptr<HybridBayesNet>;
|
||||
using sharedConditional = boost::shared_ptr<ConditionalType>;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/** Construct empty bayes net */
|
||||
HybridBayesNet() = default;
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/** Check equality */
|
||||
bool equals(const This &bn, double tol = 1e-9) const {
|
||||
return Base::equals(bn, tol);
|
||||
}
|
||||
|
||||
/// print graph
|
||||
void print(
|
||||
const std::string &s = "",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override {
|
||||
Base::print(s, formatter);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// Add HybridConditional to Bayes Net
|
||||
using Base::add;
|
||||
|
||||
/// Add a discrete conditional to the Bayes Net.
|
||||
void add(const DiscreteKey &key, const std::string &table) {
|
||||
push_back(
|
||||
HybridConditional(boost::make_shared<DiscreteConditional>(key, table)));
|
||||
}
|
||||
|
||||
/// Get a specific Gaussian mixture by index `i`.
|
||||
GaussianMixture::shared_ptr atMixture(size_t i) const;
|
||||
|
||||
/// Get a specific Gaussian conditional by index `i`.
|
||||
GaussianConditional::shared_ptr atGaussian(size_t i) const;
|
||||
|
||||
/// Get a specific discrete conditional by index `i`.
|
||||
DiscreteConditional::shared_ptr atDiscrete(size_t i) const;
|
||||
|
||||
/**
|
||||
* @brief Get the Gaussian Bayes Net which corresponds to a specific discrete
|
||||
* value assignment.
|
||||
*
|
||||
* @param assignment The discrete value assignment for the discrete keys.
|
||||
* @return GaussianBayesNet
|
||||
*/
|
||||
GaussianBayesNet choose(const DiscreteValues &assignment) const;
|
||||
|
||||
/**
|
||||
* @brief Solve the HybridBayesNet by first computing the MPE of all the
|
||||
* discrete variables and then optimizing the continuous variables based on
|
||||
* the MPE assignment.
|
||||
*
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues optimize() const;
|
||||
|
||||
/**
|
||||
* @brief Given the discrete assignment, return the optimized estimate for the
|
||||
* selected Gaussian BayesNet.
|
||||
*
|
||||
* @param assignment An assignment of discrete values.
|
||||
* @return Values
|
||||
*/
|
||||
VectorValues optimize(const DiscreteValues &assignment) const;
|
||||
|
||||
/// Prune the Hybrid Bayes Net given the discrete decision tree.
|
||||
HybridBayesNet prune(
|
||||
const DecisionTreeFactor::shared_ptr &discreteFactor) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE &ar, const unsigned int /*version*/) {
|
||||
ar &BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
}
|
||||
};
|
||||
|
||||
/// traits
|
||||
template <>
|
||||
struct traits<HybridBayesNet> : public Testable<HybridBayesNet> {};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,10 +18,13 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/base/treeTraversal-inst.h>
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridBayesTree.h>
|
||||
#include <gtsam/inference/BayesTree-inst.h>
|
||||
#include <gtsam/inference/BayesTreeCliqueBase-inst.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -35,4 +38,110 @@ bool HybridBayesTree::equals(const This& other, double tol) const {
|
|||
return Base::equals(other, tol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesTree::optimize() const {
|
||||
DiscreteBayesNet dbn;
|
||||
DiscreteValues mpe;
|
||||
|
||||
auto root = roots_.at(0);
|
||||
// Access the clique and get the underlying hybrid conditional
|
||||
HybridConditional::shared_ptr root_conditional = root->conditional();
|
||||
|
||||
// The root should be discrete only, we compute the MPE
|
||||
if (root_conditional->isDiscrete()) {
|
||||
dbn.push_back(root_conditional->asDiscreteConditional());
|
||||
mpe = DiscreteFactorGraph(dbn).optimize();
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"HybridBayesTree root is not discrete-only. Please check elimination "
|
||||
"ordering or use continuous factor graph.");
|
||||
}
|
||||
|
||||
VectorValues values = optimize(mpe);
|
||||
return HybridValues(mpe, values);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Helper class for Depth First Forest traversal on the HybridBayesTree.
|
||||
*
|
||||
* When traversing the tree, the pre-order visitor will receive an instance of
|
||||
* this class with the parent clique data.
|
||||
*/
|
||||
struct HybridAssignmentData {
|
||||
const DiscreteValues assignment_;
|
||||
GaussianBayesTree::sharedNode parentClique_;
|
||||
// The gaussian bayes tree that will be recursively created.
|
||||
GaussianBayesTree* gaussianbayesTree_;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Assignment Data object.
|
||||
*
|
||||
* @param assignment The MPE assignment for the optimal Gaussian cliques.
|
||||
* @param parentClique The clique from the parent node of the current node.
|
||||
* @param gbt The Gaussian Bayes Tree being generated during tree traversal.
|
||||
*/
|
||||
HybridAssignmentData(const DiscreteValues& assignment,
|
||||
const GaussianBayesTree::sharedNode& parentClique,
|
||||
GaussianBayesTree* gbt)
|
||||
: assignment_(assignment),
|
||||
parentClique_(parentClique),
|
||||
gaussianbayesTree_(gbt) {}
|
||||
|
||||
/**
|
||||
* @brief A function used during tree traversal that operators on each node
|
||||
* before visiting the node's children.
|
||||
*
|
||||
* @param node The current node being visited.
|
||||
* @param parentData The HybridAssignmentData from the parent node.
|
||||
* @return HybridAssignmentData
|
||||
*/
|
||||
static HybridAssignmentData AssignmentPreOrderVisitor(
|
||||
const HybridBayesTree::sharedNode& node,
|
||||
HybridAssignmentData& parentData) {
|
||||
// Extract the gaussian conditional from the Hybrid clique
|
||||
HybridConditional::shared_ptr hybrid_conditional = node->conditional();
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
if (hybrid_conditional->isHybrid()) {
|
||||
conditional = (*hybrid_conditional->asMixture())(parentData.assignment_);
|
||||
} else if (hybrid_conditional->isContinuous()) {
|
||||
conditional = hybrid_conditional->asGaussian();
|
||||
} else {
|
||||
// Discrete only conditional, so we set to empty gaussian conditional
|
||||
conditional = boost::make_shared<GaussianConditional>();
|
||||
}
|
||||
|
||||
// Create the GaussianClique for the current node
|
||||
auto clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
|
||||
// Add the current clique to the GaussianBayesTree.
|
||||
parentData.gaussianbayesTree_->addClique(clique, parentData.parentClique_);
|
||||
|
||||
// Create new HybridAssignmentData where the current node is the parent
|
||||
// This will be passed down to the children nodes
|
||||
HybridAssignmentData data(parentData.assignment_, clique,
|
||||
parentData.gaussianbayesTree_);
|
||||
return data;
|
||||
}
|
||||
};
|
||||
|
||||
/* *************************************************************************
|
||||
*/
|
||||
VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
||||
GaussianBayesTree gbt;
|
||||
HybridAssignmentData rootData(assignment, 0, &gbt);
|
||||
{
|
||||
treeTraversal::no_op visitorPost;
|
||||
// Limits OpenMP threads since we're mixing TBB and OpenMP
|
||||
TbbOpenMPMixedScope threadLimiter;
|
||||
treeTraversal::DepthFirstForestParallel(
|
||||
*this, rootData, HybridAssignmentData::AssignmentPreOrderVisitor,
|
||||
visitorPost);
|
||||
}
|
||||
|
||||
VectorValues result = gbt.optimize();
|
||||
|
||||
// Return the optimized bayes net result.
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -70,13 +70,46 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
|||
/** Check equality */
|
||||
bool equals(const This& other, double tol = 1e-9) const;
|
||||
|
||||
/**
|
||||
* @brief Optimize the hybrid Bayes tree by computing the MPE for the current
|
||||
* set of discrete variables and using it to compute the best continuous
|
||||
* update delta.
|
||||
*
|
||||
* @return HybridValues
|
||||
*/
|
||||
HybridValues optimize() const;
|
||||
|
||||
/**
|
||||
* @brief Recursively optimize the BayesTree to produce a vector solution.
|
||||
*
|
||||
* @param assignment The discrete values assignment to select the Gaussian
|
||||
* mixtures.
|
||||
* @return VectorValues
|
||||
*/
|
||||
VectorValues optimize(const DiscreteValues& assignment) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
}
|
||||
};
|
||||
|
||||
/// traits
|
||||
template <>
|
||||
struct traits<HybridBayesTree> : public Testable<HybridBayesTree> {};
|
||||
|
||||
/**
|
||||
* @brief Class for Hybrid Bayes tree orphan subtrees.
|
||||
*
|
||||
* This does special stuff for the hybrid case
|
||||
* This object stores parent keys in our base type factor so that
|
||||
* eliminating those parent keys will pull this subtree into the
|
||||
* elimination.
|
||||
* This does special stuff for the hybrid case.
|
||||
*
|
||||
* @tparam CLIQUE
|
||||
*/
|
||||
|
|
|
@ -69,7 +69,7 @@ class GTSAM_EXPORT HybridConditional
|
|||
BaseConditional; ///< Typedef to our conditional base class
|
||||
|
||||
protected:
|
||||
// Type-erased pointer to the inner type
|
||||
/// Type-erased pointer to the inner type
|
||||
boost::shared_ptr<Factor> inner_;
|
||||
|
||||
public:
|
||||
|
@ -127,8 +127,7 @@ class GTSAM_EXPORT HybridConditional
|
|||
* @param gaussianMixture Gaussian Mixture Conditional used to create the
|
||||
* HybridConditional.
|
||||
*/
|
||||
HybridConditional(
|
||||
boost::shared_ptr<GaussianMixture> gaussianMixture);
|
||||
HybridConditional(boost::shared_ptr<GaussianMixture> gaussianMixture);
|
||||
|
||||
/**
|
||||
* @brief Return HybridConditional as a GaussianMixture
|
||||
|
@ -140,6 +139,17 @@ class GTSAM_EXPORT HybridConditional
|
|||
return boost::static_pointer_cast<GaussianMixture>(inner_);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return HybridConditional as a GaussianConditional
|
||||
*
|
||||
* @return GaussianConditional::shared_ptr
|
||||
*/
|
||||
GaussianConditional::shared_ptr asGaussian() {
|
||||
if (!isContinuous())
|
||||
throw std::invalid_argument("Not a continuous conditional");
|
||||
return boost::static_pointer_cast<GaussianConditional>(inner_);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return conditional as a DiscreteConditional
|
||||
*
|
||||
|
@ -168,10 +178,19 @@ class GTSAM_EXPORT HybridConditional
|
|||
/// Get the type-erased pointer to the inner type
|
||||
boost::shared_ptr<Factor> inner() { return inner_; }
|
||||
|
||||
}; // DiscreteConditional
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class Archive>
|
||||
void serialize(Archive& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseFactor);
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseConditional);
|
||||
}
|
||||
|
||||
}; // HybridConditional
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<HybridConditional> : public Testable<DiscreteConditional> {};
|
||||
struct traits<HybridConditional> : public Testable<HybridConditional> {};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -52,7 +52,6 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
|
|||
HybridFactor::HybridFactor(const KeyVector &keys)
|
||||
: Base(keys),
|
||||
isContinuous_(true),
|
||||
nrContinuous_(keys.size()),
|
||||
continuousKeys_(keys) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
@ -62,7 +61,6 @@ HybridFactor::HybridFactor(const KeyVector &continuousKeys,
|
|||
isDiscrete_((continuousKeys.size() == 0) && (discreteKeys.size() != 0)),
|
||||
isContinuous_((continuousKeys.size() != 0) && (discreteKeys.size() == 0)),
|
||||
isHybrid_((continuousKeys.size() != 0) && (discreteKeys.size() != 0)),
|
||||
nrContinuous_(continuousKeys.size()),
|
||||
discreteKeys_(discreteKeys),
|
||||
continuousKeys_(continuousKeys) {}
|
||||
|
||||
|
@ -78,7 +76,8 @@ bool HybridFactor::equals(const HybridFactor &lf, double tol) const {
|
|||
const This *e = dynamic_cast<const This *>(&lf);
|
||||
return e != nullptr && Base::equals(*e, tol) &&
|
||||
isDiscrete_ == e->isDiscrete_ && isContinuous_ == e->isContinuous_ &&
|
||||
isHybrid_ == e->isHybrid_ && nrContinuous_ == e->nrContinuous_;
|
||||
isHybrid_ == e->isHybrid_ && continuousKeys_ == e->continuousKeys_ &&
|
||||
discreteKeys_ == e->discreteKeys_;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
@ -88,17 +87,23 @@ void HybridFactor::print(const std::string &s,
|
|||
if (isContinuous_) std::cout << "Continuous ";
|
||||
if (isDiscrete_) std::cout << "Discrete ";
|
||||
if (isHybrid_) std::cout << "Hybrid ";
|
||||
for (size_t c=0; c<continuousKeys_.size(); c++) {
|
||||
std::cout << "[";
|
||||
for (size_t c = 0; c < continuousKeys_.size(); c++) {
|
||||
std::cout << formatter(continuousKeys_.at(c));
|
||||
if (c < continuousKeys_.size() - 1) {
|
||||
std::cout << " ";
|
||||
} else {
|
||||
std::cout << "; ";
|
||||
std::cout << (discreteKeys_.size() > 0 ? "; " : "");
|
||||
}
|
||||
}
|
||||
for(auto && discreteKey: discreteKeys_) {
|
||||
std::cout << formatter(discreteKey.first) << " ";
|
||||
for (size_t d = 0; d < discreteKeys_.size(); d++) {
|
||||
std::cout << formatter(discreteKeys_.at(d).first);
|
||||
if (d < discreteKeys_.size() - 1) {
|
||||
std::cout << " ";
|
||||
}
|
||||
|
||||
}
|
||||
std::cout << "]";
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -47,11 +47,9 @@ class GTSAM_EXPORT HybridFactor : public Factor {
|
|||
bool isContinuous_ = false;
|
||||
bool isHybrid_ = false;
|
||||
|
||||
size_t nrContinuous_ = 0;
|
||||
|
||||
protected:
|
||||
// Set of DiscreteKeys for this factor.
|
||||
DiscreteKeys discreteKeys_;
|
||||
|
||||
/// Record continuous keys for book-keeping
|
||||
KeyVector continuousKeys_;
|
||||
|
||||
|
@ -120,12 +118,28 @@ class GTSAM_EXPORT HybridFactor : public Factor {
|
|||
bool isHybrid() const { return isHybrid_; }
|
||||
|
||||
/// Return the number of continuous variables in this factor.
|
||||
size_t nrContinuous() const { return nrContinuous_; }
|
||||
size_t nrContinuous() const { return continuousKeys_.size(); }
|
||||
|
||||
/// Return vector of discrete keys.
|
||||
DiscreteKeys discreteKeys() const { return discreteKeys_; }
|
||||
/// Return the discrete keys for this factor.
|
||||
const DiscreteKeys &discreteKeys() const { return discreteKeys_; }
|
||||
|
||||
/// Return only the continuous keys for this factor.
|
||||
const KeyVector &continuousKeys() const { return continuousKeys_; }
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE &ar, const unsigned int /*version*/) {
|
||||
ar &BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar &BOOST_SERIALIZATION_NVP(isDiscrete_);
|
||||
ar &BOOST_SERIALIZATION_NVP(isContinuous_);
|
||||
ar &BOOST_SERIALIZATION_NVP(isHybrid_);
|
||||
ar &BOOST_SERIALIZATION_NVP(discreteKeys_);
|
||||
ar &BOOST_SERIALIZATION_NVP(continuousKeys_);
|
||||
}
|
||||
};
|
||||
// HybridFactor
|
||||
|
||||
|
|
|
@ -0,0 +1,140 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridFactorGraph.h
|
||||
* @brief Hybrid factor graph base class that uses type erasure
|
||||
* @author Varun Agrawal
|
||||
* @date May 28, 2022
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteFactor.h>
|
||||
#include <gtsam/hybrid/HybridDiscreteFactor.h>
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
namespace gtsam {
|
||||
|
||||
using SharedFactor = boost::shared_ptr<Factor>;
|
||||
|
||||
/**
|
||||
* Hybrid Factor Graph
|
||||
* -----------------------
|
||||
* This is the base hybrid factor graph.
|
||||
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||
*/
|
||||
class HybridFactorGraph : public FactorGraph<HybridFactor> {
|
||||
public:
|
||||
using Base = FactorGraph<HybridFactor>;
|
||||
using This = HybridFactorGraph; ///< this class
|
||||
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
|
||||
|
||||
using Values = gtsam::Values; ///< backwards compatibility
|
||||
using Indices = KeyVector; ///> map from keys to values
|
||||
|
||||
protected:
|
||||
/// Check if FACTOR type is derived from DiscreteFactor.
|
||||
template <typename FACTOR>
|
||||
using IsDiscrete = typename std::enable_if<
|
||||
std::is_base_of<DiscreteFactor, FACTOR>::value>::type;
|
||||
|
||||
/// Check if FACTOR type is derived from HybridFactor.
|
||||
template <typename FACTOR>
|
||||
using IsHybrid = typename std::enable_if<
|
||||
std::is_base_of<HybridFactor, FACTOR>::value>::type;
|
||||
|
||||
public:
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
|
||||
/// Default constructor
|
||||
HybridFactorGraph() = default;
|
||||
|
||||
/**
|
||||
* Implicit copy/downcast constructor to override explicit template container
|
||||
* constructor. In BayesTree this is used for:
|
||||
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
|
||||
* */
|
||||
template <class DERIVEDFACTOR>
|
||||
HybridFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
|
||||
|
||||
/// @}
|
||||
|
||||
// Allow use of selected FactorGraph methods:
|
||||
using Base::empty;
|
||||
using Base::reserve;
|
||||
using Base::size;
|
||||
using Base::operator[];
|
||||
using Base::add;
|
||||
using Base::push_back;
|
||||
using Base::resize;
|
||||
|
||||
/**
|
||||
* Add a discrete factor *pointer* to the internal discrete graph
|
||||
* @param discreteFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsDiscrete<FACTOR> push_discrete(
|
||||
const boost::shared_ptr<FACTOR>& discreteFactor) {
|
||||
Base::push_back(boost::make_shared<HybridDiscreteFactor>(discreteFactor));
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a discrete-continuous (Hybrid) factor *pointer* to the graph
|
||||
* @param hybridFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsHybrid<FACTOR> push_hybrid(const boost::shared_ptr<FACTOR>& hybridFactor) {
|
||||
Base::push_back(hybridFactor);
|
||||
}
|
||||
|
||||
/// delete emplace_shared.
|
||||
template <class FACTOR, class... Args>
|
||||
void emplace_shared(Args&&... args) = delete;
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsDiscrete<FACTOR> emplace_discrete(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_discrete(factor);
|
||||
}
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsHybrid<FACTOR> emplace_hybrid(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_hybrid(factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||
* Dynamically handles the factor type and assigns it to the correct
|
||||
* underlying container.
|
||||
*
|
||||
* @param sharedFactor The factor to add to this factor graph.
|
||||
*/
|
||||
void push_back(const SharedFactor& sharedFactor) {
|
||||
if (auto p = boost::dynamic_pointer_cast<DiscreteFactor>(sharedFactor)) {
|
||||
push_discrete(p);
|
||||
}
|
||||
if (auto p = boost::dynamic_pointer_cast<HybridFactor>(sharedFactor)) {
|
||||
push_hybrid(p);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
|
@ -37,6 +37,8 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
|
|||
using This = HybridGaussianFactor;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
|
||||
HybridGaussianFactor() = default;
|
||||
|
||||
// Explicit conversion from a shared ptr of GF
|
||||
explicit HybridGaussianFactor(GaussianFactor::shared_ptr other);
|
||||
|
||||
|
@ -52,7 +54,7 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
|
|||
|
||||
/// GTSAM print utility.
|
||||
void print(
|
||||
const std::string &s = "HybridFactor\n",
|
||||
const std::string &s = "HybridGaussianFactor\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
|
||||
/// @}
|
||||
|
|
|
@ -98,6 +98,12 @@ GaussianMixtureFactor::Sum sumFrontals(
|
|||
} else if (f->isContinuous()) {
|
||||
deferredFactors.push_back(
|
||||
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
|
||||
|
||||
} else if (f->isDiscrete()) {
|
||||
// Don't do anything for discrete-only factors
|
||||
// since we want to eliminate continuous values only.
|
||||
continue;
|
||||
|
||||
} else {
|
||||
// We need to handle the case where the object is actually an
|
||||
// BayesTreeOrphanWrapper!
