Now exact derivatives with beautiful functor

release/4.3a0
Frank Dellaert 2016-02-01 09:29:50 -08:00
parent 3ed5d05b5b
commit 7c2560e977
1 changed files with 12 additions and 26 deletions

View File

@ -116,45 +116,31 @@ pair<Vector3, Vector3> PreintegrationBase::correctMeasurementsBySensorPose(
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// See extensive discussion in ImuFactor.lyx // See extensive discussion in ImuFactor.lyx
Vector9 PreintegrationBase::UpdatePreintegrated(const Vector3& a_body, Vector9 PreintegrationBase::UpdatePreintegrated(
const Vector3& w_body, double dt, const Vector3& a_body, const Vector3& w_body, double dt,
const Vector9& preintegrated, const Vector9& preintegrated, OptionalJacobian<9, 9> A,
OptionalJacobian<9, 9> A, OptionalJacobian<9, 3> B, OptionalJacobian<9, 3> C) {
OptionalJacobian<9, 3> B, // TODO(frank): expose DexpImpl functor and save on computation
OptionalJacobian<9, 3> C) { static const MultiplyWithInverseFunction<Vector3, 3> applyInvDexp(SO3::ApplyExpmapDerivative);
const auto theta = preintegrated.segment<3>(0); const auto theta = preintegrated.segment<3>(0);
const auto position = preintegrated.segment<3>(3); const auto position = preintegrated.segment<3>(3);
const auto velocity = preintegrated.segment<3>(6); const auto velocity = preintegrated.segment<3>(6);
// Calculate exact mean propagation // Calculate exact mean propagation
Matrix3 H; Matrix3 H, invH, invHw_H_theta;
const Matrix3 R = Rot3::Expmap(theta, H).matrix(); const Vector invHw = applyInvDexp(theta, w_body, A ? &invHw_H_theta : 0, invH);
const Matrix3 invH = H.inverse(); const Matrix3 R = Rot3::Expmap(theta, A ? &H : 0).matrix();
const Vector3 a_nav = R * a_body; const Vector3 a_nav = R * a_body;
const double dt22 = 0.5 * dt * dt; const double dt22 = 0.5 * dt * dt;
Vector9 preintegratedPlus; Vector9 preintegratedPlus;
preintegratedPlus << // preintegratedPlus << //
theta + invH* w_body* dt, // theta theta + invHw* dt, // theta
position + velocity* dt + a_nav* dt22, // position position + velocity* dt + a_nav* dt22, // position
velocity + a_nav* dt; // velocity velocity + a_nav* dt; // velocity
if (A) { if (A) {
#define USE_NUMERICAL_DERIVATIVE
#ifdef USE_NUMERICAL_DERIVATIVE
// The use of this yields much more accurate derivatives, but it's slow!
// TODO(frank): find a cheap closed form solution (look at Iserles)
auto f = [w_body](const Vector3& theta) {
return Rot3::ExpmapDerivative(theta).inverse() * w_body;
};
const Matrix3 invHw_H_theta =
numericalDerivative11<Vector3, Vector3>(f, theta);
#else
// First order (small angle) approximation of derivative of invH*w:
// NOTE(frank): Rot3::ExpmapDerivative(w_body) is a less accurate approximation
const Matrix3 invHw_H_theta = skewSymmetric(-0.5 * w_body);
#endif
// Exact derivative of R*a with respect to theta: // Exact derivative of R*a with respect to theta:
const Matrix3 a_nav_H_theta = R * skewSymmetric(-a_body) * H; const Matrix3 a_nav_H_theta = R * skewSymmetric(-a_body) * H;