|
||||
|
@ -106,8 +112,8 @@ GaussianMixtureFactor::Sum sumFrontals(
|
|||
if (!orphan) {
|
||||
auto &fr = *f;
|
||||
throw std::invalid_argument(
|
||||
std::string("factor is discrete in continuous elimination") +
|
||||
typeid(fr).name());
|
||||
std::string("factor is discrete in continuous elimination ") +
|
||||
demangle(typeid(fr).name()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -129,9 +135,9 @@ continuousElimination(const HybridGaussianFactorGraph &factors,
|
|||
for (auto &fp : factors) {
|
||||
if (auto ptr = boost::dynamic_pointer_cast<HybridGaussianFactor>(fp)) {
|
||||
gfg.push_back(ptr->inner());
|
||||
} else if (auto p =
|
||||
boost::static_pointer_cast<HybridConditional>(fp)->inner()) {
|
||||
gfg.push_back(boost::static_pointer_cast<GaussianConditional>(p));
|
||||
} else if (auto ptr = boost::static_pointer_cast<HybridConditional>(fp)) {
|
||||
gfg.push_back(
|
||||
boost::static_pointer_cast<GaussianConditional>(ptr->inner()));
|
||||
} else {
|
||||
// It is an orphan wrapped conditional
|
||||
}
|
||||
|
@ -147,18 +153,20 @@ std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr>
|
|||
discreteElimination(const HybridGaussianFactorGraph &factors,
|
||||
const Ordering &frontalKeys) {
|
||||
DiscreteFactorGraph dfg;
|
||||
for (auto &fp : factors) {
|
||||
if (auto ptr = boost::dynamic_pointer_cast<HybridDiscreteFactor>(fp)) {
|
||||
dfg.push_back(ptr->inner());
|
||||
} else if (auto p =
|
||||
boost::static_pointer_cast<HybridConditional>(fp)->inner()) {
|
||||
dfg.push_back(boost::static_pointer_cast<DiscreteConditional>(p));
|
||||
|
||||
for (auto &factor : factors) {
|
||||
if (auto p = boost::dynamic_pointer_cast<HybridDiscreteFactor>(factor)) {
|
||||
dfg.push_back(p->inner());
|
||||
} else if (auto p = boost::static_pointer_cast<HybridConditional>(factor)) {
|
||||
auto discrete_conditional =
|
||||
boost::static_pointer_cast<DiscreteConditional>(p->inner());
|
||||
dfg.push_back(discrete_conditional);
|
||||
} else {
|
||||
// It is an orphan wrapper
|
||||
}
|
||||
}
|
||||
|
||||
auto result = EliminateDiscrete(dfg, frontalKeys);
|
||||
auto result = EliminateForMPE(dfg, frontalKeys);
|
||||
|
||||
return {boost::make_shared<HybridConditional>(result.first),
|
||||
boost::make_shared<HybridDiscreteFactor>(result.second)};
|
||||
|
@ -178,6 +186,19 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// sum out frontals, this is the factor on the separator
|
||||
GaussianMixtureFactor::Sum sum = sumFrontals(factors);
|
||||
|
||||
// If a tree leaf contains nullptr,
|
||||
// convert that leaf to an empty GaussianFactorGraph.
|
||||
// Needed since the DecisionTree will otherwise create
|
||||
// a GFG with a single (null) factor.
|
||||
auto emptyGaussian = [](const GaussianFactorGraph &gfg) {
|
||||
bool hasNull =
|
||||
std::any_of(gfg.begin(), gfg.end(),
|
||||
[](const GaussianFactor::shared_ptr &ptr) { return !ptr; });
|
||||
|
||||
return hasNull ? GaussianFactorGraph() : gfg;
|
||||
};
|
||||
sum = GaussianMixtureFactor::Sum(sum, emptyGaussian);
|
||||
|
||||
using EliminationPair = GaussianFactorGraph::EliminationResult;
|
||||
|
||||
KeyVector keysOfEliminated; // Not the ordering
|
||||
|
@ -189,7 +210,10 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
if (graph.empty()) {
|
||||
return {nullptr, nullptr};
|
||||
}
|
||||
auto result = EliminatePreferCholesky(graph, frontalKeys);
|
||||
std::pair<boost::shared_ptr<GaussianConditional>,
|
||||
boost::shared_ptr<GaussianFactor>>
|
||||
result = EliminatePreferCholesky(graph, frontalKeys);
|
||||
|
||||
if (keysOfEliminated.empty()) {
|
||||
keysOfEliminated =
|
||||
result.first->keys(); // Initialize the keysOfEliminated to be the
|
||||
|
@ -222,6 +246,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
return exp(-factor->error(empty_values));
|
||||
};
|
||||
DecisionTree<Key, double> fdt(separatorFactors, factorError);
|
||||
|
||||
auto discreteFactor =
|
||||
boost::make_shared<DecisionTreeFactor>(discreteSeparator, fdt);
|
||||
|
||||
|
@ -229,14 +254,27 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
boost::make_shared<HybridDiscreteFactor>(discreteFactor)};
|
||||
|
||||
} else {
|
||||
// Create a resulting DCGaussianMixture on the separator.
|
||||
// Create a resulting GaussianMixtureFactor on the separator.
|
||||
auto factor = boost::make_shared<GaussianMixtureFactor>(
|
||||
KeyVector(continuousSeparator.begin(), continuousSeparator.end()),
|
||||
discreteSeparator, separatorFactors);
|
||||
return {boost::make_shared<HybridConditional>(conditional), factor};
|
||||
}
|
||||
}
|
||||
/* ************************************************************************ */
|
||||
/* ************************************************************************
|
||||
* Function to eliminate variables **under the following assumptions**:
|
||||
* 1. When the ordering is fully continuous, and the graph only contains
|
||||
* continuous and hybrid factors
|
||||
* 2. When the ordering is fully discrete, and the graph only contains discrete
|
||||
* factors
|
||||
*
|
||||
* Any usage outside of this is considered incorrect.
|
||||
*
|
||||
* \warning This function is not meant to be used with arbitrary hybrid factor
|
||||
* graphs. For example, if there exists continuous parents, and one tries to
|
||||
* eliminate a discrete variable (as specified in the ordering), the result will
|
||||
* be INCORRECT and there will be NO error raised.
|
||||
*/
|
||||
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> //
|
||||
EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
||||
const Ordering &frontalKeys) {
|
||||
|
@ -366,4 +404,41 @@ void HybridGaussianFactorGraph::add(DecisionTreeFactor::shared_ptr factor) {
|
|||
FactorGraph::add(boost::make_shared<HybridDiscreteFactor>(factor));
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const KeySet HybridGaussianFactorGraph::getDiscreteKeys() const {
|
||||
KeySet discrete_keys;
|
||||
for (auto &factor : factors_) {
|
||||
for (const DiscreteKey &k : factor->discreteKeys()) {
|
||||
discrete_keys.insert(k.first);
|
||||
}
|
||||
}
|
||||
return discrete_keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const KeySet HybridGaussianFactorGraph::getContinuousKeys() const {
|
||||
KeySet keys;
|
||||
for (auto &factor : factors_) {
|
||||
for (const Key &key : factor->continuousKeys()) {
|
||||
keys.insert(key);
|
||||
}
|
||||
}
|
||||
return keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const Ordering HybridGaussianFactorGraph::getHybridOrdering() const {
|
||||
KeySet discrete_keys = getDiscreteKeys();
|
||||
for (auto &factor : factors_) {
|
||||
for (const DiscreteKey &k : factor->discreteKeys()) {
|
||||
discrete_keys.insert(k.first);
|
||||
}
|
||||
}
|
||||
|
||||
const VariableIndex index(factors_);
|
||||
Ordering ordering = Ordering::ColamdConstrainedLast(
|
||||
index, KeyVector(discrete_keys.begin(), discrete_keys.end()), true);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -19,9 +19,12 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/inference/EliminateableFactorGraph.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -53,10 +56,9 @@ struct EliminationTraits<HybridGaussianFactorGraph> {
|
|||
typedef HybridBayesNet
|
||||
BayesNetType; ///< Type of Bayes net from sequential elimination
|
||||
typedef HybridEliminationTree
|
||||
EliminationTreeType; ///< Type of elimination tree
|
||||
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
|
||||
typedef HybridJunctionTree
|
||||
JunctionTreeType; ///< Type of Junction tree
|
||||
EliminationTreeType; ///< Type of elimination tree
|
||||
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
|
||||
typedef HybridJunctionTree JunctionTreeType; ///< Type of Junction tree
|
||||
/// The default dense elimination function
|
||||
static std::pair<boost::shared_ptr<ConditionalType>,
|
||||
boost::shared_ptr<FactorType> >
|
||||
|
@ -72,10 +74,16 @@ struct EliminationTraits<HybridGaussianFactorGraph> {
|
|||
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridGaussianFactorGraph
|
||||
: public FactorGraph<HybridFactor>,
|
||||
: public HybridFactorGraph,
|
||||
public EliminateableFactorGraph<HybridGaussianFactorGraph> {
|
||||
protected:
|
||||
/// Check if FACTOR type is derived from GaussianFactor.
|
||||
template <typename FACTOR>
|
||||
using IsGaussian = typename std::enable_if<
|
||||
std::is_base_of<GaussianFactor, FACTOR>::value>::type;
|
||||
|
||||
public:
|
||||
using Base = FactorGraph<HybridFactor>;
|
||||
using Base = HybridFactorGraph;
|
||||
using This = HybridGaussianFactorGraph; ///< this class
|
||||
using BaseEliminateable =
|
||||
EliminateableFactorGraph<This>; ///< for elimination
|
||||
|
@ -100,7 +108,13 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
|
||||
/// @}
|
||||
|
||||
using FactorGraph::add;
|
||||
using Base::empty;
|
||||
using Base::reserve;
|
||||
using Base::size;
|
||||
using Base::operator[];
|
||||
using Base::add;
|
||||
using Base::push_back;
|
||||
using Base::resize;
|
||||
|
||||
/// Add a Jacobian factor to the factor graph.
|
||||
void add(JacobianFactor&& factor);
|
||||
|
@ -113,6 +127,53 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
|
||||
/// Add a DecisionTreeFactor as a shared ptr.
|
||||
void add(boost::shared_ptr<DecisionTreeFactor> factor);
|
||||
|
||||
/**
|
||||
* Add a gaussian factor *pointer* to the internal gaussian factor graph
|
||||
* @param gaussianFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsGaussian<FACTOR> push_gaussian(
|
||||
const boost::shared_ptr<FACTOR>& gaussianFactor) {
|
||||
Base::push_back(boost::make_shared<HybridGaussianFactor>(gaussianFactor));
|
||||
}
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsGaussian<FACTOR> emplace_gaussian(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_gaussian(factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||
* Dynamically handles the factor type and assigns it to the correct
|
||||
* underlying container.
|
||||
*
|
||||
* @param sharedFactor The factor to add to this factor graph.
|
||||
*/
|
||||
void push_back(const SharedFactor& sharedFactor) {
|
||||
if (auto p = boost::dynamic_pointer_cast<GaussianFactor>(sharedFactor)) {
|
||||
push_gaussian(p);
|
||||
} else {
|
||||
Base::push_back(sharedFactor);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get all the discrete keys in the factor graph.
|
||||
const KeySet getDiscreteKeys() const;
|
||||
|
||||
/// Get all the continuous keys in the factor graph.
|
||||
const KeySet getContinuousKeys() const;
|
||||
|
||||
/**
|
||||
* @brief Return a Colamd constrained ordering where the discrete keys are
|
||||
* eliminated after the continuous keys.
|
||||
*
|
||||
* @return const Ordering
|
||||
*/
|
||||
const Ordering getHybridOrdering() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -41,6 +41,7 @@ HybridGaussianISAM::HybridGaussianISAM(const HybridBayesTree& bayesTree)
|
|||
void HybridGaussianISAM::updateInternal(
|
||||
const HybridGaussianFactorGraph& newFactors,
|
||||
HybridBayesTree::Cliques* orphans,
|
||||
const boost::optional<Ordering>& ordering,
|
||||
const HybridBayesTree::Eliminate& function) {
|
||||
// Remove the contaminated part of the Bayes tree
|
||||
BayesNetType bn;
|
||||
|
@ -74,16 +75,21 @@ void HybridGaussianISAM::updateInternal(
|
|||
std::copy(allDiscrete.begin(), allDiscrete.end(),
|
||||
std::back_inserter(newKeysDiscreteLast));
|
||||
|
||||
// KeyVector new
|
||||
|
||||
// Get an ordering where the new keys are eliminated last
|
||||
const VariableIndex index(factors);
|
||||
const Ordering ordering = Ordering::ColamdConstrainedLast(
|
||||
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
|
||||
true);
|
||||
Ordering elimination_ordering;
|
||||
if (ordering) {
|
||||
elimination_ordering = *ordering;
|
||||
} else {
|
||||
elimination_ordering = Ordering::ColamdConstrainedLast(
|
||||
index,
|
||||
KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
|
||||
true);
|
||||
}
|
||||
|
||||
// eliminate all factors (top, added, orphans) into a new Bayes tree
|
||||
auto bayesTree = factors.eliminateMultifrontal(ordering, function, index);
|
||||
HybridBayesTree::shared_ptr bayesTree =
|
||||
factors.eliminateMultifrontal(elimination_ordering, function, index);
|
||||
|
||||
// Re-add into Bayes tree data structures
|
||||
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(),
|
||||
|
@ -93,9 +99,61 @@ void HybridGaussianISAM::updateInternal(
|
|||
|
||||
/* ************************************************************************* */
|
||||
void HybridGaussianISAM::update(const HybridGaussianFactorGraph& newFactors,
|
||||
const boost::optional<Ordering>& ordering,
|
||||
const HybridBayesTree::Eliminate& function) {
|
||||
Cliques orphans;
|
||||
this->updateInternal(newFactors, &orphans, function);
|
||||
this->updateInternal(newFactors, &orphans, ordering, function);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Check if `b` is a subset of `a`.
|
||||
* Non-const since they need to be sorted.
|
||||
*
|
||||
* @param a KeyVector
|
||||
* @param b KeyVector
|
||||
* @return True if the keys of b is a subset of a, else false.
|
||||
*/
|
||||
bool IsSubset(KeyVector a, KeyVector b) {
|
||||
std::sort(a.begin(), a.end());
|
||||
std::sort(b.begin(), b.end());
|
||||
return std::includes(a.begin(), a.end(), b.begin(), b.end());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridGaussianISAM::prune(const Key& root, const size_t maxNrLeaves) {
|
||||
auto decisionTree = boost::dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
this->clique(root)->conditional()->inner());
|
||||
DecisionTreeFactor prunedDiscreteFactor = decisionTree->prune(maxNrLeaves);
|
||||
decisionTree->root_ = prunedDiscreteFactor.root_;
|
||||
|
||||
std::vector<gtsam::Key> prunedKeys;
|
||||
for (auto&& clique : nodes()) {
|
||||
// The cliques can be repeated for each frontal so we record it in
|
||||
// prunedKeys and check if we have already pruned a particular clique.
|
||||
if (std::find(prunedKeys.begin(), prunedKeys.end(), clique.first) !=
|
||||
prunedKeys.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Add all the keys of the current clique to be pruned to prunedKeys
|
||||
for (auto&& key : clique.second->conditional()->frontals()) {
|
||||
prunedKeys.push_back(key);
|
||||
}
|
||||
|
||||
// Convert parents() to a KeyVector for comparison
|
||||
KeyVector parents;
|
||||
for (auto&& parent : clique.second->conditional()->parents()) {
|
||||
parents.push_back(parent);
|
||||
}
|
||||
|
||||
if (IsSubset(parents, decisionTree->keys())) {
|
||||
auto gaussianMixture = boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
clique.second->conditional()->inner());
|
||||
|
||||
gaussianMixture->prune(prunedDiscreteFactor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -48,6 +48,7 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
|
|||
void updateInternal(
|
||||
const HybridGaussianFactorGraph& newFactors,
|
||||
HybridBayesTree::Cliques* orphans,
|
||||
const boost::optional<Ordering>& ordering = boost::none,
|
||||
const HybridBayesTree::Eliminate& function =
|
||||
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
|
||||
|
||||
|
@ -59,8 +60,17 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
|
|||
* @param function Elimination function.
|
||||
*/
|
||||
void update(const HybridGaussianFactorGraph& newFactors,
|
||||
const boost::optional<Ordering>& ordering = boost::none,
|
||||
const HybridBayesTree::Eliminate& function =
|
||||
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @param root The root key in the discrete conditional decision tree.
|
||||
* @param maxNumberLeaves
|
||||
*/
|
||||
void prune(const Key& root, const size_t maxNumberLeaves);
|
||||
};
|
||||
|
||||
/// traits
|
||||
|
|
|
@ -31,9 +31,7 @@ template class EliminatableClusterTree<HybridBayesTree,
|
|||
template class JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>;
|
||||
|
||||
struct HybridConstructorTraversalData {
|
||||
typedef
|
||||
typename JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>::Node
|
||||
Node;
|
||||
typedef HybridJunctionTree::Node Node;
|
||||
typedef
|
||||
typename JunctionTree<HybridBayesTree,
|
||||
HybridGaussianFactorGraph>::sharedNode sharedNode;
|
||||
|
@ -62,6 +60,7 @@ struct HybridConstructorTraversalData {
|
|||
data.junctionTreeNode = boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.junctionTreeNode->addChild(data.junctionTreeNode);
|
||||
|
||||
// Add all the discrete keys in the hybrid factors to the current data
|
||||
for (HybridFactor::shared_ptr& f : node->factors) {
|
||||
for (auto& k : f->discreteKeys()) {
|
||||
data.discreteKeys.insert(k.first);
|
||||
|
@ -72,8 +71,8 @@ struct HybridConstructorTraversalData {
|
|||
}
|
||||
|
||||
// Post-order visitor function
|
||||
static void ConstructorTraversalVisitorPostAlg2(
|
||||
const boost::shared_ptr<HybridEliminationTree::Node>& ETreeNode,
|
||||
static void ConstructorTraversalVisitorPost(
|
||||
const boost::shared_ptr<HybridEliminationTree::Node>& node,
|
||||
const HybridConstructorTraversalData& data) {
|
||||
// In this post-order visitor, we combine the symbolic elimination results
|
||||
// from the elimination tree children and symbolically eliminate the current
|
||||
|
@ -86,15 +85,15 @@ struct HybridConstructorTraversalData {
|
|||
|
||||
// Do symbolic elimination for this node
|
||||
SymbolicFactors symbolicFactors;
|
||||
symbolicFactors.reserve(ETreeNode->factors.size() +
|
||||
symbolicFactors.reserve(node->factors.size() +
|
||||
data.childSymbolicFactors.size());
|
||||
// Add ETree node factors
|
||||
symbolicFactors += ETreeNode->factors;
|
||||
symbolicFactors += node->factors;
|
||||
// Add symbolic factors passed up from children
|
||||
symbolicFactors += data.childSymbolicFactors;
|
||||
|
||||
Ordering keyAsOrdering;
|
||||
keyAsOrdering.push_back(ETreeNode->key);
|
||||
keyAsOrdering.push_back(node->key);
|
||||
SymbolicConditional::shared_ptr conditional;
|
||||
SymbolicFactor::shared_ptr separatorFactor;
|
||||
boost::tie(conditional, separatorFactor) =
|
||||
|
@ -105,19 +104,19 @@ struct HybridConstructorTraversalData {
|
|||
data.parentData->childSymbolicFactors.push_back(separatorFactor);
|
||||
data.parentData->discreteKeys.merge(data.discreteKeys);
|
||||
|
||||
sharedNode node = data.junctionTreeNode;
|
||||
sharedNode jt_node = data.junctionTreeNode;
|
||||
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
|
||||
data.childSymbolicConditionals;
|
||||
node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
|
||||
jt_node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
|
||||
|
||||
// Merge our children if they are in our clique - if our conditional has
|
||||
// exactly one fewer parent than our child's conditional.
|
||||
const size_t nrParents = conditional->nrParents();
|
||||
const size_t nrChildren = node->nrChildren();
|
||||
const size_t nrChildren = jt_node->nrChildren();
|
||||
assert(childConditionals.size() == nrChildren);
|
||||
|
||||
// decide which children to merge, as index into children
|
||||
std::vector<size_t> nrChildrenFrontals = node->nrFrontalsOfChildren();
|
||||
std::vector<size_t> nrChildrenFrontals = jt_node->nrFrontalsOfChildren();
|
||||
std::vector<bool> merge(nrChildren, false);
|
||||
size_t nrFrontals = 1;
|
||||
for (size_t i = 0; i < nrChildren; i++) {
|
||||
|
@ -137,7 +136,7 @@ struct HybridConstructorTraversalData {
|
|||
}
|
||||
|
||||
// now really merge
|
||||
node->mergeChildren(merge);
|
||||
jt_node->mergeChildren(merge);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -161,7 +160,7 @@ HybridJunctionTree::HybridJunctionTree(
|
|||
// the junction tree roots
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
Data::ConstructorTraversalVisitorPre,
|
||||
Data::ConstructorTraversalVisitorPostAlg2);
|
||||
Data::ConstructorTraversalVisitorPost);
|
||||
|
||||
// Assign roots from the dummy node
|
||||
this->addChildrenAsRoots(rootData.junctionTreeNode);
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridNonlinearFactor.cpp
|
||||
* @date May 28, 2022
|
||||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridNonlinearFactor::HybridNonlinearFactor(
|
||||
const NonlinearFactor::shared_ptr &other)
|
||||
: Base(other->keys()), inner_(other) {}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool HybridNonlinearFactor::equals(const HybridFactor &lf, double tol) const {
|
||||
return Base::equals(lf, tol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridNonlinearFactor::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
HybridFactor::print(s, formatter);
|
||||
inner_->print("\n", formatter);
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,62 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridNonlinearFactor.h
|
||||
* @date May 28, 2022
|
||||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* A HybridNonlinearFactor is a layer over NonlinearFactor so that we do not
|
||||
* have a diamond inheritance.
|
||||
*/
|
||||
class HybridNonlinearFactor : public HybridFactor {
|
||||
private:
|
||||
NonlinearFactor::shared_ptr inner_;
|
||||
|
||||
public:
|
||||
using Base = HybridFactor;
|
||||
using This = HybridNonlinearFactor;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
|
||||
// Explicit conversion from a shared ptr of NonlinearFactor
|
||||
explicit HybridNonlinearFactor(const NonlinearFactor::shared_ptr &other);
|
||||
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// Check equality.
|
||||
virtual bool equals(const HybridFactor &lf, double tol) const override;
|
||||
|
||||
/// GTSAM print utility.
|
||||
void print(
|
||||
const std::string &s = "HybridNonlinearFactor\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
|
||||
/// @}
|
||||
|
||||
NonlinearFactor::shared_ptr inner() const { return inner_; }
|
||||
|
||||
/// Linearize to a HybridGaussianFactor at the linearization point `c`.
|
||||
boost::shared_ptr<HybridGaussianFactor> linearize(const Values &c) const {
|
||||
return boost::make_shared<HybridGaussianFactor>(inner_->linearize(c));
|
||||
}
|
||||
};
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,100 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridNonlinearFactorGraph.cpp
|
||||
* @brief Nonlinear hybrid factor graph that uses type erasure
|
||||
* @author Varun Agrawal
|
||||
* @date May 28, 2022
|
||||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridNonlinearFactorGraph::add(
|
||||
boost::shared_ptr<NonlinearFactor> factor) {
|
||||
FactorGraph::add(boost::make_shared<HybridNonlinearFactor>(factor));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridNonlinearFactorGraph::add(
|
||||
boost::shared_ptr<DiscreteFactor> factor) {
|
||||
FactorGraph::add(boost::make_shared<HybridDiscreteFactor>(factor));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridNonlinearFactorGraph::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
// Base::print(str, keyFormatter);
|
||||
std::cout << (s.empty() ? "" : s + " ") << std::endl;
|
||||
std::cout << "size: " << size() << std::endl;
|
||||
for (size_t i = 0; i < factors_.size(); i++) {
|
||||
std::stringstream ss;
|
||||
ss << "factor " << i << ": ";
|
||||
if (factors_[i]) {
|
||||
factors_[i]->print(ss.str(), keyFormatter);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridGaussianFactorGraph HybridNonlinearFactorGraph::linearize(
|
||||
const Values& continuousValues) const {
|
||||
// create an empty linear FG
|
||||
HybridGaussianFactorGraph linearFG;
|
||||
|
||||
linearFG.reserve(size());
|
||||
|
||||
// linearize all hybrid factors
|
||||
for (auto&& factor : factors_) {
|
||||
// First check if it is a valid factor
|
||||
if (factor) {
|
||||
// Check if the factor is a hybrid factor.
|
||||
// It can be either a nonlinear MixtureFactor or a linear
|
||||
// GaussianMixtureFactor.
|
||||
if (factor->isHybrid()) {
|
||||
// Check if it is a nonlinear mixture factor
|
||||
if (auto nlmf = boost::dynamic_pointer_cast<MixtureFactor>(factor)) {
|
||||
linearFG.push_back(nlmf->linearize(continuousValues));
|
||||
} else {
|
||||
linearFG.push_back(factor);
|
||||
}
|
||||
|
||||
// Now check if the factor is a continuous only factor.
|
||||
} else if (factor->isContinuous()) {
|
||||
// In this case, we check if factor->inner() is nonlinear since
|
||||
// HybridFactors wrap over continuous factors.
|
||||
auto nlhf = boost::dynamic_pointer_cast<HybridNonlinearFactor>(factor);
|
||||
if (auto nlf =
|
||||
boost::dynamic_pointer_cast<NonlinearFactor>(nlhf->inner())) {
|
||||
auto hgf = boost::make_shared<HybridGaussianFactor>(
|
||||
nlf->linearize(continuousValues));
|
||||
linearFG.push_back(hgf);
|
||||
} else {
|
||||
linearFG.push_back(factor);
|
||||
}
|
||||
// Finally if nothing else, we are discrete-only which doesn't need
|
||||
// lineariztion.
|
||||
} else {
|
||||
linearFG.push_back(factor);
|
||||
}
|
||||
|
||||
} else {
|
||||
linearFG.push_back(GaussianFactor::shared_ptr());
|
||||
}
|
||||
}
|
||||
return linearFG;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,137 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridNonlinearFactorGraph.h
|
||||
* @brief Nonlinear hybrid factor graph that uses type erasure
|
||||
* @author Varun Agrawal
|
||||
* @date May 28, 2022
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Nonlinear Hybrid Factor Graph
|
||||
* -----------------------
|
||||
* This is the non-linear version of a hybrid factor graph.
|
||||
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridNonlinearFactorGraph : public HybridFactorGraph {
|
||||
protected:
|
||||
/// Check if FACTOR type is derived from NonlinearFactor.
|
||||
template <typename FACTOR>
|
||||
using IsNonlinear = typename std::enable_if<
|
||||
std::is_base_of<NonlinearFactor, FACTOR>::value>::type;
|
||||
|
||||
public:
|
||||
using Base = HybridFactorGraph;
|
||||
using This = HybridNonlinearFactorGraph; ///< this class
|
||||
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
|
||||
|
||||
using Values = gtsam::Values; ///< backwards compatibility
|
||||
using Indices = KeyVector; ///> map from keys to values
|
||||
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
|
||||
HybridNonlinearFactorGraph() = default;
|
||||
|
||||
/**
|
||||
* Implicit copy/downcast constructor to override explicit template container
|
||||
* constructor. In BayesTree this is used for:
|
||||
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
|
||||
* */
|
||||
template <class DERIVEDFACTOR>
|
||||
HybridNonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
|
||||
: Base(graph) {}
|
||||
|
||||
/// @}
|
||||
|
||||
// Allow use of selected FactorGraph methods:
|
||||
using Base::empty;
|
||||
using Base::reserve;
|
||||
using Base::size;
|
||||
using Base::operator[];
|
||||
using Base::add;
|
||||
using Base::resize;
|
||||
|
||||
/**
|
||||
* Add a nonlinear factor *pointer* to the internal nonlinear factor graph
|
||||
* @param nonlinearFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsNonlinear<FACTOR> push_nonlinear(
|
||||
const boost::shared_ptr<FACTOR>& nonlinearFactor) {
|
||||
Base::push_back(boost::make_shared<HybridNonlinearFactor>(nonlinearFactor));
|
||||
}
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsNonlinear<FACTOR> emplace_nonlinear(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_nonlinear(factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||
* Dynamically handles the factor type and assigns it to the correct
|
||||
* underlying container.
|
||||
*
|
||||
* @tparam FACTOR The factor type template
|
||||
* @param sharedFactor The factor to add to this factor graph.
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
void push_back(const boost::shared_ptr<FACTOR>& sharedFactor) {
|
||||
if (auto p = boost::dynamic_pointer_cast<NonlinearFactor>(sharedFactor)) {
|
||||
push_nonlinear(p);
|
||||
} else {
|
||||
Base::push_back(sharedFactor);
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a nonlinear factor as a shared ptr.
|
||||
void add(boost::shared_ptr<NonlinearFactor> factor);
|
||||
|
||||
/// Add a discrete factor as a shared ptr.
|
||||
void add(boost::shared_ptr<DiscreteFactor> factor);
|
||||
|
||||
/// Print the factor graph.
|
||||
void print(
|
||||
const std::string& s = "HybridNonlinearFactorGraph",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
|
||||
|
||||
/**
|
||||
* @brief Linearize all the continuous factors in the
|
||||
* HybridNonlinearFactorGraph.
|
||||
*
|
||||
* @param continuousValues: Dictionary of continuous values.
|
||||
* @return HybridGaussianFactorGraph::shared_ptr
|
||||
*/
|
||||
HybridGaussianFactorGraph linearize(const Values& continuousValues) const;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct traits<HybridNonlinearFactorGraph>
|
||||
: public Testable<HybridNonlinearFactorGraph> {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,145 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridValues.h
|
||||
* @date Jul 28, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* HybridValues represents a collection of DiscreteValues and VectorValues.
|
||||
* It is typically used to store the variables of a HybridGaussianFactorGraph.
|
||||
* Optimizing a HybridGaussianBayesNet returns this class.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridValues {
|
||||
private:
|
||||
// DiscreteValue stored the discrete components of the HybridValues.
|
||||
DiscreteValues discrete_;
|
||||
|
||||
// VectorValue stored the continuous components of the HybridValues.
|
||||
VectorValues continuous_;
|
||||
|
||||
public:
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default constructor creates an empty HybridValues.
|
||||
HybridValues() = default;
|
||||
|
||||
/// Construct from DiscreteValues and VectorValues.
|
||||
HybridValues(const DiscreteValues& dv, const VectorValues& cv)
|
||||
: discrete_(dv), continuous_(cv){};
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// print required by Testable for unit testing
|
||||
void print(const std::string& s = "HybridValues",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << ": \n";
|
||||
discrete_.print(" Discrete", keyFormatter); // print discrete components
|
||||
continuous_.print(" Continuous",
|
||||
keyFormatter); // print continuous components
|
||||
};
|
||||
|
||||
/// equals required by Testable for unit testing
|
||||
bool equals(const HybridValues& other, double tol = 1e-9) const {
|
||||
return discrete_.equals(other.discrete_, tol) &&
|
||||
continuous_.equals(other.continuous_, tol);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Interface
|
||||
/// @{
|
||||
|
||||
/// Return the discrete MPE assignment
|
||||
DiscreteValues discrete() const { return discrete_; }
|
||||
|
||||
/// Return the delta update for the continuous vectors
|
||||
VectorValues continuous() const { return continuous_; }
|
||||
|
||||
/// Check whether a variable with key \c j exists in DiscreteValue.
|
||||
bool existsDiscrete(Key j) { return (discrete_.find(j) != discrete_.end()); };
|
||||
|
||||
/// Check whether a variable with key \c j exists in VectorValue.
|
||||
bool existsVector(Key j) { return continuous_.exists(j); };
|
||||
|
||||
/// Check whether a variable with key \c j exists.
|
||||
bool exists(Key j) { return existsDiscrete(j) || existsVector(j); };
|
||||
|
||||
/** Insert a discrete \c value with key \c j. Replaces the existing value if
|
||||
* the key \c j is already used.
|
||||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
void insert(Key j, int value) { discrete_[j] = value; };
|
||||
|
||||
/** Insert a vector \c value with key \c j. Throws an invalid_argument
|
||||
* exception if the key \c j is already used.
|
||||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
void insert(Key j, const Vector& value) { continuous_.insert(j, value); }
|
||||
|
||||
// TODO(Shangjie)- update() and insert_or_assign() , similar to Values.h
|
||||
|
||||
/**
|
||||
* Read/write access to the discrete value with key \c j, throws
|
||||
* std::out_of_range if \c j does not exist.
|
||||
*/
|
||||
size_t& atDiscrete(Key j) { return discrete_.at(j); };
|
||||
|
||||
/**
|
||||
* Read/write access to the vector value with key \c j, throws
|
||||
* std::out_of_range if \c j does not exist.
|
||||
*/
|
||||
Vector& at(Key j) { return continuous_.at(j); };
|
||||
|
||||
/// @name Wrapper support
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* @brief Output as a html table.
|
||||
*
|
||||
* @param keyFormatter function that formats keys.
|
||||
* @return string html output.
|
||||
*/
|
||||
std::string html(
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::stringstream ss;
|
||||
ss << this->discrete_.html(keyFormatter);
|
||||
ss << this->continuous_.html(keyFormatter);
|
||||
return ss.str();
|
||||
};
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<HybridValues> : public Testable<HybridValues> {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,256 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file MixtureFactor.h
|
||||
* @brief Nonlinear Mixture factor of continuous and discrete.
|
||||
* @author Kevin Doherty, kdoherty@mit.edu
|
||||
* @author Varun Agrawal
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/Symbol.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <boost/format.hpp>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Implementation of a discrete conditional mixture factor.
|
||||
*
|
||||
* Implements a joint discrete-continuous factor where the discrete variable
|
||||
* serves to "select" a mixture component corresponding to a NonlinearFactor
|
||||
* type of measurement.
|
||||
*
|
||||
* This class stores all factors as HybridFactors which can then be typecast to
|
||||
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
|
||||
* the correct operation.
|
||||
*/
|
||||
class MixtureFactor : public HybridFactor {
|
||||
public:
|
||||
using Base = HybridFactor;
|
||||
using This = MixtureFactor;
|
||||
using shared_ptr = boost::shared_ptr<MixtureFactor>;
|
||||
using sharedFactor = boost::shared_ptr<NonlinearFactor>;
|
||||
|
||||
/**
|
||||
* @brief typedef for DecisionTree which has Keys as node labels and
|
||||
* NonlinearFactor as leaf nodes.
|
||||
*/
|
||||
using Factors = DecisionTree<Key, sharedFactor>;
|
||||
|
||||
private:
|
||||
/// Decision tree of Gaussian factors indexed by discrete keys.
|
||||
Factors factors_;
|
||||
bool normalized_;
|
||||
|
||||
public:
|
||||
MixtureFactor() = default;
|
||||
|
||||
/**
|
||||
* @brief Construct from Decision tree.
|
||||
*
|
||||
* @param keys Vector of keys for continuous factors.
|
||||
* @param discreteKeys Vector of discrete keys.
|
||||
* @param factors Decision tree with of shared factors.
|
||||
* @param normalized Flag indicating if the factor error is already
|
||||
* normalized.
|
||||
*/
|
||||
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
|
||||
const Factors& factors, bool normalized = false)
|
||||
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
|
||||
|
||||
/**
|
||||
* @brief Convenience constructor that generates the underlying factor
|
||||
* decision tree for us.
|
||||
*
|
||||
* Here it is important that the vector of factors has the correct number of
|
||||
* elements based on the number of discrete keys and the cardinality of the
|
||||
* keys, so that the decision tree is constructed appropriately.
|
||||
*
|
||||
* @tparam FACTOR The type of the factor shared pointers being passed in. Will
|
||||
* be typecast to NonlinearFactor shared pointers.
|
||||
* @param keys Vector of keys for continuous factors.
|
||||
* @param discreteKeys Vector of discrete keys.
|
||||
* @param factors Vector of shared pointers to factors.
|
||||
* @param normalized Flag indicating if the factor error is already
|
||||
* normalized.
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
|
||||
const std::vector<boost::shared_ptr<FACTOR>>& factors,
|
||||
bool normalized = false)
|
||||
: Base(keys, discreteKeys), normalized_(normalized) {
|
||||
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
|
||||
KeySet continuous_keys_set(keys.begin(), keys.end());
|
||||
KeySet factor_keys_set;
|
||||
for (auto&& f : factors) {
|
||||
// Insert all factor continuous keys in the continuous keys set.
|
||||
std::copy(f->keys().begin(), f->keys().end(),
|
||||
std::inserter(factor_keys_set, factor_keys_set.end()));
|
||||
|
||||
nonlinear_factors.push_back(
|
||||
boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||
}
|
||||
factors_ = Factors(discreteKeys, nonlinear_factors);
|
||||
|
||||
if (continuous_keys_set != factor_keys_set) {
|
||||
throw std::runtime_error(
|
||||
"The specified continuous keys and the keys in the factors don't "
|
||||
"match!");
|
||||
}
|
||||
}
|
||||
|
||||
~MixtureFactor() = default;
|
||||
|
||||
/**
|
||||
* @brief Compute error of factor given both continuous and discrete values.
|
||||
*
|
||||
* @param continuousVals The continuous Values.
|
||||
* @param discreteVals The discrete Values.
|
||||
* @return double The error of this factor.
|
||||
*/
|
||||
double error(const Values& continuousVals,
|
||||
const DiscreteValues& discreteVals) const {
|
||||
// Retrieve the factor corresponding to the assignment in discreteVals.
|
||||
auto factor = factors_(discreteVals);
|
||||
// Compute the error for the selected factor
|
||||
const double factorError = factor->error(continuousVals);
|
||||
if (normalized_) return factorError;
|
||||
return factorError +
|
||||
this->nonlinearFactorLogNormalizingConstant(factor, continuousVals);
|
||||
}
|
||||
|
||||
size_t dim() const {
|
||||
// TODO(Varun)
|
||||
throw std::runtime_error("MixtureFactor::dim not implemented.");
|
||||
}
|
||||
|
||||
/// Testable
|
||||
/// @{
|
||||
|
||||
/// print to stdout
|
||||
void print(
|
||||
const std::string& s = "MixtureFactor",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||
std::cout << (s.empty() ? "" : s + " ");
|
||||
Base::print("", keyFormatter);
|
||||
std::cout << "\nMixtureFactor\n";
|
||||
auto valueFormatter = [](const sharedFactor& v) {
|
||||
if (v) {
|
||||
return (boost::format("Nonlinear factor on %d keys") % v->size()).str();
|
||||
} else {
|
||||
return std::string("nullptr");
|
||||
}
|
||||
};
|
||||
factors_.print("", keyFormatter, valueFormatter);
|
||||
}
|
||||
|
||||
/// Check equality
|
||||
bool equals(const HybridFactor& other, double tol = 1e-9) const override {
|
||||
// We attempt a dynamic cast from HybridFactor to MixtureFactor. If it
|
||||
// fails, return false.
|
||||
if (!dynamic_cast<const MixtureFactor*>(&other)) return false;
|
||||
|
||||
// If the cast is successful, we'll properly construct a MixtureFactor
|
||||
// object from `other`
|
||||
const MixtureFactor& f(static_cast<const MixtureFactor&>(other));
|
||||
|
||||
// Ensure that this MixtureFactor and `f` have the same `factors_`.
|
||||
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
|
||||
return traits<NonlinearFactor>::Equals(*a, *b, tol);
|
||||
};
|
||||
if (!factors_.equals(f.factors_, compare)) return false;
|
||||
|
||||
// If everything above passes, and the keys_, discreteKeys_ and normalized_
|
||||
// member variables are identical, return true.
|
||||
return (std::equal(keys_.begin(), keys_.end(), f.keys().begin()) &&
|
||||
(discreteKeys_ == f.discreteKeys_) &&
|
||||
(normalized_ == f.normalized_));
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
/// Linearize specific nonlinear factors based on the assignment in
|
||||
/// discreteValues.
|
||||
GaussianFactor::shared_ptr linearize(
|
||||
const Values& continuousVals, const DiscreteValues& discreteVals) const {
|
||||
auto factor = factors_(discreteVals);
|
||||
return factor->linearize(continuousVals);
|
||||
}
|
||||
|
||||
/// Linearize all the continuous factors to get a GaussianMixtureFactor.
|
||||
boost::shared_ptr<GaussianMixtureFactor> linearize(
|
||||
const Values& continuousVals) const {
|
||||
// functional to linearize each factor in the decision tree
|
||||
auto linearizeDT = [continuousVals](const sharedFactor& factor) {
|
||||
return factor->linearize(continuousVals);
|
||||
};
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
|
||||
factors_, linearizeDT);
|
||||
|
||||
return boost::make_shared<GaussianMixtureFactor>(
|
||||
continuousKeys_, discreteKeys_, linearized_factors);
|
||||
}
|
||||
|
||||
/**
|
||||
* If the component factors are not already normalized, we want to compute
|
||||
* their normalizing constants so that the resulting joint distribution is
|
||||
* appropriately computed. Remember, this is the _negative_ normalizing
|
||||
* constant for the measurement likelihood (since we are minimizing the
|
||||
* _negative_ log-likelihood).
|
||||
*/
|
||||
double nonlinearFactorLogNormalizingConstant(const sharedFactor& factor,
|
||||
const Values& values) const {
|
||||
// Information matrix (inverse covariance matrix) for the factor.
|
||||
Matrix infoMat;
|
||||
|
||||
// If this is a NoiseModelFactor, we'll use its noiseModel to
|
||||
// otherwise noiseModelFactor will be nullptr
|
||||
if (auto noiseModelFactor =
|
||||
boost::dynamic_pointer_cast<NoiseModelFactor>(factor)) {
|
||||
// If dynamic cast to NoiseModelFactor succeeded, see if the noise model
|
||||
// is Gaussian
|
||||
auto noiseModel = noiseModelFactor->noiseModel();
|
||||
|
||||
auto gaussianNoiseModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Gaussian>(noiseModel);
|
||||
if (gaussianNoiseModel) {
|
||||
// If the noise model is Gaussian, retrieve the information matrix
|
||||
infoMat = gaussianNoiseModel->information();
|
||||
} else {
|
||||
// If the factor is not a Gaussian factor, we'll linearize it to get
|
||||
// something with a normalized noise model
|
||||
// TODO(kevin): does this make sense to do? I think maybe not in
|
||||
// general? Should we just yell at the user?
|
||||
auto gaussianFactor = factor->linearize(values);
|
||||
infoMat = gaussianFactor->information();
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the (negative) log of the normalizing constant
|
||||
return -(factor->dim() * log(2.0 * M_PI) / 2.0) -
|
||||
(log(infoMat.determinant()) / 2.0);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
|
@ -4,6 +4,22 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
class HybridValues {
|
||||
gtsam::DiscreteValues discrete() const;
|
||||
gtsam::VectorValues continuous() const;
|
||||
HybridValues();
|
||||
HybridValues(const gtsam::DiscreteValues &dv, const gtsam::VectorValues &cv);
|
||||
void print(string s = "HybridValues",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
bool equals(const gtsam::HybridValues& other, double tol) const;
|
||||
void insert(gtsam::Key j, int value);
|
||||
void insert(gtsam::Key j, const gtsam::Vector& value);
|
||||
size_t& atDiscrete(gtsam::Key j);
|
||||
gtsam::Vector& at(gtsam::Key j);
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
virtual class HybridFactor {
|
||||
void print(string s = "HybridFactor\n",
|
||||
|
@ -23,7 +39,17 @@ virtual class HybridConditional {
|
|||
bool equals(const gtsam::HybridConditional& other, double tol = 1e-9) const;
|
||||
size_t nrFrontals() const;
|
||||
size_t nrParents() const;
|
||||
Factor* inner();
|
||||
gtsam::Factor* inner();
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/HybridDiscreteFactor.h>
|
||||
virtual class HybridDiscreteFactor {
|
||||
HybridDiscreteFactor(gtsam::DecisionTreeFactor dtf);
|
||||
void print(string s = "HybridDiscreteFactor\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
bool equals(const gtsam::HybridDiscreteFactor& other, double tol = 1e-9) const;
|
||||
gtsam::Factor* inner();
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
|
@ -73,6 +99,8 @@ class HybridBayesTree {
|
|||
bool empty() const;
|
||||
const HybridBayesTreeClique* operator[](size_t j) const;
|
||||
|
||||
gtsam::HybridValues optimize() const;
|
||||
|
||||
string dot(const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
@ -84,6 +112,7 @@ class HybridBayesNet {
|
|||
size_t size() const;
|
||||
gtsam::KeySet keys() const;
|
||||
const gtsam::HybridConditional* at(size_t i) const;
|
||||
gtsam::HybridValues optimize() const;
|
||||
void print(string s = "HybridBayesNet\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
|
@ -115,6 +144,7 @@ class HybridGaussianFactorGraph {
|
|||
void add(gtsam::JacobianFactor* factor);
|
||||
|
||||
bool empty() const;
|
||||
void remove(size_t i);
|
||||
size_t size() const;
|
||||
gtsam::KeySet keys() const;
|
||||
const gtsam::HybridFactor* at(size_t i) const;
|
||||
|
@ -142,4 +172,50 @@ class HybridGaussianFactorGraph {
|
|||
const gtsam::DotWriter& writer = gtsam::DotWriter()) const;
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
class HybridNonlinearFactorGraph {
|
||||
HybridNonlinearFactorGraph();
|
||||
HybridNonlinearFactorGraph(const gtsam::HybridNonlinearFactorGraph& graph);
|
||||
void push_back(gtsam::HybridFactor* factor);
|
||||
void push_back(gtsam::NonlinearFactor* factor);
|
||||
void push_back(gtsam::HybridDiscreteFactor* factor);
|
||||
void add(gtsam::NonlinearFactor* factor);
|
||||
void add(gtsam::DiscreteFactor* factor);
|
||||
gtsam::HybridGaussianFactorGraph linearize(const gtsam::Values& continuousValues) const;
|
||||
|
||||
bool empty() const;
|
||||
void remove(size_t i);
|
||||
size_t size() const;
|
||||
gtsam::KeySet keys() const;
|
||||
const gtsam::HybridFactor* at(size_t i) const;
|
||||
|
||||
void print(string s = "HybridNonlinearFactorGraph\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
class MixtureFactor : gtsam::HybridFactor {
|
||||
MixtureFactor(const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
|
||||
const gtsam::DecisionTree<gtsam::Key, gtsam::NonlinearFactor*>& factors, bool normalized = false);
|
||||
|
||||
template <FACTOR = {gtsam::NonlinearFactor}>
|
||||
MixtureFactor(const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
|
||||
const std::vector<FACTOR*>& factors,
|
||||
bool normalized = false);
|
||||
|
||||
double error(const gtsam::Values& continuousVals,
|
||||
const gtsam::DiscreteValues& discreteVals) const;
|
||||
|
||||
double nonlinearFactorLogNormalizingConstant(const gtsam::NonlinearFactor* factor,
|
||||
const gtsam::Values& values) const;
|
||||
|
||||
GaussianMixtureFactor* linearize(
|
||||
const gtsam::Values& continuousVals) const;
|
||||
|
||||
void print(string s = "MixtureFactor\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,20 +18,39 @@
|
|||
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#pragma once
|
||||
|
||||
using gtsam::symbol_shorthand::C;
|
||||
using gtsam::symbol_shorthand::X;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using symbol_shorthand::C;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/**
|
||||
* @brief Create a switching system chain. A switching system is a continuous
|
||||
* system which depends on a discrete mode at each time step of the chain.
|
||||
*
|
||||
* @param n The number of chain elements.
|
||||
* @param keyFunc The functional to help specify the continuous key.
|
||||
* @param dKeyFunc The functional to help specify the discrete key.
|
||||
* @return HybridGaussianFactorGraph::shared_ptr
|
||||
*/
|
||||
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
||||
size_t n, std::function<Key(int)> keyFunc = X,
|
||||
std::function<Key(int)> dKeyFunc = C) {
|
||||
std::function<Key(int)> dKeyFunc = M) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
hfg.add(JacobianFactor(keyFunc(1), I_3x3, Z_3x1));
|
||||
|
@ -54,9 +73,19 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
|||
return boost::make_shared<HybridGaussianFactorGraph>(std::move(hfg));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the ordering as a binary tree such that all parent nodes are
|
||||
* above their children.
|
||||
*
|
||||
* This will result in a nested dissection Bayes tree after elimination.
|
||||
*
|
||||
* @param input The original ordering.
|
||||
* @return std::pair<KeyVector, std::vector<int>>
|
||||
*/
|
||||
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
||||
std::vector<Key> &input) {
|
||||
KeyVector new_order;
|
||||
|
||||
std::vector<int> levels(input.size());
|
||||
std::function<void(std::vector<Key>::iterator, std::vector<Key>::iterator,
|
||||
int)>
|
||||
|
@ -79,8 +108,101 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
|||
|
||||
bsg(input.begin(), input.end(), 0);
|
||||
std::reverse(new_order.begin(), new_order.end());
|
||||
// std::reverse(levels.begin(), levels.end());
|
||||
|
||||
return {new_order, levels};
|
||||
}
|
||||
|
||||
/* ***************************************************************************
|
||||
*/
|
||||
using MotionModel = BetweenFactor<double>;
|
||||
// using MotionMixture = MixtureFactor<MotionModel>;
|
||||
|
||||
// Test fixture with switching network.
|
||||
struct Switching {
|
||||
size_t K;
|
||||
DiscreteKeys modes;
|
||||
HybridNonlinearFactorGraph nonlinearFactorGraph;
|
||||
HybridGaussianFactorGraph linearizedFactorGraph;
|
||||
Values linearizationPoint;
|
||||
|
||||
/// Create with given number of time steps.
|
||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
||||
: K(K) {
|
||||
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
||||
for (size_t k = 0; k <= K; k++) {
|
||||
modes.emplace_back(M(k), 2);
|
||||
}
|
||||
|
||||
// Create hybrid factor graph.
|
||||
// Add a prior on X(1).
|
||||
auto prior = boost::make_shared<PriorFactor<double>>(
|
||||
X(1), 0, noiseModel::Isotropic::Sigma(1, prior_sigma));
|
||||
nonlinearFactorGraph.push_nonlinear(prior);
|
||||
|
||||
// Add "motion models".
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
KeyVector keys = {X(k), X(k + 1)};
|
||||
auto motion_models = motionModels(k, between_sigma);
|
||||
std::vector<NonlinearFactor::shared_ptr> components;
|
||||
for (auto &&f : motion_models) {
|
||||
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||
}
|
||||
nonlinearFactorGraph.emplace_hybrid<MixtureFactor>(
|
||||
keys, DiscreteKeys{modes[k]}, components);
|
||||
}
|
||||
|
||||
// Add measurement factors
|
||||
auto measurement_noise = noiseModel::Isotropic::Sigma(1, prior_sigma);
|
||||
for (size_t k = 2; k <= K; k++) {
|
||||
nonlinearFactorGraph.emplace_nonlinear<PriorFactor<double>>(
|
||||
X(k), 1.0 * (k - 1), measurement_noise);
|
||||
}
|
||||
|
||||
// Add "mode chain"
|
||||
addModeChain(&nonlinearFactorGraph);
|
||||
|
||||
// Create the linearization point.
|
||||
for (size_t k = 1; k <= K; k++) {
|
||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
||||
}
|
||||
|
||||
linearizedFactorGraph = nonlinearFactorGraph.linearize(linearizationPoint);
|
||||
}
|
||||
|
||||
// Create motion models for a given time step
|
||||
static std::vector<MotionModel::shared_ptr> motionModels(size_t k,
|
||||
double sigma = 1.0) {
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
auto still =
|
||||
boost::make_shared<MotionModel>(X(k), X(k + 1), 0.0, noise_model),
|
||||
moving =
|
||||
boost::make_shared<MotionModel>(X(k), X(k + 1), 1.0, noise_model);
|
||||
return {still, moving};
|
||||
}
|
||||
|
||||
// Add "mode chain" to HybridNonlinearFactorGraph
|
||||
void addModeChain(HybridNonlinearFactorGraph *fg) {
|
||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||
fg->push_discrete(prior);
|
||||
for (size_t k = 1; k < K - 1; k++) {
|
||||
auto parents = {modes[k]};
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
modes[k + 1], parents, "1/2 3/2");
|
||||
fg->push_discrete(conditional);
|
||||
}
|
||||
}
|
||||
|
||||
// Add "mode chain" to HybridGaussianFactorGraph
|
||||
void addModeChain(HybridGaussianFactorGraph *fg) {
|
||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||
fg->push_discrete(prior);
|
||||
for (size_t k = 1; k < K - 1; k++) {
|
||||
auto parents = {modes[k]};
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
modes[k + 1], parents, "1/2 3/2");
|
||||
fg->push_discrete(conditional);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include <CppUnitLite/Test.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
|
@ -30,6 +31,7 @@
|
|||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/inference/DotWriter.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
@ -52,32 +54,36 @@ using namespace boost::assign;
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
using gtsam::symbol_shorthand::C;
|
||||
using gtsam::symbol_shorthand::D;
|
||||
using gtsam::symbol_shorthand::M;
|
||||
using gtsam::symbol_shorthand::X;
|
||||
using gtsam::symbol_shorthand::Y;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, creation) {
|
||||
HybridConditional test;
|
||||
TEST(HybridGaussianFactorGraph, Creation) {
|
||||
HybridConditional conditional;
|
||||
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(X(0), I_3x3, Z_3x1)));
|
||||
|
||||
GaussianMixture clgc(
|
||||
{X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{C(0), 2}),
|
||||
GaussianMixture::Conditionals(
|
||||
C(0),
|
||||
boost::make_shared<GaussianConditional>(X(0), Z_3x1, I_3x3, X(1),
|
||||
I_3x3),
|
||||
boost::make_shared<GaussianConditional>(X(0), Vector3::Ones(), I_3x3,
|
||||
X(1), I_3x3)));
|
||||
GTSAM_PRINT(clgc);
|
||||
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
|
||||
// graph
|
||||
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
|
||||
GaussianMixture::Conditionals(
|
||||
M(0),
|
||||
boost::make_shared<GaussianConditional>(
|
||||
X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
||||
boost::make_shared<GaussianConditional>(
|
||||
X(0), Vector3::Ones(), I_3x3, X(1), I_3x3)));
|
||||
hfg.add(gm);
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, hfg.size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminate) {
|
||||
TEST(HybridGaussianFactorGraph, EliminateSequential) {
|
||||
// Test elimination of a single variable.
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
|
||||
|
@ -88,13 +94,15 @@ TEST(HybridGaussianFactorGraph, eliminate) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminateMultifrontal) {
|
||||
TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
|
||||
// Test multifrontal elimination
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c(C(1), 2);
|
||||
DiscreteKey m(M(1), 2);
|
||||
|
||||
// Add priors on x0 and c1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
|
||||
|
||||
Ordering ordering;
|
||||
ordering.push_back(X(0));
|
||||
|
@ -108,117 +116,111 @@ TEST(HybridGaussianFactorGraph, eliminateMultifrontal) {
|
|||
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
// Add prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Add factor between x0 and x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// Add a gaussian mixture factor ϕ(x1, c1)
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
|
||||
|
||||
auto result =
|
||||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
|
||||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {M(1)}));
|
||||
|
||||
auto dc = result->at(2)->asDiscreteConditional();
|
||||
DiscreteValues dv;
|
||||
dv[C(1)] = 0;
|
||||
EXPECT_DOUBLES_EQUAL(0.6225, dc->operator()(dv), 1e-3);
|
||||
dv[M(1)] = 0;
|
||||
EXPECT_DOUBLES_EQUAL(1, dc->operator()(dv), 1e-3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
// Add prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Add factor between x0 and x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
std::vector<GaussianFactor::shared_ptr> factors = {
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, factors));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
// hfg.add(GaussianMixtureFactor({X(0)}, {c1}, dt));
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c1, {2, 8})));
|
||||
hfg.add(HybridDiscreteFactor(
|
||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(2), 2}, {C(3), 2}}, "1
|
||||
// 2 3 4"))); hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(3), 2},
|
||||
// {C(1), 2}}, "1 2 2 1")));
|
||||
// Discrete probability table for c1
|
||||
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||
// Joint discrete probability table for c1, c2
|
||||
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
|
||||
auto result = hfg.eliminateSequential(
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
||||
HybridBayesNet::shared_ptr result = hfg.eliminateSequential(
|
||||
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
|
||||
|
||||
GTSAM_PRINT(*result);
|
||||
// There are 4 variables (2 continuous + 2 discrete) in the bayes net.
|
||||
EXPECT_LONGS_EQUAL(4, result->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
// C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
// boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
// hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||
{X(1)}, {{C(1), 2}},
|
||||
{X(1)}, {{M(1), 2}},
|
||||
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
||||
|
||||
// hfg.add(GaussianMixtureFactor({X(0)}, {c1}, dt));
|
||||
hfg.add(DecisionTreeFactor(c1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4"));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(2), 2}, {C(3), 2}}, "1
|
||||
// 2 3 4"))); hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(3), 2},
|
||||
// {C(1), 2}}, "1 2 2 1")));
|
||||
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
|
||||
auto result = hfg.eliminateMultifrontal(
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
||||
HybridBayesTree::shared_ptr result =
|
||||
hfg.eliminateMultifrontal(hfg.getHybridOrdering());
|
||||
|
||||
GTSAM_PRINT(*result);
|
||||
GTSAM_PRINT(*result->marginalFactor(C(2)));
|
||||
// The bayes tree should have 3 cliques
|
||||
EXPECT_LONGS_EQUAL(3, result->size());
|
||||
// GTSAM_PRINT(*result);
|
||||
// GTSAM_PRINT(*result->marginalFactor(M(2)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c(C(1), 2);
|
||||
DiscreteKey m(M(1), 2);
|
||||
|
||||
// Prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Factor between x0-x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// Decision tree with different modes on x1
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c}, dt));
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1
|
||||
// 2 3 4")));
|
||||
// Hybrid factor P(x1|c1)
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {m}, dt));
|
||||
// Prior factor on c1
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
|
||||
|
||||
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {C(1)});
|
||||
// Get a constrained ordering keeping c1 last
|
||||
auto ordering_full = hfg.getHybridOrdering();
|
||||
|
||||
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
||||
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
||||
|
||||
GTSAM_PRINT(*hbt);
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
*/
|
||||
EXPECT_LONGS_EQUAL(3, hbt->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -233,66 +235,72 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
|||
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
|
||||
|
||||
{
|
||||
// DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
// C(0), boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
||||
// boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||
{X(0)}, {{C(0), 2}},
|
||||
{X(0)}, {{M(0), 2}},
|
||||
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
|
||||
M(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(2)}, {{C(1), 2}}, dt1));
|
||||
hfg.add(GaussianMixtureFactor({X(2)}, {{M(1), 2}}, dt1));
|
||||
}
|
||||
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
hfg.add(HybridDiscreteFactor(
|
||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
||||
DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4")));
|
||||
|
||||
hfg.add(JacobianFactor(X(3), I_3x3, X(4), -I_3x3, Z_3x1));
|
||||
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
|
||||
|
||||
{
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
|
||||
M(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(3)}, {{C(3), 2}}, dt));
|
||||
hfg.add(GaussianMixtureFactor({X(3)}, {{M(3), 2}}, dt));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
||||
C(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
|
||||
M(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(5)}, {{C(2), 2}}, dt1));
|
||||
hfg.add(GaussianMixtureFactor({X(5)}, {{M(2), 2}}, dt1));
|
||||
}
|
||||
|
||||
auto ordering_full =
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(0), C(1), C(2), C(3)});
|
||||
|
||||
GTSAM_PRINT(ordering_full);
|
||||
Ordering::ColamdConstrainedLast(hfg, {M(0), M(1), M(2), M(3)});
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
GTSAM_PRINT(*hbt);
|
||||
// 9 cliques in the bayes tree and 0 remaining variables to eliminate.
|
||||
EXPECT_LONGS_EQUAL(9, hbt->size());
|
||||
EXPECT_LONGS_EQUAL(0, remaining->size());
|
||||
|
||||
GTSAM_PRINT(*remaining);
|
||||
|
||||
hbt->dot(std::cout);
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
|
||||
marginal on X(1), which is not possible because it involves eliminating
|
||||
discrete before continuous. The solution to this, however, is in Murphy02.
|
||||
TLDR is that this is 1. expensive and 2. inexact. nevertheless it is doable.
|
||||
And I believe that we should do this.
|
||||
*/
|
||||
}
|
||||
|
||||
void dotPrint(const HybridGaussianFactorGraph::shared_ptr &hfg,
|
||||
const HybridBayesTree::shared_ptr &hbt,
|
||||
const Ordering &ordering) {
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering)->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// TODO(fan): make a graph like Varun's paper one
|
||||
TEST(HybridGaussianFactorGraph, Switching) {
|
||||
|
@ -303,13 +311,13 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
|||
// X(3), X(7)
|
||||
// X(2), X(8)
|
||||
// X(1), X(4), X(6), X(9)
|
||||
// C(5) will be the center, C(1-4), C(6-8)
|
||||
// C(3), C(7)
|
||||
// C(1), C(4), C(2), C(6), C(8)
|
||||
// M(5) will be the center, M(1-4), M(6-8)
|
||||
// M(3), M(7)
|
||||
// M(1), M(4), M(2), M(6), M(8)
|
||||
// auto ordering_full =
|
||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||
// X(5),
|
||||
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
|
||||
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
||||
KeyVector ordering;
|
||||
|
||||
{
|
||||
|
@ -326,79 +334,32 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
|||
for (auto &l : lvls) {
|
||||
l = -l;
|
||||
}
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
std::cout << "\n";
|
||||
}
|
||||
{
|
||||
std::vector<int> naturalC(N - 1);
|
||||
std::iota(naturalC.begin(), naturalC.end(), 1);
|
||||
std::vector<Key> ordC;
|
||||
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
||||
[](int x) { return C(x); });
|
||||
[](int x) { return M(x); });
|
||||
KeyVector ndC;
|
||||
std::vector<int> lvls;
|
||||
|
||||
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
||||
std::tie(ndC, lvls) = makeBinaryOrdering(ordC);
|
||||
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
}
|
||||
auto ordering_full = Ordering(ordering);
|
||||
|
||||
// auto ordering_full =
|
||||
// Ordering();
|
||||
|
||||
// for (int i = 1; i <= 9; i++) {
|
||||
// ordering_full.push_back(X(i));
|
||||
// }
|
||||
|
||||
// for (int i = 1; i < 9; i++) {
|
||||
// ordering_full.push_back(C(i));
|
||||
// }
|
||||
|
||||
// auto ordering_full =
|
||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||
// X(5),
|
||||
// C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8)});
|
||||
|
||||
// GTSAM_PRINT(*hfg);
|
||||
GTSAM_PRINT(ordering_full);
|
||||
// GTSAM_PRINT(ordering_full);
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
// GTSAM_PRINT(*hbt);
|
||||
|
||||
// GTSAM_PRINT(*remaining);
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
}
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
// dw.positionHints['c'] = 2;
|
||||
// dw.positionHints['x'] = 1;
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering_full)
|
||||
->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
*/
|
||||
hbt->marginalFactor(C(11))->print("HBT: ");
|
||||
// 12 cliques in the bayes tree and 0 remaining variables to eliminate.
|
||||
EXPECT_LONGS_EQUAL(12, hbt->size());
|
||||
EXPECT_LONGS_EQUAL(0, remaining->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -411,13 +372,13 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|||
// X(3), X(7)
|
||||
// X(2), X(8)
|
||||
// X(1), X(4), X(6), X(9)
|
||||
// C(5) will be the center, C(1-4), C(6-8)
|
||||
// C(3), C(7)
|
||||
// C(1), C(4), C(2), C(6), C(8)
|
||||
// M(5) will be the center, M(1-4), M(6-8)
|
||||
// M(3), M(7)
|
||||
// M(1), M(4), M(2), M(6), M(8)
|
||||
// auto ordering_full =
|
||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||
// X(5),
|
||||
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
|
||||
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
||||
KeyVector ordering;
|
||||
|
||||
{
|
||||
|
@ -434,67 +395,37 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|||
for (auto &l : lvls) {
|
||||
l = -l;
|
||||
}
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
std::cout << "\n";
|
||||
}
|
||||
{
|
||||
std::vector<int> naturalC(N - 1);
|
||||
std::iota(naturalC.begin(), naturalC.end(), 1);
|
||||
std::vector<Key> ordC;
|
||||
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
||||
[](int x) { return C(x); });
|
||||
[](int x) { return M(x); });
|
||||
KeyVector ndC;
|
||||
std::vector<int> lvls;
|
||||
|
||||
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
||||
std::tie(ndC, lvls) = makeBinaryOrdering(ordC);
|
||||
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
}
|
||||
auto ordering_full = Ordering(ordering);
|
||||
|
||||
// GTSAM_PRINT(*hfg);
|
||||
GTSAM_PRINT(ordering_full);
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
// GTSAM_PRINT(*hbt);
|
||||
|
||||
// GTSAM_PRINT(*remaining);
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
}
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
// dw.positionHints['c'] = 2;
|
||||
// dw.positionHints['x'] = 1;
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering_full)
|
||||
->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
|
||||
auto new_fg = makeSwitchingChain(12);
|
||||
auto isam = HybridGaussianISAM(*hbt);
|
||||
|
||||
{
|
||||
HybridGaussianFactorGraph factorGraph;
|
||||
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
||||
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
||||
isam.update(factorGraph);
|
||||
std::cout << isam.dot();
|
||||
isam.marginalFactor(C(11))->print();
|
||||
}
|
||||
// Run an ISAM update.
|
||||
HybridGaussianFactorGraph factorGraph;
|
||||
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
||||
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
||||
isam.update(factorGraph);
|
||||
|
||||
// ISAM should have 12 factors after the last update
|
||||
EXPECT_LONGS_EQUAL(12, isam.size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -517,23 +448,8 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
ordX.emplace_back(Y(i));
|
||||
}
|
||||
|
||||
// {
|
||||
// KeyVector ndX;
|
||||
// std::vector<int> lvls;
|
||||
// std::tie(ndX, lvls) = makeBinaryOrdering(naturalX);
|
||||
// std::copy(ndX.begin(), ndX.end(), std::back_inserter(ordering));
|
||||
// std::copy(lvls.begin(), lvls.end(),
|
||||
// std::ostream_iterator<int>(std::cout, ","));
|
||||
// std::cout << "\n";
|
||||
|
||||
// for (size_t i = 0; i < N; i++) {
|
||||
// ordX.emplace_back(X(ndX[i]));
|
||||
// ordX.emplace_back(Y(ndX[i]));
|
||||
// }
|
||||
// }
|
||||
|
||||
for (size_t i = 1; i <= N - 1; i++) {
|
||||
ordX.emplace_back(C(i));
|
||||
ordX.emplace_back(M(i));
|
||||
}
|
||||
for (size_t i = 1; i <= N - 1; i++) {
|
||||
ordX.emplace_back(D(i));
|
||||
|
@ -545,8 +461,8 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
dw.positionHints['c'] = 0;
|
||||
dw.positionHints['d'] = 3;
|
||||
dw.positionHints['y'] = 2;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
// std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
// std::cout << "\n";
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -555,10 +471,10 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
// dw.positionHints['c'] = 0;
|
||||
// dw.positionHints['d'] = 3;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << "\n";
|
||||
// std::cout << "\n";
|
||||
// std::cout << hfg->eliminateSequential(Ordering(ordX))
|
||||
// ->dot(DefaultKeyFormatter, dw);
|
||||
hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
|
||||
// hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
|
||||
}
|
||||
|
||||
Ordering ordering_partial;
|
||||
|
@ -566,25 +482,45 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
ordering_partial.emplace_back(X(i));
|
||||
ordering_partial.emplace_back(Y(i));
|
||||
}
|
||||
{
|
||||
HybridBayesNet::shared_ptr hbn;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbn, remaining) =
|
||||
hfg->eliminatePartialSequential(ordering_partial);
|
||||
HybridBayesNet::shared_ptr hbn;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbn, remaining) = hfg->eliminatePartialSequential(ordering_partial);
|
||||
|
||||
// remaining->print();
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['x'] = 1;
|
||||
dw.positionHints['c'] = 0;
|
||||
dw.positionHints['d'] = 3;
|
||||
dw.positionHints['y'] = 2;
|
||||
std::cout << remaining->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
}
|
||||
EXPECT_LONGS_EQUAL(14, hbn->size());
|
||||
EXPECT_LONGS_EQUAL(11, remaining->size());
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['x'] = 1;
|
||||
dw.positionHints['c'] = 0;
|
||||
dw.positionHints['d'] = 3;
|
||||
dw.positionHints['y'] = 2;
|
||||
// std::cout << remaining->dot(DefaultKeyFormatter, dw);
|
||||
// std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(HybridGaussianFactorGraph, optimize) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
|
||||
auto result =
|
||||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
|
||||
|
||||
HybridValues hv = result->optimize();
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -74,7 +74,7 @@ TEST(GaussianMixtureFactor, Sum) {
|
|||
// Check that number of keys is 3
|
||||
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
|
||||
|
||||
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
|
||||
// Check that number of discrete keys is 1
|
||||
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
|
||||
|
||||
// Create sum of two mixture factors: it will be a decision tree now on both
|
||||
|
@ -104,7 +104,7 @@ TEST(GaussianMixtureFactor, Printing) {
|
|||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
|
||||
std::string expected =
|
||||
R"(Hybrid x1 x2; 1 ]{
|
||||
R"(Hybrid [x1 x2; 1]{
|
||||
Choice(1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
|
|
|
@ -0,0 +1,189 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridBayesNet.cpp
|
||||
* @brief Unit tests for HybridBayesNet
|
||||
* @author Varun Agrawal
|
||||
* @author Fan Jiang
|
||||
* @author Frank Dellaert
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridBayesTree.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace gtsam::serializationTestHelpers;
|
||||
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
static const DiscreteKey Asia(0, 2);
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test creation
|
||||
TEST(HybridBayesNet, Creation) {
|
||||
HybridBayesNet bayesNet;
|
||||
|
||||
bayesNet.add(Asia, "99/1");
|
||||
|
||||
DiscreteConditional expected(Asia, "99/1");
|
||||
|
||||
CHECK(bayesNet.atDiscrete(0));
|
||||
auto& df = *bayesNet.atDiscrete(0);
|
||||
EXPECT(df.equals(expected));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test choosing an assignment of conditionals
|
||||
TEST(HybridBayesNet, Choose) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering ordering;
|
||||
for (auto&& kvp : s.linearizationPoint) {
|
||||
ordering += kvp.key;
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
DiscreteValues assignment;
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
assignment[M(3)] = 0;
|
||||
|
||||
GaussianBayesNet gbn = hybridBayesNet->choose(assignment);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, gbn.size());
|
||||
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(0)))(assignment),
|
||||
*gbn.at(0)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(1)))(assignment),
|
||||
*gbn.at(1)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(2)))(assignment),
|
||||
*gbn.at(2)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(3)))(assignment),
|
||||
*gbn.at(3)));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net optimize
|
||||
TEST(HybridBayesNet, OptimizeAssignment) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering ordering;
|
||||
for (auto&& kvp : s.linearizationPoint) {
|
||||
ordering += kvp.key;
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
DiscreteValues assignment;
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
assignment[M(3)] = 1;
|
||||
|
||||
VectorValues delta = hybridBayesNet->optimize(assignment);
|
||||
|
||||
// The linearization point has the same value as the key index,
|
||||
// e.g. X(1) = 1, X(2) = 2,
|
||||
// but the factors specify X(k) = k-1, so delta should be -1.
|
||||
VectorValues expected_delta;
|
||||
expected_delta.insert(make_pair(X(1), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(2), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(3), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(4), -Vector1::Ones()));
|
||||
|
||||
EXPECT(assert_equal(expected_delta, delta));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net optimize
|
||||
TEST(HybridBayesNet, Optimize) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||
s.linearizedFactorGraph.eliminateSequential(hybridOrdering);
|
||||
|
||||
HybridValues delta = hybridBayesNet->optimize();
|
||||
|
||||
DiscreteValues expectedAssignment;
|
||||
expectedAssignment[M(1)] = 1;
|
||||
expectedAssignment[M(2)] = 0;
|
||||
expectedAssignment[M(3)] = 1;
|
||||
EXPECT(assert_equal(expectedAssignment, delta.discrete()));
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(1), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(4), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net multifrontal optimize
|
||||
TEST(HybridBayesNet, OptimizeMultifrontal) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree::shared_ptr hybridBayesTree =
|
||||
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
|
||||
HybridValues delta = hybridBayesTree->optimize();
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(1), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(4), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test HybridBayesNet serialization.
|
||||
TEST(HybridBayesNet, Serialization) {
|
||||
Switching s(4);
|
||||
Ordering ordering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesNet hbn = *(s.linearizedFactorGraph.eliminateSequential(ordering));
|
||||
|
||||
EXPECT(equalsObj<HybridBayesNet>(hbn));
|
||||
EXPECT(equalsXML<HybridBayesNet>(hbn));
|
||||
EXPECT(equalsBinary<HybridBayesNet>(hbn));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,166 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridBayesTree.cpp
|
||||
* @brief Unit tests for HybridBayesTree
|
||||
* @author Varun Agrawal
|
||||
* @date August 2022
|
||||
*/
|
||||
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridBayesTree.h>
|
||||
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test for optimizing a HybridBayesTree with a given assignment.
|
||||
TEST(HybridBayesTree, OptimizeAssignment) {
|
||||
Switching s(4);
|
||||
|
||||
HybridGaussianISAM isam;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
|
||||
for (size_t i = 1; i < 4; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(s.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 4; i <= 7; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the discrete factors
|
||||
for (size_t i = 7; i <= 9; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
isam.update(graph1);
|
||||
|
||||
DiscreteValues assignment;
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
assignment[M(3)] = 1;
|
||||
|
||||
VectorValues delta = isam.optimize(assignment);
|
||||
|
||||
// The linearization point has the same value as the key index,
|
||||
// e.g. X(1) = 1, X(2) = 2,
|
||||
// but the factors specify X(k) = k-1, so delta should be -1.
|
||||
VectorValues expected_delta;
|
||||
expected_delta.insert(make_pair(X(1), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(2), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(3), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(4), -Vector1::Ones()));
|
||||
|
||||
EXPECT(assert_equal(expected_delta, delta));
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= s.K; k++) ordering += X(k);
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
GaussianBayesNet gbn = hybridBayesNet->choose(assignment);
|
||||
VectorValues expected = gbn.optimize();
|
||||
|
||||
EXPECT(assert_equal(expected, delta));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test for optimizing a HybridBayesTree.
|
||||
TEST(HybridBayesTree, Optimize) {
|
||||
Switching s(4);
|
||||
|
||||
HybridGaussianISAM isam;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
|
||||
for (size_t i = 1; i < 4; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(s.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 4; i <= 6; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the discrete factors
|
||||
for (size_t i = 7; i <= 9; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
isam.update(graph1);
|
||||
|
||||
HybridValues delta = isam.optimize();
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= s.K; k++) ordering += X(k);
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
DiscreteFactorGraph dfg;
|
||||
for (auto&& f : *remainingFactorGraph) {
|
||||
auto factor = dynamic_pointer_cast<HybridDiscreteFactor>(f);
|
||||
dfg.push_back(
|
||||
boost::dynamic_pointer_cast<DecisionTreeFactor>(factor->inner()));
|
||||
}
|
||||
|
||||
DiscreteValues expectedMPE = dfg.optimize();
|
||||
VectorValues expectedValues = hybridBayesNet->optimize(expectedMPE);
|
||||
|
||||
EXPECT(assert_equal(expectedMPE, delta.discrete()));
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous()));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test HybridBayesTree serialization.
|
||||
TEST(HybridBayesTree, Serialization) {
|
||||
Switching s(4);
|
||||
Ordering ordering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree hbt =
|
||||
*(s.linearizedFactorGraph.eliminateMultifrontal(ordering));
|
||||
|
||||
using namespace gtsam::serializationTestHelpers;
|
||||
EXPECT(equalsObj<HybridBayesTree>(hbt));
|
||||
EXPECT(equalsXML<HybridBayesTree>(hbt));
|
||||
EXPECT(equalsBinary<HybridBayesTree>(hbt));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,45 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
* See LICENSE for the license information
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridFactorGraph.cpp
|
||||
* @brief Unit tests for HybridFactorGraph
|
||||
* @author Varun Agrawal
|
||||
* @date May 2021
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/Test.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/utilities.h>
|
||||
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::L;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************
|
||||
* Test that any linearizedFactorGraph gaussian factors are appended to the
|
||||
* existing gaussian factor graph in the hybrid factor graph.
|
||||
*/
|
||||
TEST(HybridFactorGraph, Constructor) {
|
||||
// Initialize the hybrid factor graph
|
||||
HybridFactorGraph fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,563 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridIncremental.cpp
|
||||
* @brief Unit tests for incremental inference
|
||||
* @author Fan Jiang, Varun Agrawal, Frank Dellaert
|
||||
* @date Jan 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/sam/BearingRangeFactor.h>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::L;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::W;
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Y;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test if we can perform elimination incrementally.
|
||||
TEST(HybridGaussianElimination, IncrementalElimination) {
|
||||
Switching switching(3);
|
||||
HybridGaussianISAM isam;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Create initial factor graph
|
||||
// * * *
|
||||
// | | |
|
||||
// X1 -*- X2 -*- X3
|
||||
// \*-M1-*/
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||
|
||||
// Run update step
|
||||
isam.update(graph1);
|
||||
|
||||
// Check that after update we have 3 hybrid Bayes net nodes:
|
||||
// P(X1 | X2, M1) and P(X2, X3 | M1, M2), P(M1, M2)
|
||||
EXPECT_LONGS_EQUAL(3, isam.size());
|
||||
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector{X(1)});
|
||||
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({X(2), M(1)}));
|
||||
EXPECT(isam[X(2)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
|
||||
EXPECT(isam[X(2)]->conditional()->parents() == KeyVector({M(1), M(2)}));
|
||||
|
||||
/********************************************************/
|
||||
// New factor graph for incremental update.
|
||||
HybridGaussianFactorGraph graph2;
|
||||
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
|
||||
|
||||
isam.update(graph2);
|
||||
|
||||
// Check that after the second update we have
|
||||
// 1 additional hybrid Bayes net node:
|
||||
// P(X2, X3 | M1, M2)
|
||||
EXPECT_LONGS_EQUAL(3, isam.size());
|
||||
EXPECT(isam[X(3)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
|
||||
EXPECT(isam[X(3)]->conditional()->parents() == KeyVector({M(1), M(2)}));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test if we can incrementally do the inference
|
||||
TEST(HybridGaussianElimination, IncrementalInference) {
|
||||
Switching switching(3);
|
||||
HybridGaussianISAM isam;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Create initial factor graph
|
||||
// * * *
|
||||
// | | |
|
||||
// X1 -*- X2 -*- X3
|
||||
// | |
|
||||
// *-M1 - * - M2
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||
|
||||
// Run update step
|
||||
isam.update(graph1);
|
||||
|
||||
auto discreteConditional_m1 =
|
||||
isam[M(1)]->conditional()->asDiscreteConditional();
|
||||
EXPECT(discreteConditional_m1->keys() == KeyVector({M(1)}));
|
||||
|
||||
/********************************************************/
|
||||
// New factor graph for incremental update.
|
||||
HybridGaussianFactorGraph graph2;
|
||||
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
|
||||
|
||||
isam.update(graph2);
|
||||
|
||||
/********************************************************/
|
||||
// Run batch elimination so we can compare results.
|
||||
Ordering ordering;
|
||||
ordering += X(1);
|
||||
ordering += X(2);
|
||||
ordering += X(3);
|
||||
|
||||
// Now we calculate the actual factors using full elimination
|
||||
HybridBayesTree::shared_ptr expectedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
|
||||
std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
|
||||
// The densities on X(1) should be the same
|
||||
auto x1_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
|
||||
auto actual_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x1_conditional, *actual_x1_conditional));
|
||||
|
||||
// The densities on X(2) should be the same
|
||||
auto x2_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
|
||||
auto actual_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x2_conditional, *actual_x2_conditional));
|
||||
|
||||
// The densities on X(3) should be the same
|
||||
auto x3_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(3)]->conditional()->inner());
|
||||
auto actual_x3_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x3_conditional, *actual_x3_conditional));
|
||||
|
||||
// We only perform manual continuous elimination for 0,0.
|
||||
// The other discrete probabilities on M(2) are calculated the same way
|
||||
Ordering discrete_ordering;
|
||||
discrete_ordering += M(1);
|
||||
discrete_ordering += M(2);
|
||||
HybridBayesTree::shared_ptr discreteBayesTree =
|
||||
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(1)] = 0, m00[M(2)] = 0;
|
||||
DiscreteConditional decisionTree =
|
||||
*(*discreteBayesTree)[M(2)]->conditional()->asDiscreteConditional();
|
||||
double m00_prob = decisionTree(m00);
|
||||
|
||||
auto discreteConditional = isam[M(2)]->conditional()->asDiscreteConditional();
|
||||
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
DiscreteValues assignment;
|
||||
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
|
||||
assignment[M(1)] = 0;
|
||||
assignment[M(2)] = 0;
|
||||
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 0;
|
||||
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(1)] = 0;
|
||||
assignment[M(2)] = 1;
|
||||
EXPECT(assert_equal(0.204159, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
EXPECT(assert_equal(0.2, (*discreteConditional)(assignment), 1e-5));
|
||||
|
||||
// Check if the clique conditional generated from incremental elimination
|
||||
// matches that of batch elimination.
|
||||
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
|
||||
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
(*expectedChordal)[M(2)]->conditional()->inner());
|
||||
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
isam[M(2)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test if we can approximately do the inference
|
||||
TEST(HybridGaussianElimination, Approx_inference) {
|
||||
Switching switching(4);
|
||||
HybridGaussianISAM incrementalHybrid;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
|
||||
for (size_t i = 1; i < 4; i++) {
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 4; i <= 7; i++) {
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t j = 1; j <= 4; j++) {
|
||||
ordering += X(j);
|
||||
}
|
||||
|
||||
// Now we calculate the actual factors using full elimination
|
||||
HybridBayesTree::shared_ptr unprunedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
|
||||
std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
|
||||
size_t maxNrLeaves = 5;
|
||||
incrementalHybrid.update(graph1);
|
||||
|
||||
incrementalHybrid.prune(M(3), maxNrLeaves);
|
||||
|
||||
/*
|
||||
unpruned factor is:
|
||||
Choice(m3)
|
||||
0 Choice(m2)
|
||||
0 0 Choice(m1)
|
||||
0 0 0 Leaf 0.11267528
|
||||
0 0 1 Leaf 0.18576102
|
||||
0 1 Choice(m1)
|
||||
0 1 0 Leaf 0.18754662
|
||||
0 1 1 Leaf 0.30623871
|
||||
1 Choice(m2)
|
||||
1 0 Choice(m1)
|
||||
1 0 0 Leaf 0.18576102
|
||||
1 0 1 Leaf 0.30622428
|
||||
1 1 Choice(m1)
|
||||
1 1 0 Leaf 0.30623871
|
||||
1 1 1 Leaf 0.5
|
||||
|
||||
pruned factors is:
|
||||
Choice(m3)
|
||||
0 Choice(m2)
|
||||
0 0 Leaf 0
|
||||
0 1 Choice(m1)
|
||||
0 1 0 Leaf 0.18754662
|
||||
0 1 1 Leaf 0.30623871
|
||||
1 Choice(m2)
|
||||
1 0 Choice(m1)
|
||||
1 0 0 Leaf 0
|
||||
1 0 1 Leaf 0.30622428
|
||||
1 1 Choice(m1)
|
||||
1 1 0 Leaf 0.30623871
|
||||
1 1 1 Leaf 0.5
|
||||
*/
|
||||
|
||||
auto discreteConditional_m1 = *dynamic_pointer_cast<DiscreteConditional>(
|
||||
incrementalHybrid[M(1)]->conditional()->inner());
|
||||
EXPECT(discreteConditional_m1.keys() == KeyVector({M(1), M(2), M(3)}));
|
||||
|
||||
// Get the number of elements which are greater than 0.
|
||||
auto count = [](const double &value, int count) {
|
||||
return value > 0 ? count + 1 : count;
|
||||
};
|
||||
// Check that the number of leaves after pruning is 5.
|
||||
EXPECT_LONGS_EQUAL(5, discreteConditional_m1.fold(count, 0));
|
||||
|
||||
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
|
||||
// bayes net, at the same positions.
|
||||
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
|
||||
unprunedHybridBayesTree->clique(X(4))->conditional()->inner());
|
||||
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
|
||||
incrementalHybrid[X(4)]->conditional()->inner());
|
||||
|
||||
std::vector<std::pair<DiscreteValues, double>> assignments =
|
||||
discreteConditional_m1.enumerate();
|
||||
// Loop over all assignments and check the pruned components
|
||||
for (auto &&av : assignments) {
|
||||
const DiscreteValues &assignment = av.first;
|
||||
const double value = av.second;
|
||||
|
||||
if (value == 0.0) {
|
||||
EXPECT(lastDensity(assignment) == nullptr);
|
||||
} else {
|
||||
CHECK(lastDensity(assignment));
|
||||
EXPECT(assert_equal(*unprunedLastDensity(assignment),
|
||||
*lastDensity(assignment)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridGaussianElimination, Incremental_approximate) {
|
||||
Switching switching(5);
|
||||
HybridGaussianISAM incrementalHybrid;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
/***** Run Round 1 *****/
|
||||
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
|
||||
for (size_t i = 1; i < 4; i++) {
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 5; i <= 7; i++) {
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Run update with pruning
|
||||
size_t maxComponents = 5;
|
||||
incrementalHybrid.update(graph1);
|
||||
incrementalHybrid.prune(M(3), maxComponents);
|
||||
|
||||
// Check if we have a bayes tree with 4 hybrid nodes,
|
||||
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
|
||||
EXPECT_LONGS_EQUAL(4, incrementalHybrid.size());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
2, incrementalHybrid[X(1)]->conditional()->asMixture()->nrComponents());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
4, incrementalHybrid[X(2)]->conditional()->asMixture()->nrComponents());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
5, incrementalHybrid[X(3)]->conditional()->asMixture()->nrComponents());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
5, incrementalHybrid[X(4)]->conditional()->asMixture()->nrComponents());
|
||||
|
||||
/***** Run Round 2 *****/
|
||||
HybridGaussianFactorGraph graph2;
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(4));
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(8));
|
||||
|
||||
// Run update with pruning a second time.
|
||||
incrementalHybrid.update(graph2);
|
||||
incrementalHybrid.prune(M(4), maxComponents);
|
||||
|
||||
// Check if we have a bayes tree with pruned hybrid nodes,
|
||||
// with 5 (pruned) leaves.
|
||||
CHECK_EQUAL(5, incrementalHybrid.size());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
5, incrementalHybrid[X(4)]->conditional()->asMixture()->nrComponents());
|
||||
EXPECT_LONGS_EQUAL(
|
||||
5, incrementalHybrid[X(5)]->conditional()->asMixture()->nrComponents());
|
||||
}
|
||||
|
||||
/* ************************************************************************/
|
||||
// A GTSAM-only test for running inference on a single-legged robot.
|
||||
// The leg links are represented by the chain X-Y-Z-W, where X is the base and
|
||||
// W is the foot.
|
||||
// We use BetweenFactor<Pose2> as constraints between each of the poses.
|
||||
TEST(HybridGaussianISAM, NonTrivial) {
|
||||
/*************** Run Round 1 ***************/
|
||||
HybridNonlinearFactorGraph fg;
|
||||
|
||||
// Add a prior on pose x1 at the origin.
|
||||
// A prior factor consists of a mean and
|
||||
// a noise model (covariance matrix)
|
||||
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
auto priorNoise = noiseModel::Diagonal::Sigmas(
|
||||
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
|
||||
|
||||
// create a noise model for the landmark measurements
|
||||
auto poseNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
|
||||
// We model a robot's single leg as X - Y - Z - W
|
||||
// where X is the base link and W is the foot link.
|
||||
|
||||
// Add connecting poses similar to PoseFactors in GTD
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
|
||||
poseNoise);
|
||||
|
||||
// Create initial estimate
|
||||
Values initial;
|
||||
initial.insert(X(0), Pose2(0.0, 0.0, 0.0));
|
||||
initial.insert(Y(0), Pose2(0.0, 1.0, 0.0));
|
||||
initial.insert(Z(0), Pose2(0.0, 2.0, 0.0));
|
||||
initial.insert(W(0), Pose2(0.0, 3.0, 0.0));
|
||||
|
||||
HybridGaussianFactorGraph gfg = fg.linearize(initial);
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
HybridGaussianISAM inc;
|
||||
|
||||
// Update without pruning
|
||||
// The result is a HybridBayesNet with no discrete variables
|
||||
// (equivalent to a GaussianBayesNet).
|
||||
// Factorization is:
|
||||
// `P(X | measurements) = P(W0|Z0) P(Z0|Y0) P(Y0|X0) P(X0)`
|
||||
inc.update(gfg);
|
||||
|
||||
/*************** Run Round 2 ***************/
|
||||
using PlanarMotionModel = BetweenFactor<Pose2>;
|
||||
|
||||
// Add odometry factor with discrete modes.
|
||||
Pose2 odometry(1.0, 0.0, 0.0);
|
||||
KeyVector contKeys = {W(0), W(1)};
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
auto still = boost::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0, 0),
|
||||
noise_model),
|
||||
moving = boost::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
|
||||
noise_model);
|
||||
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
|
||||
auto mixtureFactor = boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||
fg.push_back(mixtureFactor);
|
||||
|
||||
// Add equivalent of ImuFactor
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
|
||||
poseNoise);
|
||||
// PoseFactors-like at k=1
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
|
||||
poseNoise);
|
||||
|
||||
initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
|
||||
initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
|
||||
initial.insert(Z(1), Pose2(1.0, 2.0, 0.0));
|
||||
// The leg link did not move so we set the expected pose accordingly.
|
||||
initial.insert(W(1), Pose2(0.0, 3.0, 0.0));
|
||||
|
||||
gfg = fg.linearize(initial);
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
// Update without pruning
|
||||
// The result is a HybridBayesNet with 1 discrete variable M(1).
|
||||
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
|
||||
// P(X0 | X1, W1, M1) P(W1|Z1, X1, M1) P(Z1|Y1, X1, M1)
|
||||
// P(Y1 | X1, M1)P(X1 | M1)P(M1)
|
||||
// The MHS tree is a 1 level tree for time indices (1,) with 2 leaves.
|
||||
inc.update(gfg);
|
||||
|
||||
/*************** Run Round 3 ***************/
|
||||
// Add odometry factor with discrete modes.
|
||||
contKeys = {W(1), W(2)};
|
||||
still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
|
||||
noise_model);
|
||||
moving =
|
||||
boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
|
||||
components = {moving, still};
|
||||
mixtureFactor = boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
|
||||
fg.push_back(mixtureFactor);
|
||||
|
||||
// Add equivalent of ImuFactor
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
|
||||
poseNoise);
|
||||
// PoseFactors-like at k=1
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
|
||||
poseNoise);
|
||||
|
||||
initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
|
||||
initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
|
||||
initial.insert(Z(2), Pose2(2.0, 2.0, 0.0));
|
||||
initial.insert(W(2), Pose2(0.0, 3.0, 0.0));
|
||||
|
||||
gfg = fg.linearize(initial);
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
// Now we prune!
|
||||
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
|
||||
// P(X0 | X1, W1, M1) P(W1|W2, Z1, X1, M1, M2)
|
||||
// P(Z1| W2, Y1, X1, M1, M2) P(Y1 | W2, X1, M1, M2)
|
||||
// P(X1 | W2, X2, M1, M2) P(W2|Z2, X2, M1, M2)
|
||||
// P(Z2|Y2, X2, M1, M2) P(Y2 | X2, M1, M2)
|
||||
// P(X2 | M1, M2) P(M1, M2)
|
||||
// The MHS at this point should be a 2 level tree on (1, 2).
|
||||
// 1 has 2 choices, and 2 has 4 choices.
|
||||
inc.update(gfg);
|
||||
inc.prune(M(2), 2);
|
||||
|
||||
/*************** Run Round 4 ***************/
|
||||
// Add odometry factor with discrete modes.
|
||||
contKeys = {W(2), W(3)};
|
||||
still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
|
||||
noise_model);
|
||||
moving =
|
||||
boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
|
||||
components = {moving, still};
|
||||
mixtureFactor = boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
|
||||
fg.push_back(mixtureFactor);
|
||||
|
||||
// Add equivalent of ImuFactor
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
|
||||
poseNoise);
|
||||
// PoseFactors-like at k=3
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
|
||||
poseNoise);
|
||||
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
|
||||
poseNoise);
|
||||
|
||||
initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
|
||||
initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));
|
||||
initial.insert(Z(3), Pose2(3.0, 2.0, 0.0));
|
||||
initial.insert(W(3), Pose2(0.0, 3.0, 0.0));
|
||||
|
||||
gfg = fg.linearize(initial);
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
// Keep pruning!
|
||||
inc.update(gfg);
|
||||
inc.prune(M(3), 3);
|
||||
|
||||
// The final discrete graph should not be empty since we have eliminated
|
||||
// all continuous variables.
|
||||
auto discreteTree = inc[M(3)]->conditional()->asDiscreteConditional();
|
||||
EXPECT_LONGS_EQUAL(3, discreteTree->size());
|
||||
|
||||
// Test if the optimal discrete mode assignment is (1, 1, 1).
|
||||
DiscreteFactorGraph discreteGraph;
|
||||
discreteGraph.push_back(discreteTree);
|
||||
DiscreteValues optimal_assignment = discreteGraph.optimize();
|
||||
|
||||
DiscreteValues expected_assignment;
|
||||
expected_assignment[M(1)] = 1;
|
||||
expected_assignment[M(2)] = 1;
|
||||
expected_assignment[M(3)] = 1;
|
||||
|
||||
EXPECT(assert_equal(expected_assignment, optimal_assignment));
|
||||
|
||||
// Test if pruning worked correctly by checking that we only have 3 leaves in
|
||||
// the last node.
|
||||
auto lastConditional = inc[X(3)]->conditional()->asMixture();
|
||||
EXPECT_LONGS_EQUAL(3, lastConditional->nrComponents());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
|
@ -0,0 +1,737 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
* See LICENSE for the license information
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridNonlinearFactorGraph.cpp
|
||||
* @brief Unit tests for HybridNonlinearFactorGraph
|
||||
* @author Varun Agrawal
|
||||
* @author Fan Jiang
|
||||
* @author Frank Dellaert
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/utilities.h>
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridEliminationTree.h>
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/sam/BearingRangeFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::L;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************
|
||||
* Test that any linearizedFactorGraph gaussian factors are appended to the
|
||||
* existing gaussian factor graph in the hybrid factor graph.
|
||||
*/
|
||||
TEST(HybridFactorGraph, GaussianFactorGraph) {
|
||||
HybridNonlinearFactorGraph fg;
|
||||
|
||||
// Add a simple prior factor to the nonlinear factor graph
|
||||
fg.emplace_nonlinear<PriorFactor<double>>(X(0), 0, Isotropic::Sigma(1, 0.1));
|
||||
|
||||
// Linearization point
|
||||
Values linearizationPoint;
|
||||
linearizationPoint.insert<double>(X(0), 0);
|
||||
|
||||
HybridGaussianFactorGraph ghfg = fg.linearize(linearizationPoint);
|
||||
|
||||
// Add a factor to the GaussianFactorGraph
|
||||
ghfg.add(JacobianFactor(X(0), I_1x1, Vector1(5)));
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, ghfg.size());
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Test equality for Hybrid Nonlinear Factor Graph.
|
||||
*/
|
||||
TEST(HybridNonlinearFactorGraph, Equals) {
|
||||
HybridNonlinearFactorGraph graph1;
|
||||
HybridNonlinearFactorGraph graph2;
|
||||
|
||||
// Test empty factor graphs
|
||||
EXPECT(assert_equal(graph1, graph2));
|
||||
|
||||
auto f0 = boost::make_shared<PriorFactor<Pose2>>(
|
||||
1, Pose2(), noiseModel::Isotropic::Sigma(3, 0.001));
|
||||
graph1.push_back(f0);
|
||||
graph2.push_back(f0);
|
||||
|
||||
auto f1 = boost::make_shared<BetweenFactor<Pose2>>(
|
||||
1, 2, Pose2(), noiseModel::Isotropic::Sigma(3, 0.1));
|
||||
graph1.push_back(f1);
|
||||
graph2.push_back(f1);
|
||||
|
||||
// Test non-empty graphs
|
||||
EXPECT(assert_equal(graph1, graph2));
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Test that the resize method works correctly for a HybridNonlinearFactorGraph.
|
||||
*/
|
||||
TEST(HybridNonlinearFactorGraph, Resize) {
|
||||
HybridNonlinearFactorGraph fg;
|
||||
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
|
||||
fg.push_back(nonlinearFactor);
|
||||
|
||||
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||
fg.push_back(discreteFactor);
|
||||
|
||||
auto dcFactor = boost::make_shared<MixtureFactor>();
|
||||
fg.push_back(dcFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(fg.size(), 3);
|
||||
|
||||
fg.resize(0);
|
||||
EXPECT_LONGS_EQUAL(fg.size(), 0);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Test that the resize method works correctly for a
|
||||
* HybridGaussianFactorGraph.
|
||||
*/
|
||||
TEST(HybridGaussianFactorGraph, Resize) {
|
||||
HybridNonlinearFactorGraph nhfg;
|
||||
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>(
|
||||
X(0), X(1), 0.0, Isotropic::Sigma(1, 0.1));
|
||||
nhfg.push_back(nonlinearFactor);
|
||||
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||
nhfg.push_back(discreteFactor);
|
||||
|
||||
KeyVector contKeys = {X(0), X(1)};
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
|
||||
auto still = boost::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
|
||||
moving = boost::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
|
||||
|
||||
std::vector<MotionModel::shared_ptr> components = {still, moving};
|
||||
auto dcFactor = boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||
nhfg.push_back(dcFactor);
|
||||
|
||||
Values linearizationPoint;
|
||||
linearizationPoint.insert<double>(X(0), 0);
|
||||
linearizationPoint.insert<double>(X(1), 1);
|
||||
|
||||
// Generate `HybridGaussianFactorGraph` by linearizing
|
||||
HybridGaussianFactorGraph gfg = nhfg.linearize(linearizationPoint);
|
||||
|
||||
EXPECT_LONGS_EQUAL(gfg.size(), 3);
|
||||
|
||||
gfg.resize(0);
|
||||
EXPECT_LONGS_EQUAL(gfg.size(), 0);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Test that the MixtureFactor reports correctly if the number of continuous
|
||||
* keys provided do not match the keys in the factors.
|
||||
*/
|
||||
TEST(HybridGaussianFactorGraph, MixtureFactor) {
|
||||
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>(
|
||||
X(0), X(1), 0.0, Isotropic::Sigma(1, 0.1));
|
||||
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
|
||||
auto still = boost::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
|
||||
moving = boost::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
|
||||
|
||||
std::vector<MotionModel::shared_ptr> components = {still, moving};
|
||||
|
||||
// Check for exception when number of continuous keys are under-specified.
|
||||
KeyVector contKeys = {X(0)};
|
||||
THROWS_EXCEPTION(boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
|
||||
|
||||
// Check for exception when number of continuous keys are too many.
|
||||
contKeys = {X(0), X(1), X(2)};
|
||||
THROWS_EXCEPTION(boost::make_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
* Test push_back on HFG makes the correct distinction.
|
||||
*/
|
||||
TEST(HybridFactorGraph, PushBack) {
|
||||
HybridNonlinearFactorGraph fg;
|
||||
|
||||
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
|
||||
fg.push_back(nonlinearFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||
fg.push_back(discreteFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||
|
||||
fg = HybridNonlinearFactorGraph();
|
||||
|
||||
auto dcFactor = boost::make_shared<MixtureFactor>();
|
||||
fg.push_back(dcFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||
|
||||
// Now do the same with HybridGaussianFactorGraph
|
||||
HybridGaussianFactorGraph ghfg;
|
||||
|
||||
auto gaussianFactor = boost::make_shared<JacobianFactor>();
|
||||
ghfg.push_back(gaussianFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||
|
||||
ghfg = HybridGaussianFactorGraph();
|
||||
ghfg.push_back(discreteFactor);
|
||||
|
||||
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||
|
||||
ghfg = HybridGaussianFactorGraph();
|
||||
ghfg.push_back(dcFactor);
|
||||
|
||||
HybridGaussianFactorGraph hgfg2;
|
||||
hgfg2.push_back(ghfg.begin(), ghfg.end());
|
||||
|
||||
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||
|
||||
HybridNonlinearFactorGraph hnfg;
|
||||
NonlinearFactorGraph factors;
|
||||
auto noise = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
factors.emplace_shared<PriorFactor<Pose2>>(0, Pose2(0, 0, 0), noise);
|
||||
factors.emplace_shared<PriorFactor<Pose2>>(1, Pose2(1, 0, 0), noise);
|
||||
factors.emplace_shared<PriorFactor<Pose2>>(2, Pose2(2, 0, 0), noise);
|
||||
// TODO(Varun) This does not currently work. It should work once HybridFactor
|
||||
// becomes a base class of NonlinearFactor.
|
||||
// hnfg.push_back(factors.begin(), factors.end());
|
||||
|
||||
// EXPECT_LONGS_EQUAL(3, hnfg.size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test construction of switching-like hybrid factor graph.
|
||||
*/
|
||||
TEST(HybridFactorGraph, Switching) {
|
||||
Switching self(3);
|
||||
|
||||
EXPECT_LONGS_EQUAL(7, self.nonlinearFactorGraph.size());
|
||||
EXPECT_LONGS_EQUAL(7, self.linearizedFactorGraph.size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test linearization on a switching-like hybrid factor graph.
|
||||
*/
|
||||
TEST(HybridFactorGraph, Linearization) {
|
||||
Switching self(3);
|
||||
|
||||
// Linearize here:
|
||||
HybridGaussianFactorGraph actualLinearized =
|
||||
self.nonlinearFactorGraph.linearize(self.linearizationPoint);
|
||||
|
||||
EXPECT_LONGS_EQUAL(7, actualLinearized.size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test elimination tree construction
|
||||
*/
|
||||
TEST(HybridFactorGraph, EliminationTree) {
|
||||
Switching self(3);
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||
|
||||
// Create elimination tree.
|
||||
HybridEliminationTree etree(self.linearizedFactorGraph, ordering);
|
||||
EXPECT_LONGS_EQUAL(1, etree.roots().size())
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
*Test elimination function by eliminating x1 in *-x1-*-x2 graph.
|
||||
*/
|
||||
TEST(GaussianElimination, Eliminate_x1) {
|
||||
Switching self(3);
|
||||
|
||||
// Gather factors on x1, has a simple Gaussian and a mixture factor.
|
||||
HybridGaussianFactorGraph factors;
|
||||
// Add gaussian prior
|
||||
factors.push_back(self.linearizedFactorGraph[0]);
|
||||
// Add first hybrid factor
|
||||
factors.push_back(self.linearizedFactorGraph[1]);
|
||||
|
||||
// Eliminate x1
|
||||
Ordering ordering;
|
||||
ordering += X(1);
|
||||
|
||||
auto result = EliminateHybrid(factors, ordering);
|
||||
CHECK(result.first);
|
||||
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
|
||||
CHECK(result.second);
|
||||
// Has two keys, x2 and m1
|
||||
EXPECT_LONGS_EQUAL(2, result.second->size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test elimination function by eliminating x2 in x1-*-x2-*-x3 chain.
|
||||
* m1/ \m2
|
||||
*/
|
||||
TEST(HybridsGaussianElimination, Eliminate_x2) {
|
||||
Switching self(3);
|
||||
|
||||
// Gather factors on x2, will be two mixture factors (with x1 and x3, resp.).
|
||||
HybridGaussianFactorGraph factors;
|
||||
factors.push_back(self.linearizedFactorGraph[1]); // involves m1
|
||||
factors.push_back(self.linearizedFactorGraph[2]); // involves m2
|
||||
|
||||
// Eliminate x2
|
||||
Ordering ordering;
|
||||
ordering += X(2);
|
||||
|
||||
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> result =
|
||||
EliminateHybrid(factors, ordering);
|
||||
CHECK(result.first);
|
||||
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
|
||||
CHECK(result.second);
|
||||
// Note: separator keys should include m1, m2.
|
||||
EXPECT_LONGS_EQUAL(4, result.second->size());
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Helper method to generate gaussian factor graphs with a specific mode.
|
||||
*/
|
||||
GaussianFactorGraph::shared_ptr batchGFG(double between,
|
||||
Values linearizationPoint) {
|
||||
NonlinearFactorGraph graph;
|
||||
graph.addPrior<double>(X(1), 0, Isotropic::Sigma(1, 0.1));
|
||||
|
||||
auto between_x1_x2 = boost::make_shared<MotionModel>(
|
||||
X(1), X(2), between, Isotropic::Sigma(1, 1.0));
|
||||
|
||||
graph.push_back(between_x1_x2);
|
||||
|
||||
return graph.linearize(linearizationPoint);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test elimination function by eliminating x1 and x2 in graph.
|
||||
*/
|
||||
TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
|
||||
Switching self(2, 1.0, 0.1);
|
||||
|
||||
auto factors = self.linearizedFactorGraph;
|
||||
|
||||
// Eliminate x1
|
||||
Ordering ordering;
|
||||
ordering += X(1);
|
||||
ordering += X(2);
|
||||
|
||||
HybridConditional::shared_ptr hybridConditionalMixture;
|
||||
HybridFactor::shared_ptr factorOnModes;
|
||||
|
||||
std::tie(hybridConditionalMixture, factorOnModes) =
|
||||
EliminateHybrid(factors, ordering);
|
||||
|
||||
auto gaussianConditionalMixture =
|
||||
dynamic_pointer_cast<GaussianMixture>(hybridConditionalMixture->inner());
|
||||
|
||||
CHECK(gaussianConditionalMixture);
|
||||
// Frontals = [x1, x2]
|
||||
EXPECT_LONGS_EQUAL(2, gaussianConditionalMixture->nrFrontals());
|
||||
// 1 parent, which is the mode
|
||||
EXPECT_LONGS_EQUAL(1, gaussianConditionalMixture->nrParents());
|
||||
|
||||
// This is now a HybridDiscreteFactor
|
||||
auto hybridDiscreteFactor =
|
||||
dynamic_pointer_cast<HybridDiscreteFactor>(factorOnModes);
|
||||
// Access the type-erased inner object and convert to DecisionTreeFactor
|
||||
auto discreteFactor =
|
||||
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
|
||||
CHECK(discreteFactor);
|
||||
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
|
||||
EXPECT(discreteFactor->root_->isLeaf() == false);
|
||||
|
||||
// TODO(Varun) Test emplace_discrete
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test partial elimination
|
||||
*/
|
||||
TEST(HybridFactorGraph, Partial_Elimination) {
|
||||
Switching self(3);
|
||||
|
||||
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||
|
||||
// Eliminate partially.
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
CHECK(hybridBayesNet);
|
||||
EXPECT_LONGS_EQUAL(3, hybridBayesNet->size());
|
||||
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
|
||||
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
|
||||
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
|
||||
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
|
||||
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
|
||||
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
|
||||
|
||||
CHECK(remainingFactorGraph);
|
||||
EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size());
|
||||
EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)}));
|
||||
EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)}));
|
||||
EXPECT(remainingFactorGraph->at(2)->keys() == KeyVector({M(1), M(2)}));
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test full elimination
|
||||
*/
|
||||
TEST(HybridFactorGraph, Full_Elimination) {
|
||||
Switching self(3);
|
||||
|
||||
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||
|
||||
// We first do a partial elimination
|
||||
HybridBayesNet::shared_ptr hybridBayesNet_partial;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph_partial;
|
||||
DiscreteBayesNet discreteBayesNet;
|
||||
|
||||
{
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||
|
||||
// Eliminate partially.
|
||||
std::tie(hybridBayesNet_partial, remainingFactorGraph_partial) =
|
||||
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
DiscreteFactorGraph discrete_fg;
|
||||
// TODO(Varun) Make this a function of HybridGaussianFactorGraph?
|
||||
for (HybridFactor::shared_ptr& factor : (*remainingFactorGraph_partial)) {
|
||||
auto df = dynamic_pointer_cast<HybridDiscreteFactor>(factor);
|
||||
discrete_fg.push_back(df->inner());
|
||||
}
|
||||
ordering.clear();
|
||||
for (size_t k = 1; k < self.K; k++) ordering += M(k);
|
||||
discreteBayesNet =
|
||||
*discrete_fg.eliminateSequential(ordering, EliminateForMPE);
|
||||
}
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||
for (size_t k = 1; k < self.K; k++) ordering += M(k);
|
||||
|
||||
// Eliminate partially.
|
||||
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||
linearizedFactorGraph.eliminateSequential(ordering);
|
||||
|
||||
CHECK(hybridBayesNet);
|
||||
EXPECT_LONGS_EQUAL(5, hybridBayesNet->size());
|
||||
// p(x1 | x2, m1)
|
||||
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
|
||||
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
|
||||
// p(x2 | x3, m1, m2)
|
||||
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
|
||||
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
|
||||
// p(x3 | m1, m2)
|
||||
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
|
||||
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
|
||||
// P(m1 | m2)
|
||||
EXPECT(hybridBayesNet->at(3)->frontals() == KeyVector{M(1)});
|
||||
EXPECT(hybridBayesNet->at(3)->parents() == KeyVector({M(2)}));
|
||||
EXPECT(
|
||||
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(3)->inner())
|
||||
->equals(*discreteBayesNet.at(0)));
|
||||
// P(m2)
|
||||
EXPECT(hybridBayesNet->at(4)->frontals() == KeyVector{M(2)});
|
||||
EXPECT_LONGS_EQUAL(0, hybridBayesNet->at(4)->nrParents());
|
||||
EXPECT(
|
||||
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(4)->inner())
|
||||
->equals(*discreteBayesNet.at(1)));
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test printing
|
||||
*/
|
||||
TEST(HybridFactorGraph, Printing) {
|
||||
Switching self(3);
|
||||
|
||||
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||
|
||||
// Eliminate partially.
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
string expected_hybridFactorGraph = R"(
|
||||
size: 7
|
||||
factor 0: Continuous [x1]
|
||||
|
||||
A[x1] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 1: Hybrid [x1 x2; m1]{
|
||||
Choice(m1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
A[x2] = [
|
||||
1
|
||||
]
|
||||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
A[x2] = [
|
||||
1
|
||||
]
|
||||
b = [ -0 ]
|
||||
No noise model
|
||||
|
||||
}
|
||||
factor 2: Hybrid [x2 x3; m2]{
|
||||
Choice(m2)
|
||||
0 Leaf :
|
||||
A[x2] = [
|
||||
-1
|
||||
]
|
||||
A[x3] = [
|
||||
1
|
||||
]
|
||||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
A[x2] = [
|
||||
-1
|
||||
]
|
||||
A[x3] = [
|
||||
1
|
||||
]
|
||||
b = [ -0 ]
|
||||
No noise model
|
||||
|
||||
}
|
||||
factor 3: Continuous [x2]
|
||||
|
||||
A[x2] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 4: Continuous [x3]
|
||||
|
||||
A[x3] = [
|
||||
10
|
||||
]
|
||||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 5: Discrete [m1]
|
||||
P( m1 ):
|
||||
Leaf 0.5
|
||||
|
||||
factor 6: Discrete [m2 m1]
|
||||
P( m2 | m1 ):
|
||||
Choice(m2)
|
||||
0 Choice(m1)
|
||||
0 0 Leaf 0.33333333
|
||||
0 1 Leaf 0.6
|
||||
1 Choice(m1)
|
||||
1 0 Leaf 0.66666667
|
||||
1 1 Leaf 0.4
|
||||
|
||||
)";
|
||||
EXPECT(assert_print_equal(expected_hybridFactorGraph, linearizedFactorGraph));
|
||||
|
||||
// Expected output for hybridBayesNet.
|
||||
string expected_hybridBayesNet = R"(
|
||||
size: 3
|
||||
factor 0: Hybrid P( x1 | x2 m1)
|
||||
Discrete Keys = (m1, 2),
|
||||
Choice(m1)
|
||||
0 Leaf p(x1 | x2)
|
||||
R = [ 10.0499 ]
|
||||
S[x2] = [ -0.0995037 ]
|
||||
d = [ -9.85087 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf p(x1 | x2)
|
||||
R = [ 10.0499 ]
|
||||
S[x2] = [ -0.0995037 ]
|
||||
d = [ -9.95037 ]
|
||||
No noise model
|
||||
|
||||
factor 1: Hybrid P( x2 | x3 m1 m2)
|
||||
Discrete Keys = (m1, 2), (m2, 2),
|
||||
Choice(m2)
|
||||
0 Choice(m1)
|
||||
0 0 Leaf p(x2 | x3)
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -9.99901 ]
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x2 | x3)
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -9.90098 ]
|
||||
No noise model
|
||||
|
||||
1 Choice(m1)
|
||||
1 0 Leaf p(x2 | x3)
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -10.098 ]
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x2 | x3)
|
||||
R = [ 10.099 ]
|
||||
S[x3] = [ -0.0990196 ]
|
||||
d = [ -10 ]
|
||||
No noise model
|
||||
|
||||
factor 2: Hybrid P( x3 | m1 m2)
|
||||
Discrete Keys = (m1, 2), (m2, 2),
|
||||
Choice(m2)
|
||||
0 Choice(m1)
|
||||
0 0 Leaf p(x3)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.1489 ]
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x3)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.1479 ]
|
||||
No noise model
|
||||
|
||||
1 Choice(m1)
|
||||
1 0 Leaf p(x3)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.0504 ]
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x3)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.0494 ]
|
||||
No noise model
|
||||
|
||||
)";
|
||||
EXPECT(assert_print_equal(expected_hybridBayesNet, *hybridBayesNet));
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Simple PlanarSLAM example test with 2 poses and 2 landmarks (each pose
|
||||
* connects to 1 landmark) to expose issue with default decision tree creation
|
||||
* in hybrid elimination. The hybrid factor is between the poses X0 and X1.
|
||||
* The issue arises if we eliminate a landmark variable first since it is not
|
||||
* connected to a HybridFactor.
|
||||
*/
|
||||
TEST(HybridFactorGraph, DefaultDecisionTree) {
|
||||
HybridNonlinearFactorGraph fg;
|
||||
|
||||
// Add a prior on pose x1 at the origin.
|
||||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
auto priorNoise = noiseModel::Diagonal::Sigmas(
|
||||
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
|
||||
|
||||
using PlanarMotionModel = BetweenFactor<Pose2>;
|
||||
|
||||
// Add odometry factor
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
KeyVector contKeys = {X(0), X(1)};
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
auto still = boost::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
|
||||
noise_model),
|
||||
moving = boost::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
|
||||
noise_model);
|
||||
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
|
||||
fg.emplace_hybrid<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
|
||||
|
||||
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
|
||||
// create a noise model for the landmark measurements
|
||||
auto measurementNoise = noiseModel::Diagonal::Sigmas(
|
||||
Vector2(0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
|
||||
// create the measurement values - indices are (pose id, landmark id)
|
||||
Rot2 bearing11 = Rot2::fromDegrees(45), bearing22 = Rot2::fromDegrees(90);
|
||||
double range11 = std::sqrt(4.0 + 4.0), range22 = 2.0;
|
||||
|
||||
// Add Bearing-Range factors
|
||||
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
|
||||
X(0), L(0), bearing11, range11, measurementNoise);
|
||||
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
|
||||
X(1), L(1), bearing22, range22, measurementNoise);
|
||||
|
||||
// Create (deliberately inaccurate) initial estimate
|
||||
Values initialEstimate;
|
||||
initialEstimate.insert(X(0), Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(X(1), Pose2(2.3, 0.1, -0.2));
|
||||
initialEstimate.insert(L(0), Point2(1.8, 2.1));
|
||||
initialEstimate.insert(L(1), Point2(4.1, 1.8));
|
||||
|
||||
// We want to eliminate variables not connected to DCFactors first.
|
||||
Ordering ordering;
|
||||
ordering += L(0);
|
||||
ordering += L(1);
|
||||
ordering += X(0);
|
||||
ordering += X(1);
|
||||
|
||||
HybridGaussianFactorGraph linearized = fg.linearize(initialEstimate);
|
||||
gtsam::HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
gtsam::HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
|
||||
// This should NOT fail
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
linearized.eliminatePartialSequential(ordering);
|
||||
EXPECT_LONGS_EQUAL(4, hybridBayesNet->size());
|
||||
EXPECT_LONGS_EQUAL(1, remainingFactorGraph->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,58 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridValues.cpp
|
||||
* @date Jul 28, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
TEST(HybridValues, basics) {
|
||||
HybridValues values;
|
||||
values.insert(99, Vector2(2, 3));
|
||||
values.insert(100, 3);
|
||||
EXPECT(assert_equal(values.at(99), Vector2(2, 3)));
|
||||
EXPECT(assert_equal(values.atDiscrete(100), int(3)));
|
||||
|
||||
values.print();
|
||||
|
||||
HybridValues values2;
|
||||
values2.insert(100, 3);
|
||||
values2.insert(99, Vector2(2, 3));
|
||||
EXPECT(assert_equal(values2, values));
|
||||
|
||||
values2.insert(98, Vector2(2, 3));
|
||||
EXPECT(!assert_equal(values2, values));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -116,7 +116,7 @@ class FactorGraph {
|
|||
using HasDerivedValueType = typename std::enable_if<
|
||||
std::is_base_of<FactorType, typename T::value_type>::value>::type;
|
||||
|
||||
/// Check if T has a value_type derived from FactorType.
|
||||
/// Check if T has a pointer type derived from FactorType.
|
||||
template <typename T>
|
||||
using HasDerivedElementType = typename std::enable_if<std::is_base_of<
|
||||
FactorType, typename T::value_type::element_type>::value>::type;
|
||||
|
|
|
@ -33,7 +33,7 @@ struct ConstructorTraversalData {
|
|||
typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
|
||||
|
||||
ConstructorTraversalData* const parentData;
|
||||
sharedNode myJTNode;
|
||||
sharedNode junctionTreeNode;
|
||||
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
|
||||
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
|
||||
|
||||
|
@ -53,8 +53,9 @@ struct ConstructorTraversalData {
|
|||
// a traversal data structure with its own JT node, and create a child
|
||||
// pointer in its parent.
|
||||
ConstructorTraversalData myData = ConstructorTraversalData(&parentData);
|
||||
myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.myJTNode->addChild(myData.myJTNode);
|
||||
myData.junctionTreeNode =
|
||||
boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.junctionTreeNode->addChild(myData.junctionTreeNode);
|
||||
return myData;
|
||||
}
|
||||
|
||||
|
@ -91,7 +92,7 @@ struct ConstructorTraversalData {
|
|||
myData.parentData->childSymbolicConditionals.push_back(myConditional);
|
||||
myData.parentData->childSymbolicFactors.push_back(mySeparatorFactor);
|
||||
|
||||
sharedNode node = myData.myJTNode;
|
||||
sharedNode node = myData.junctionTreeNode;
|
||||
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
|
||||
myData.childSymbolicConditionals;
|
||||
node->problemSize_ = (int) (myConditional->size() * symbolicFactors.size());
|
||||
|
@ -138,14 +139,14 @@ JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
|
|||
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
|
||||
typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
|
||||
Data rootData(0);
|
||||
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
|
||||
// the junction tree roots
|
||||
// Make a dummy node to gather the junction tree roots
|
||||
rootData.junctionTreeNode = boost::make_shared<typename Base::Node>();
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
Data::ConstructorTraversalVisitorPre,
|
||||
Data::ConstructorTraversalVisitorPostAlg2);
|
||||
|
||||
// Assign roots from the dummy node
|
||||
this->addChildrenAsRoots(rootData.myJTNode);
|
||||
this->addChildrenAsRoots(rootData.junctionTreeNode);
|
||||
|
||||
// Transfer remaining factors from elimination tree
|
||||
Base::remainingFactors_ = eliminationTree.remainingFactors();
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SymbolicISAM.h
|
||||
* @file GaussianISAM.h
|
||||
* @date July 29, 2013
|
||||
* @author Frank Dellaert
|
||||
* @author Richard Roberts
|
||||
|
|
|
@ -198,6 +198,33 @@ TEST (Serialization, gaussian_factor_graph) {
|
|||
EXPECT(equalsBinary(graph));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
TEST(Serialization, gaussian_bayes_net) {
|
||||
// Create an arbitrary Bayes Net
|
||||
GaussianBayesNet gbn;
|
||||
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
||||
0, Vector2(1.0, 2.0), (Matrix2() << 3.0, 4.0, 0.0, 6.0).finished(), 3,
|
||||
(Matrix2() << 7.0, 8.0, 9.0, 10.0).finished(), 4,
|
||||
(Matrix2() << 11.0, 12.0, 13.0, 14.0).finished()));
|
||||
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
||||
1, Vector2(15.0, 16.0), (Matrix2() << 17.0, 18.0, 0.0, 20.0).finished(),
|
||||
2, (Matrix2() << 21.0, 22.0, 23.0, 24.0).finished(), 4,
|
||||
(Matrix2() << 25.0, 26.0, 27.0, 28.0).finished()));
|
||||
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
||||
2, Vector2(29.0, 30.0), (Matrix2() << 31.0, 32.0, 0.0, 34.0).finished(),
|
||||
3, (Matrix2() << 35.0, 36.0, 37.0, 38.0).finished()));
|
||||
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
||||
3, Vector2(39.0, 40.0), (Matrix2() << 41.0, 42.0, 0.0, 44.0).finished(),
|
||||
4, (Matrix2() << 45.0, 46.0, 47.0, 48.0).finished()));
|
||||
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
||||
4, Vector2(49.0, 50.0), (Matrix2() << 51.0, 52.0, 0.0, 54.0).finished()));
|
||||
|
||||
std::string serialized = serialize(gbn);
|
||||
GaussianBayesNet actual;
|
||||
deserialize(serialized, actual);
|
||||
EXPECT(assert_equal(gbn, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (Serialization, gaussian_bayes_tree) {
|
||||
const Key x1=1, x2=2, x3=3, x4=4;
|
||||
|
|
|
@ -93,9 +93,14 @@ void PreintegratedCombinedMeasurements::resetIntegration() {
|
|||
//------------------------------------------------------------------------------
|
||||
void PreintegratedCombinedMeasurements::integrateMeasurement(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
|
||||
if (dt <= 0) {
|
||||
throw std::runtime_error(
|
||||
"PreintegratedCombinedMeasurements::integrateMeasurement: dt <=0");
|
||||
}
|
||||
|
||||
// Update preintegrated measurements.
|
||||
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix93 B, C;
|
||||
Matrix9 A; // Jacobian wrt preintegrated measurements without bias (df/dx)
|
||||
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
|
||||
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first
|
||||
|
@ -105,47 +110,78 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
|
|||
// and preintegrated measurements
|
||||
|
||||
// Single Jacobians to propagate covariance
|
||||
// TODO(frank): should we not also account for bias on position?
|
||||
Matrix3 theta_H_biasOmega = -C.topRows<3>();
|
||||
Matrix3 vel_H_biasAcc = -B.bottomRows<3>();
|
||||
Matrix3 theta_H_biasOmega = C.topRows<3>();
|
||||
Matrix3 pos_H_biasAcc = B.middleRows<3>(3);
|
||||
Matrix3 vel_H_biasAcc = B.bottomRows<3>();
|
||||
|
||||
Matrix3 theta_H_biasOmegaInit = -theta_H_biasOmega;
|
||||
Matrix3 pos_H_biasAccInit = -pos_H_biasAcc;
|
||||
Matrix3 vel_H_biasAccInit = -vel_H_biasAcc;
|
||||
|
||||
// overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Eigen::Matrix<double, 15, 15> F;
|
||||
F.setZero();
|
||||
F.block<9, 9>(0, 0) = A;
|
||||
F.block<3, 3>(0, 12) = theta_H_biasOmega;
|
||||
F.block<3, 3>(3, 9) = pos_H_biasAcc;
|
||||
F.block<3, 3>(6, 9) = vel_H_biasAcc;
|
||||
F.block<6, 6>(9, 9) = I_6x6;
|
||||
|
||||
// Update the uncertainty on the state (matrix F in [4]).
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose();
|
||||
|
||||
// propagate uncertainty
|
||||
// TODO(frank): use noiseModel routine so we can have arbitrary noise models.
|
||||
const Matrix3& aCov = p().accelerometerCovariance;
|
||||
const Matrix3& wCov = p().gyroscopeCovariance;
|
||||
const Matrix3& iCov = p().integrationCovariance;
|
||||
const Matrix6& bInitCov = p().biasAccOmegaInt;
|
||||
|
||||
// first order uncertainty propagation
|
||||
// Optimized matrix multiplication (1/dt) * G * measurementCovariance *
|
||||
// G.transpose()
|
||||
// Optimized matrix mult: (1/dt) * G * measurementCovariance * G.transpose()
|
||||
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
|
||||
G_measCov_Gt.setZero(15, 15);
|
||||
|
||||
const Matrix3& bInitCov11 = bInitCov.block<3, 3>(0, 0) / dt;
|
||||
const Matrix3& bInitCov12 = bInitCov.block<3, 3>(0, 3) / dt;
|
||||
const Matrix3& bInitCov21 = bInitCov.block<3, 3>(3, 0) / dt;
|
||||
const Matrix3& bInitCov22 = bInitCov.block<3, 3>(3, 3) / dt;
|
||||
|
||||
// BLOCK DIAGONAL TERMS
|
||||
D_t_t(&G_measCov_Gt) = dt * iCov;
|
||||
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc
|
||||
* (aCov + p().biasAccOmegaInt.block<3, 3>(0, 0))
|
||||
* (vel_H_biasAcc.transpose());
|
||||
D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega
|
||||
* (wCov + p().biasAccOmegaInt.block<3, 3>(3, 3))
|
||||
* (theta_H_biasOmega.transpose());
|
||||
D_R_R(&G_measCov_Gt) =
|
||||
(theta_H_biasOmega * (wCov / dt) * theta_H_biasOmega.transpose()) //
|
||||
+
|
||||
(theta_H_biasOmegaInit * bInitCov22 * theta_H_biasOmegaInit.transpose());
|
||||
|
||||
D_t_t(&G_measCov_Gt) =
|
||||
(pos_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) //
|
||||
+ (pos_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose()) //
|
||||
+ (dt * iCov);
|
||||
|
||||
D_v_v(&G_measCov_Gt) =
|
||||
(vel_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) //
|
||||
+ (vel_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
|
||||
|
||||
D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
|
||||
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;
|
||||
|
||||
// OFF BLOCK DIAGONAL TERMS
|
||||
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0)
|
||||
* theta_H_biasOmega.transpose();
|
||||
D_v_R(&G_measCov_Gt) = temp;
|
||||
D_R_v(&G_measCov_Gt) = temp.transpose();
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
|
||||
D_R_t(&G_measCov_Gt) =
|
||||
theta_H_biasOmegaInit * bInitCov21 * pos_H_biasAccInit.transpose();
|
||||
D_R_v(&G_measCov_Gt) =
|
||||
theta_H_biasOmegaInit * bInitCov21 * vel_H_biasAccInit.transpose();
|
||||
D_t_R(&G_measCov_Gt) =
|
||||
pos_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
|
||||
D_t_v(&G_measCov_Gt) =
|
||||
(pos_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) +
|
||||
(pos_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
|
||||
D_v_R(&G_measCov_Gt) =
|
||||
vel_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
|
||||
D_v_t(&G_measCov_Gt) =
|
||||
(vel_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) +
|
||||
(vel_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose());
|
||||
|
||||
preintMeasCov_.noalias() += G_measCov_Gt;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -253,6 +289,5 @@ std::ostream& operator<<(std::ostream& os, const CombinedImuFactor& f) {
|
|||
os << " noise model sigmas: " << f.noiseModel_->sigmas().transpose();
|
||||
return os;
|
||||
}
|
||||
}
|
||||
/// namespace gtsam
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -51,6 +51,7 @@ typedef ManifoldPreintegration PreintegrationType;
|
|||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
* Available in this repo as "PreintegratedIMUJacobians.pdf".
|
||||
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
|
||||
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
|
||||
* Robotics: Science and Systems (RSS), 2015.
|
||||
|
@ -61,7 +62,7 @@ typedef ManifoldPreintegration PreintegrationType;
|
|||
struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
|
||||
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
|
||||
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
|
||||
Matrix6 biasAccOmegaInt; ///< covariance of bias used for pre-integration
|
||||
Matrix6 biasAccOmegaInt; ///< covariance of bias used as initial estimate.
|
||||
|
||||
/// Default constructor makes uninitialized params struct.
|
||||
/// Used for serialization.
|
||||
|
@ -92,11 +93,11 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
|
|||
|
||||
void setBiasAccCovariance(const Matrix3& cov) { biasAccCovariance=cov; }
|
||||
void setBiasOmegaCovariance(const Matrix3& cov) { biasOmegaCovariance=cov; }
|
||||
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInt=cov; }
|
||||
void setBiasAccOmegaInit(const Matrix6& cov) { biasAccOmegaInt=cov; }
|
||||
|
||||
const Matrix3& getBiasAccCovariance() const { return biasAccCovariance; }
|
||||
const Matrix3& getBiasOmegaCovariance() const { return biasOmegaCovariance; }
|
||||
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInt; }
|
||||
const Matrix6& getBiasAccOmegaInit() const { return biasAccOmegaInt; }
|
||||
|
||||
private:
|
||||
|
||||
|
|
|
@ -105,7 +105,7 @@ public:
|
|||
/// @{
|
||||
|
||||
/** identity for group operation */
|
||||
static ConstantBias identity() {
|
||||
static ConstantBias Identity() {
|
||||
return ConstantBias();
|
||||
}
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(
|
|||
|
||||
// Update preintegrated measurements (also get Jacobian)
|
||||
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix93 B, C;
|
||||
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
|
||||
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
|
||||
|
||||
// first order covariance propagation:
|
||||
|
@ -73,11 +73,13 @@ void PreintegratedImuMeasurements::integrateMeasurement(
|
|||
const Matrix3& iCov = p().integrationCovariance;
|
||||
|
||||
// (1/dt) allows to pass from continuous time noise to discrete time noise
|
||||
// Update the uncertainty on the state (matrix A in [4]).
|
||||
preintMeasCov_ = A * preintMeasCov_ * A.transpose();
|
||||
// These 2 updates account for uncertainty on the IMU measurement (matrix B in [4]).
|
||||
preintMeasCov_.noalias() += B * (aCov / dt) * B.transpose();
|
||||
preintMeasCov_.noalias() += C * (wCov / dt) * C.transpose();
|
||||
|
||||
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3
|
||||
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3 (9x3 matrix)
|
||||
preintMeasCov_.block<3, 3>(3, 3).noalias() += iCov * dt;
|
||||
}
|
||||
|
||||
|
|
|
@ -53,6 +53,7 @@ typedef ManifoldPreintegration PreintegrationType;
|
|||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
* Available in this repo as "PreintegratedIMUJacobians.pdf".
|
||||
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, "IMU Preintegration on
|
||||
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation",
|
||||
* Robotics: Science and Systems (RSS), 2015.
|
||||
|
|
|
@ -157,9 +157,9 @@ Vector9 PreintegrationBase::computeError(const NavState& state_i,
|
|||
state_j.localCoordinates(predictedState_j, H2 ? &D_error_state_j : 0,
|
||||
H1 || H3 ? &D_error_predict : 0);
|
||||
|
||||
if (H1) *H1 << D_error_predict* D_predict_state_i;
|
||||
if (H1) *H1 << D_error_predict * D_predict_state_i;
|
||||
if (H2) *H2 << D_error_state_j;
|
||||
if (H3) *H3 << D_error_predict* D_predict_bias_i;
|
||||
if (H3) *H3 << D_error_predict * D_predict_bias_i;
|
||||
|
||||
return error;
|
||||
}
|
||||
|
|
|
@ -15,8 +15,8 @@
|
|||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/navigation/ScenarioRunner.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/navigation/ScenarioRunner.h>
|
||||
|
||||
#include <boost/assign.hpp>
|
||||
#include <cmath>
|
||||
|
@ -105,4 +105,62 @@ Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
|
|||
return Q / (N - 1);
|
||||
}
|
||||
|
||||
PreintegratedCombinedMeasurements CombinedScenarioRunner::integrate(
|
||||
double T, const Bias& estimatedBias, bool corrupted) const {
|
||||
gttic_(integrate);
|
||||
PreintegratedCombinedMeasurements pim(p_, estimatedBias);
|
||||
|
||||
const double dt = imuSampleTime();
|
||||
const size_t nrSteps = T / dt;
|
||||
double t = 0;
|
||||
for (size_t k = 0; k < nrSteps; k++, t += dt) {
|
||||
Vector3 measuredOmega =
|
||||
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
|
||||
Vector3 measuredAcc =
|
||||
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
|
||||
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
|
||||
}
|
||||
|
||||
return pim;
|
||||
}
|
||||
|
||||
NavState CombinedScenarioRunner::predict(
|
||||
const PreintegratedCombinedMeasurements& pim,
|
||||
const Bias& estimatedBias) const {
|
||||
const NavState state_i(scenario().pose(0), scenario().velocity_n(0));
|
||||
return pim.predict(state_i, estimatedBias);
|
||||
}
|
||||
|
||||
Eigen::Matrix<double, 15, 15> CombinedScenarioRunner::estimateCovariance(
|
||||
double T, size_t N, const Bias& estimatedBias) const {
|
||||
gttic_(estimateCovariance);
|
||||
|
||||
// Get predict prediction from ground truth measurements
|
||||
NavState prediction = predict(integrate(T));
|
||||
|
||||
// Sample !
|
||||
Matrix samples(15, N);
|
||||
Vector15 sum = Vector15::Zero();
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
auto pim = integrate(T, estimatedBias, true);
|
||||
NavState sampled = predict(pim);
|
||||
Vector15 xi = Vector15::Zero();
|
||||
xi << sampled.localCoordinates(prediction),
|
||||
(estimatedBias_.vector() - estimatedBias.vector());
|
||||
samples.col(i) = xi;
|
||||
sum += xi;
|
||||
}
|
||||
|
||||
// Compute MC covariance
|
||||
Vector15 sampleMean = sum / N;
|
||||
Eigen::Matrix<double, 15, 15> Q;
|
||||
Q.setZero();
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
Vector15 xi = samples.col(i) - sampleMean;
|
||||
Q += xi * xi.transpose();
|
||||
}
|
||||
|
||||
return Q / (N - 1);
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -16,9 +16,10 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include <gtsam/linear/Sampler.h>
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
#include <gtsam/navigation/Scenario.h>
|
||||
#include <gtsam/linear/Sampler.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -66,10 +67,10 @@ class GTSAM_EXPORT ScenarioRunner {
|
|||
// also, uses g=10 for easy debugging
|
||||
const Vector3& gravity_n() const { return p_->n_gravity; }
|
||||
|
||||
const Scenario& scenario() const { return scenario_; }
|
||||
|
||||
// A gyro simply measures angular velocity in body frame
|
||||
Vector3 actualAngularVelocity(double t) const {
|
||||
return scenario_.omega_b(t);
|
||||
}
|
||||
Vector3 actualAngularVelocity(double t) const { return scenario_.omega_b(t); }
|
||||
|
||||
// An accelerometer measures acceleration in body, but not gravity
|
||||
Vector3 actualSpecificForce(double t) const {
|
||||
|
@ -106,4 +107,39 @@ class GTSAM_EXPORT ScenarioRunner {
|
|||
Matrix6 estimateNoiseCovariance(size_t N = 1000) const;
|
||||
};
|
||||
|
||||
/*
|
||||
* Simple class to test navigation scenarios with CombinedImuMeasurements.
|
||||
* Takes a trajectory scenario as input, and can generate IMU measurements
|
||||
*/
|
||||
class GTSAM_EXPORT CombinedScenarioRunner : public ScenarioRunner {
|
||||
public:
|
||||
typedef boost::shared_ptr<PreintegrationCombinedParams> SharedParams;
|
||||
|
||||
private:
|
||||
const SharedParams p_;
|
||||
const Bias estimatedBias_;
|
||||
|
||||
public:
|
||||
CombinedScenarioRunner(const Scenario& scenario, const SharedParams& p,
|
||||
double imuSampleTime = 1.0 / 100.0,
|
||||
const Bias& bias = Bias())
|
||||
: ScenarioRunner(scenario, static_cast<ScenarioRunner::SharedParams>(p),
|
||||
imuSampleTime, bias),
|
||||
p_(p),
|
||||
estimatedBias_(bias) {}
|
||||
|
||||
/// Integrate measurements for T seconds into a PIM
|
||||
PreintegratedCombinedMeasurements integrate(
|
||||
double T, const Bias& estimatedBias = Bias(),
|
||||
bool corrupted = false) const;
|
||||
|
||||
/// Predict predict given a PIM
|
||||
NavState predict(const PreintegratedCombinedMeasurements& pim,
|
||||
const Bias& estimatedBias = Bias()) const;
|
||||
|
||||
/// Compute a Monte Carlo estimate of the predict covariance using N samples
|
||||
Eigen::Matrix<double, 15, 15> estimateCovariance(
|
||||
double T, size_t N = 1000, const Bias& estimatedBias = Bias()) const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -17,7 +17,7 @@ class ConstantBias {
|
|||
bool equals(const gtsam::imuBias::ConstantBias& expected, double tol) const;
|
||||
|
||||
// Group
|
||||
static gtsam::imuBias::ConstantBias identity();
|
||||
static gtsam::imuBias::ConstantBias Identity();
|
||||
|
||||
// Operator Overloads
|
||||
gtsam::imuBias::ConstantBias operator-() const;
|
||||
|
@ -165,11 +165,11 @@ virtual class PreintegrationCombinedParams : gtsam::PreintegrationParams {
|
|||
|
||||
void setBiasAccCovariance(Matrix cov);
|
||||
void setBiasOmegaCovariance(Matrix cov);
|
||||
void setBiasAccOmegaInt(Matrix cov);
|
||||
void setBiasAccOmegaInit(Matrix cov);
|
||||
|
||||
Matrix getBiasAccCovariance() const ;
|
||||
Matrix getBiasOmegaCovariance() const ;
|
||||
Matrix getBiasAccOmegaInt() const;
|
||||
Matrix getBiasAccOmegaInit() const;
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -16,18 +16,19 @@
|
|||
* @author Frank Dellaert
|
||||
* @author Richard Roberts
|
||||
* @author Stephen Williams
|
||||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
#include <gtsam/navigation/ScenarioRunner.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <list>
|
||||
|
||||
|
@ -40,12 +41,15 @@ static boost::shared_ptr<PreintegratedCombinedMeasurements::Params> Params() {
|
|||
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
|
||||
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;
|
||||
p->integrationCovariance = 0.0001 * I_3x3;
|
||||
p->biasAccCovariance = Z_3x3;
|
||||
p->biasOmegaCovariance = Z_3x3;
|
||||
p->biasAccOmegaInt = Z_6x6;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
} // namespace testing
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, PreintegratedMeasurements ) {
|
||||
TEST(CombinedImuFactor, PreintegratedMeasurements ) {
|
||||
// Linearization point
|
||||
Bias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); ///< Current estimate of acceleration and angular rate biases
|
||||
|
||||
|
@ -71,8 +75,9 @@ TEST( CombinedImuFactor, PreintegratedMeasurements ) {
|
|||
DOUBLES_EQUAL(expected1.deltaTij(), actual1.deltaTij(), tol);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( CombinedImuFactor, ErrorWithBiases ) {
|
||||
TEST(CombinedImuFactor, ErrorWithBiases ) {
|
||||
Bias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Bias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)), Point3(5.0, 1.0, -50.0));
|
||||
|
@ -203,6 +208,114 @@ TEST(CombinedImuFactor, PredictRotation) {
|
|||
EXPECT(assert_equal(expectedPose, actual.pose(), tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Testing covariance to check if all the jacobians are accounted for.
|
||||
TEST(CombinedImuFactor, CheckCovariance) {
|
||||
auto params = PreintegrationCombinedParams::MakeSharedU(9.81);
|
||||
|
||||
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
|
||||
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
|
||||
params->setIntegrationCovariance(pow(0.0, 2) * I_3x3);
|
||||
params->setOmegaCoriolis(Vector3::Zero());
|
||||
|
||||
imuBias::ConstantBias currentBias;
|
||||
|
||||
PreintegratedCombinedMeasurements actual(params, currentBias);
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredAcc(0.1577, -0.8251, 9.6111);
|
||||
Vector3 measuredOmega(-0.0210, 0.0311, 0.0145);
|
||||
double deltaT = 0.01;
|
||||
|
||||
actual.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
Eigen::Matrix<double, 15, 15> expected;
|
||||
expected << 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01;
|
||||
|
||||
// regression
|
||||
EXPECT(assert_equal(expected, actual.preintMeasCov()));
|
||||
}
|
||||
|
||||
// Test that the covariance values for the ImuFactor and the CombinedImuFactor
|
||||
// (top-left 9x9) are the same
|
||||
TEST(CombinedImuFactor, SameCovariance) {
|
||||
// IMU measurements and time delta
|
||||
Vector3 accMeas(0.1577, -0.8251, 9.6111);
|
||||
Vector3 omegaMeas(-0.0210, 0.0311, 0.0145);
|
||||
double deltaT = 0.01;
|
||||
|
||||
// Assume zero bias
|
||||
imuBias::ConstantBias currentBias;
|
||||
|
||||
// Define params for ImuFactor
|
||||
auto params = PreintegrationParams::MakeSharedU();
|
||||
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
|
||||
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
|
||||
params->setIntegrationCovariance(pow(0, 2) * I_3x3);
|
||||
params->setOmegaCoriolis(Vector3::Zero());
|
||||
|
||||
// The IMU preintegration object for ImuFactor
|
||||
PreintegratedImuMeasurements pim(params, currentBias);
|
||||
pim.integrateMeasurement(accMeas, omegaMeas, deltaT);
|
||||
|
||||
// Define params for CombinedImuFactor
|
||||
auto combined_params = PreintegrationCombinedParams::MakeSharedU();
|
||||
combined_params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
|
||||
combined_params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
|
||||
// Set bias integration covariance explicitly to zero
|
||||
combined_params->setIntegrationCovariance(Z_3x3);
|
||||
combined_params->setOmegaCoriolis(Z_3x1);
|
||||
// Set bias initial covariance explicitly to zero
|
||||
combined_params->setBiasAccOmegaInit(Z_6x6);
|
||||
|
||||
// The IMU preintegration object for CombinedImuFactor
|
||||
PreintegratedCombinedMeasurements cpim(combined_params, currentBias);
|
||||
cpim.integrateMeasurement(accMeas, omegaMeas, deltaT);
|
||||
|
||||
// Assert if the noise covariance
|
||||
EXPECT(assert_equal(pim.preintMeasCov(),
|
||||
cpim.preintMeasCov().block(0, 0, 9, 9)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(CombinedImuFactor, Accelerating) {
|
||||
const double a = 0.2, v = 50;
|
||||
|
||||
// Set up body pointing towards y axis, and start at 10,20,0 with velocity
|
||||
// going in X The body itself has Z axis pointing down
|
||||
const Rot3 nRb(Point3(0, 1, 0), Point3(1, 0, 0), Point3(0, 0, -1));
|
||||
const Point3 initial_position(10, 20, 0);
|
||||
const Vector3 initial_velocity(v, 0, 0);
|
||||
|
||||
const AcceleratingScenario scenario(nRb, initial_position, initial_velocity,
|
||||
Vector3(a, 0, 0));
|
||||
|
||||
const double T = 3.0; // seconds
|
||||
|
||||
CombinedScenarioRunner runner(scenario, testing::Params(), T / 10);
|
||||
|
||||
PreintegratedCombinedMeasurements pim = runner.integrate(T);
|
||||
EXPECT(assert_equal(scenario.pose(T), runner.predict(pim).pose(), 1e-9));
|
||||
|
||||
auto estimatedCov = runner.estimateCovariance(T, 100);
|
||||
Eigen::Matrix<double, 15, 15> expected = pim.preintMeasCov();
|
||||
EXPECT(assert_equal(estimatedCov, expected, 0.1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -19,8 +19,6 @@
|
|||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using JacobianVector = std::vector<Matrix>;
|
||||
|
|
|
@ -42,7 +42,7 @@ static double Chi2inv(const double alpha, const size_t dofs) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
template<class GncParameters>
|
||||
class GTSAM_EXPORT GncOptimizer {
|
||||
class GncOptimizer {
|
||||
public:
|
||||
/// For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer.
|
||||
typedef typename GncParameters::OptimizerType BaseOptimizer;
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue