Refactor power and accelerated method
parent
d6e2546cf5
commit
758c4b061d
|
|
@ -13,7 +13,8 @@
|
|||
* @file PowerMethod.h
|
||||
* @date Sept 2020
|
||||
* @author Jing Wu
|
||||
* @brief accelerated power method for fast eigenvalue and eigenvector computation
|
||||
* @brief accelerated power method for fast eigenvalue and eigenvector
|
||||
* computation
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
|
@ -24,15 +25,15 @@
|
|||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Sparse>
|
||||
#include <algorithm>
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <map>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <chrono>
|
||||
#include <random>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
@ -41,9 +42,11 @@ using Sparse = Eigen::SparseMatrix<double>;
|
|||
/* ************************************************************************* */
|
||||
/// MINIMUM EIGENVALUE COMPUTATIONS
|
||||
|
||||
struct PowerFunctor {
|
||||
// Template argument Operator just needs multiplication operator
|
||||
template <class Operator>
|
||||
class PowerMethod {
|
||||
/**
|
||||
* \brief Computer i-th Eigenpair with power method
|
||||
* \brief Compute maximum Eigenpair with power method
|
||||
*
|
||||
* References :
|
||||
* 1) Rosen, D. and Carlone, L., 2017, September. Computational
|
||||
|
|
@ -52,144 +55,180 @@ struct PowerFunctor {
|
|||
* 2) Yulun Tian and Kasra Khosoussi and David M. Rosen and Jonathan P. How,
|
||||
* 2020, Aug, Distributed Certifiably Correct Pose-Graph Optimization, Arxiv
|
||||
* 3) C. de Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, “Accelerated
|
||||
* stochastic power iteration,” in Proc. Mach. Learn. Res., no. 84, 2018, pp. 58–67
|
||||
* stochastic power iteration,” in Proc. Mach. Learn. Res., no. 84, 2018, pp.
|
||||
* 58–67
|
||||
*
|
||||
* It performs the following iteration: \f$ x_{k+1} = A * x_k + \beta *
|
||||
* x_{k-1} \f$ where A is the certificate matrix, x is the ritz vector
|
||||
* x_{k-1} \f$ where A is the certificate matrix, x is the Ritz vector
|
||||
*
|
||||
*/
|
||||
|
||||
public:
|
||||
// Const reference to an externally-held matrix whose minimum-eigenvalue we
|
||||
// want to compute
|
||||
const Sparse &A_;
|
||||
const Operator &A_;
|
||||
|
||||
const Matrix &S_;
|
||||
const int dim_; // dimension of Matrix A
|
||||
|
||||
const int m_n_; // dimension of Matrix A
|
||||
const int m_nev_; // number of eigenvalues required
|
||||
size_t nrIterations_; // number of iterations
|
||||
|
||||
// flag for running power method or accelerated power method. If false, the former, vice versa.
|
||||
bool accelerated_;
|
||||
private:
|
||||
double ritzValues_; // all Ritz eigenvalues
|
||||
Vector ritzVectors_; // all Ritz eigenvectors
|
||||
|
||||
// a Polyak momentum term
|
||||
double beta_;
|
||||
public:
|
||||
// Constructor
|
||||
explicit PowerMethod(const Operator &A, const Vector &initial)
|
||||
: A_(A), dim_(A.rows()), nrIterations_(0) {
|
||||
Vector x0;
|
||||
x0 = initial.isZero(0) ? Vector::Random(dim_) : initial;
|
||||
x0.normalize();
|
||||
|
||||
// const int m_ncv_; // dimention of orthonormal basis subspace
|
||||
size_t m_niter_; // number of iterations
|
||||
// initialize Ritz eigen values
|
||||
ritzValues_ = 0.0;
|
||||
|
||||
private:
|
||||
Vector ritz_val_; // all ritz eigenvalues
|
||||
Matrix ritz_vectors_; // all ritz eigenvectors
|
||||
Vector ritz_conv_; // store whether the ritz eigenpair converged
|
||||
Vector sorted_ritz_val_; // sorted converged eigenvalue
|
||||
Matrix sorted_ritz_vectors_; // sorted converged eigenvectors
|
||||
// initialize Ritz eigen vectors
|
||||
ritzVectors_.resize(dim_, 1);
|
||||
ritzVectors_.setZero();
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
explicit PowerFunctor(const Sparse& A, const Matrix& S, int nev, int ncv,
|
||||
bool accelerated = false, double beta = 0)
|
||||
: A_(A),
|
||||
S_(S),
|
||||
m_n_(A.rows()),
|
||||
m_nev_(nev),
|
||||
// m_ncv_(ncv > m_n_ ? m_n_ : ncv),
|
||||
accelerated_(accelerated),
|
||||
beta_(beta),
|
||||
m_niter_(0) {
|
||||
// Do nothing
|
||||
}
|
||||
|
||||
int rows() const { return A_.rows(); }
|
||||
int cols() const { return A_.cols(); }
|
||||
|
||||
// Matrix-vector multiplication operation
|
||||
Vector perform_op(const Vector& x1, const Vector& x0) const {
|
||||
// Do the multiplication
|
||||
Vector x2 = A_ * x1 - beta_ * x0;
|
||||
x2.normalize();
|
||||
return x2;
|
||||
ritzVectors_.col(0) = update(x0);
|
||||
perturb();
|
||||
}
|
||||
|
||||
Vector perform_op(const Vector& x1, const Vector& x0, const double beta) const {
|
||||
Vector x2 = A_ * x1 - beta * x0;
|
||||
x2.normalize();
|
||||
return x2;
|
||||
Vector update(const Vector &x) const {
|
||||
Vector y = A_ * x;
|
||||
y.normalize();
|
||||
return y;
|
||||
}
|
||||
|
||||
Vector perform_op(const Vector& x1) const {
|
||||
Vector x2 = A_ * x1;
|
||||
x2.normalize();
|
||||
return x2;
|
||||
}
|
||||
Vector update() const { return update(ritzVectors_); }
|
||||
|
||||
Vector perform_op(int i) const {
|
||||
if (accelerated_) {
|
||||
Vector x1 = ritz_vectors_.col(i-1);
|
||||
Vector x2 = ritz_vectors_.col(i-2);
|
||||
return perform_op(x1, x2);
|
||||
} else
|
||||
return perform_op(ritz_vectors_.col(i-1));
|
||||
}
|
||||
void updateRitz(const Vector &ritz) { ritzVectors_ = ritz; }
|
||||
|
||||
long next_long_rand(long seed) {
|
||||
const unsigned int m_a = 16807;
|
||||
const unsigned long m_max = 2147483647L;
|
||||
unsigned long lo, hi;
|
||||
Vector getRitz() { return ritzVectors_; }
|
||||
|
||||
lo = m_a * (long)(seed & 0xFFFF);
|
||||
hi = m_a * (long)((unsigned long)seed >> 16);
|
||||
lo += (hi & 0x7FFF) << 16;
|
||||
if (lo > m_max) {
|
||||
lo &= m_max;
|
||||
++lo;
|
||||
void perturb() {
|
||||
// generate a 0.03*||x_0||_2 as stated in David's paper
|
||||
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
|
||||
std::mt19937 generator(seed);
|
||||
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
|
||||
|
||||
int n = dim_;
|
||||
Vector disturb;
|
||||
disturb.resize(n);
|
||||
disturb.setZero();
|
||||
for (int i = 0; i < n; ++i) {
|
||||
disturb(i) = uniform01(generator);
|
||||
}
|
||||
lo += hi >> 15;
|
||||
if (lo > m_max) {
|
||||
lo &= m_max;
|
||||
++lo;
|
||||
}
|
||||
return (long)lo;
|
||||
disturb.normalize();
|
||||
|
||||
Vector x0 = ritzVectors_;
|
||||
double magnitude = x0.norm();
|
||||
ritzVectors_ = x0 + 0.03 * magnitude * disturb;
|
||||
}
|
||||
|
||||
Vector random_vec(const int len) {
|
||||
Vector res(len);
|
||||
const unsigned long m_max = 2147483647L;
|
||||
for (int i = 0; i < len; i++) {
|
||||
long m_rand = next_long_rand(m_rand);
|
||||
res[i] = double(m_rand) / double(m_max) - double(0.5);
|
||||
// Perform power iteration on a single Ritz value
|
||||
// Updates ritzValues_
|
||||
bool iterateOne(double tol) {
|
||||
const Vector x = ritzVectors_;
|
||||
double theta = x.transpose() * A_ * x;
|
||||
|
||||
// store the Ritz eigen value
|
||||
ritzValues_ = theta;
|
||||
|
||||
const Vector diff = A_ * x - theta * x;
|
||||
double error = diff.norm();
|
||||
return error < tol;
|
||||
}
|
||||
|
||||
size_t nrIterations() { return nrIterations_; }
|
||||
|
||||
int compute(int maxit, double tol) {
|
||||
// Starting
|
||||
int nrConverged = 0;
|
||||
|
||||
for (int i = 0; i < maxit; i++) {
|
||||
nrIterations_ += 1;
|
||||
ritzVectors_ = update();
|
||||
nrConverged = iterateOne(tol);
|
||||
if (nrConverged) break;
|
||||
}
|
||||
res.normalize();
|
||||
return res;
|
||||
|
||||
return std::min(1, nrConverged);
|
||||
}
|
||||
|
||||
double eigenvalues() { return ritzValues_; }
|
||||
|
||||
Vector eigenvectors() { return ritzVectors_; }
|
||||
};
|
||||
|
||||
template <class Operator>
|
||||
class AcceleratedPowerMethod : public PowerMethod<Operator> {
|
||||
double beta_ = 0; // a Polyak momentum term
|
||||
|
||||
Vector previousVector_; // store previous vector
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
explicit AcceleratedPowerMethod(const Operator &A, const Vector &initial)
|
||||
: PowerMethod<Operator>(A, initial) {
|
||||
Vector x0 = initial;
|
||||
// initialize ritz vector
|
||||
x0 = x0.isZero(0) ? Vector::Random(PowerMethod<Operator>::dim_) : x0;
|
||||
Vector x00 = Vector::Random(PowerMethod<Operator>::dim_);
|
||||
x0.normalize();
|
||||
x00.normalize();
|
||||
|
||||
// initialize Ritz eigen vector and previous vector
|
||||
previousVector_ = update(x0, x00, beta_);
|
||||
this->updateRitz(update(previousVector_, x0, beta_));
|
||||
this->perturb();
|
||||
|
||||
// set beta
|
||||
Vector init_resid = this->getRitz();
|
||||
const double up = init_resid.transpose() * this->A_ * init_resid;
|
||||
const double down = init_resid.transpose().dot(init_resid);
|
||||
const double mu = up / down;
|
||||
beta_ = mu * mu / 4;
|
||||
setBeta();
|
||||
}
|
||||
|
||||
Vector update(const Vector &x1, const Vector &x0, const double beta) const {
|
||||
Vector y = this->A_ * x1 - beta * x0;
|
||||
y.normalize();
|
||||
return y;
|
||||
}
|
||||
|
||||
Vector update() const {
|
||||
Vector y = update(this->ritzVectors_, previousVector_, beta_);
|
||||
previousVector_ = this->ritzVectors_;
|
||||
return y;
|
||||
}
|
||||
|
||||
/// Tuning the momentum beta using the Best Heavy Ball algorithm in Ref(3)
|
||||
void setBeta() {
|
||||
if (m_n_ < 10) return;
|
||||
if (PowerMethod<Operator>::dim_ < 10) return;
|
||||
double maxBeta = beta_;
|
||||
size_t maxIndex;
|
||||
std::vector<double> betas = {2/3*maxBeta, 0.99*maxBeta, maxBeta, 1.01*maxBeta, 1.5*maxBeta};
|
||||
std::vector<double> betas = {2 / 3 * maxBeta, 0.99 * maxBeta, maxBeta,
|
||||
1.01 * maxBeta, 1.5 * maxBeta};
|
||||
|
||||
Matrix tmp_ritz_vectors;
|
||||
tmp_ritz_vectors.resize(m_n_, 10);
|
||||
tmp_ritz_vectors.setZero();
|
||||
Matrix tmpRitzVectors;
|
||||
tmpRitzVectors.resize(PowerMethod<Operator>::dim_, 10);
|
||||
tmpRitzVectors.setZero();
|
||||
for (size_t i = 0; i < 10; i++) {
|
||||
for (size_t k = 0; k < betas.size(); ++k) {
|
||||
for (size_t j = 1; j < 10; j++) {
|
||||
// double rayleighQuotient;
|
||||
if (j <2 ) {
|
||||
Vector x0 = random_vec(m_n_);
|
||||
Vector x00 = random_vec(m_n_);
|
||||
tmp_ritz_vectors.col(0) = perform_op(x0, x00, betas[k]);
|
||||
tmp_ritz_vectors.col(1) =
|
||||
perform_op(tmp_ritz_vectors.col(0), x0, betas[k]);
|
||||
if (j < 2) {
|
||||
Vector x0 = Vector::Random(PowerMethod<Operator>::dim_);
|
||||
Vector x00 = Vector::Random(PowerMethod<Operator>::dim_);
|
||||
tmpRitzVectors.col(0) = update(x0, x00, betas[k]);
|
||||
tmpRitzVectors.col(1) = update(tmpRitzVectors.col(0), x0, betas[k]);
|
||||
} else {
|
||||
tmpRitzVectors.col(j) = update(tmpRitzVectors.col(j - 1),
|
||||
tmpRitzVectors.col(j - 2), betas[k]);
|
||||
}
|
||||
else {
|
||||
tmp_ritz_vectors.col(j) =
|
||||
perform_op(tmp_ritz_vectors.col(j - 1),
|
||||
tmp_ritz_vectors.col(j - 2), betas[k]);
|
||||
}
|
||||
const Vector x = tmp_ritz_vectors.col(j);
|
||||
const double up = x.transpose() * A_ * x;
|
||||
const Vector x = tmpRitzVectors.col(j);
|
||||
const double up = x.transpose() * this->A_ * x;
|
||||
const double down = x.transpose().dot(x);
|
||||
const double mu = up / down;
|
||||
if (mu * mu / 4 > maxBeta) {
|
||||
|
|
@ -203,165 +242,6 @@ public:
|
|||
|
||||
beta_ = betas[maxIndex];
|
||||
}
|
||||
|
||||
void perturb(int i) {
|
||||
// generate a 0.03*||x_0||_2 as stated in David's paper
|
||||
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
|
||||
std::mt19937 generator (seed);
|
||||
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
|
||||
|
||||
int n = m_n_;
|
||||
Vector disturb;
|
||||
disturb.resize(n);
|
||||
disturb.setZero();
|
||||
for (int i =0; i<n; ++i) {
|
||||
disturb(i) = uniform01(generator);
|
||||
}
|
||||
disturb.normalize();
|
||||
|
||||
Vector x0 = ritz_vectors_.col(i);
|
||||
double magnitude = x0.norm();
|
||||
ritz_vectors_.col(i) = x0 + 0.03 * magnitude * disturb;
|
||||
}
|
||||
|
||||
void init(const Vector x0, const Vector x00) {
|
||||
// initialzie ritz eigen values
|
||||
ritz_val_.resize(m_n_);
|
||||
ritz_val_.setZero();
|
||||
|
||||
// initialzie the ritz converged vector
|
||||
ritz_conv_.resize(m_n_);
|
||||
ritz_conv_.setZero();
|
||||
|
||||
// initialzie ritz eigen vectors
|
||||
ritz_vectors_.resize(m_n_, m_n_);
|
||||
ritz_vectors_.setZero();
|
||||
if (accelerated_){
|
||||
ritz_vectors_.col(0) = perform_op(x0, x00);
|
||||
ritz_vectors_.col(1) = perform_op(ritz_vectors_.col(0), x0);
|
||||
} else {
|
||||
ritz_vectors_.col(0) = perform_op(x0);
|
||||
perturb(0);
|
||||
}
|
||||
|
||||
// setting beta
|
||||
if (accelerated_) {
|
||||
Vector init_resid = ritz_vectors_.col(0);
|
||||
const double up = init_resid.transpose() * A_ * init_resid;
|
||||
const double down = init_resid.transpose().dot(init_resid);
|
||||
const double mu = up/down;
|
||||
beta_ = mu*mu/4;
|
||||
setBeta();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void init() {
|
||||
Vector x0;
|
||||
Vector x00;
|
||||
if (!S_.isZero(0)) {
|
||||
x0 = S_.row(1);
|
||||
x00 = S_.row(0);
|
||||
} else {
|
||||
x0 = random_vec(m_n_);
|
||||
x00 = random_vec(m_n_);
|
||||
}
|
||||
init(x0, x00);
|
||||
}
|
||||
|
||||
bool converged(double tol, int i) {
|
||||
Vector x = ritz_vectors_.col(i);
|
||||
double theta = x.transpose() * A_ * x;
|
||||
|
||||
// store the ritz eigen value
|
||||
ritz_val_(i) = theta;
|
||||
|
||||
// update beta
|
||||
if (accelerated_) beta_ = std::max(beta_, theta * theta / 4);
|
||||
|
||||
Vector diff = A_ * x - theta * x;
|
||||
double error = diff.lpNorm<1>();
|
||||
if (error < tol) ritz_conv_(i) = 1;
|
||||
return error < tol;
|
||||
}
|
||||
|
||||
int num_converged(double tol) {
|
||||
int num_converge = 0;
|
||||
for (int i=0; i<ritz_vectors_.cols(); i++) {
|
||||
if (converged(tol, i)) {
|
||||
num_converge += 1;
|
||||
}
|
||||
if (!accelerated_ && i<ritz_vectors_.cols()-1) {
|
||||
ritz_vectors_.col(i+1) = perform_op(i+1);
|
||||
} else if (accelerated_ && i>0 && i<ritz_vectors_.cols()-1) {
|
||||
ritz_vectors_.col(i+1) = perform_op(i+1);
|
||||
}
|
||||
}
|
||||
return num_converge;
|
||||
}
|
||||
|
||||
size_t num_iterations() {
|
||||
return m_niter_;
|
||||
}
|
||||
|
||||
void sort_eigenpair() {
|
||||
std::vector<std::pair<double, int>> pairs;
|
||||
for(int i=0; i<ritz_conv_.size(); ++i) {
|
||||
if (ritz_conv_(i)) pairs.push_back({ritz_val_(i), i});
|
||||
}
|
||||
|
||||
std::sort(pairs.begin(), pairs.end(), [](const std::pair<double, int>& left, const std::pair<double, int>& right) {
|
||||
return left.first < right.first;
|
||||
});
|
||||
|
||||
// initialzie sorted ritz eigenvalues and eigenvectors
|
||||
size_t num_converged = pairs.size();
|
||||
sorted_ritz_val_.resize(num_converged);
|
||||
sorted_ritz_val_.setZero();
|
||||
sorted_ritz_vectors_.resize(m_n_, num_converged);
|
||||
sorted_ritz_vectors_.setZero();
|
||||
|
||||
// fill sorted ritz eigenvalues and eigenvectors with sorted index
|
||||
for(size_t j=0; j<num_converged; ++j) {
|
||||
sorted_ritz_val_(j) = pairs[j].first;
|
||||
sorted_ritz_vectors_.col(j) = ritz_vectors_.col(pairs[j].second);
|
||||
}
|
||||
}
|
||||
|
||||
void reset() {
|
||||
if (accelerated_) {
|
||||
ritz_vectors_.col(0) = perform_op(ritz_vectors_.col(m_n_-1-1), ritz_vectors_.col(m_n_-1-2));
|
||||
ritz_vectors_.col(1) = perform_op(ritz_vectors_.col(0), ritz_vectors_.col(m_n_-1-1));
|
||||
} else {
|
||||
ritz_vectors_.col(0) = perform_op(ritz_vectors_.col(m_n_-1));
|
||||
}
|
||||
}
|
||||
|
||||
int compute(int maxit, double tol) {
|
||||
// Starting
|
||||
int i = 0;
|
||||
int nconv = 0;
|
||||
for (; i < maxit; i++) {
|
||||
m_niter_ +=1;
|
||||
nconv = num_converged(tol);
|
||||
if (nconv >= m_nev_) break;
|
||||
else reset();
|
||||
}
|
||||
|
||||
// sort the result
|
||||
sort_eigenpair();
|
||||
|
||||
return std::min(m_nev_, nconv);
|
||||
}
|
||||
|
||||
Vector eigenvalues() {
|
||||
return sorted_ritz_val_;
|
||||
}
|
||||
|
||||
Matrix eigenvectors() {
|
||||
return sorted_ritz_vectors_;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -480,8 +480,7 @@ static bool PowerMinimumEigenValue(
|
|||
Eigen::Index numLanczosVectors = 20) {
|
||||
|
||||
// a. Compute dominant eigenpair of S using power method
|
||||
PowerFunctor lmOperator(A, S, 1, A.rows());
|
||||
lmOperator.init();
|
||||
PowerMethod<Sparse> lmOperator(A, S.row(0));
|
||||
|
||||
const int lmConverged = lmOperator.compute(
|
||||
maxIterations, 1e-5);
|
||||
|
|
@ -489,34 +488,33 @@ static bool PowerMinimumEigenValue(
|
|||
// Check convergence and bail out if necessary
|
||||
if (lmConverged != 1) return false;
|
||||
|
||||
const double lmEigenValue = lmOperator.eigenvalues()(0);
|
||||
const double lmEigenValue = lmOperator.eigenvalues();
|
||||
|
||||
if (lmEigenValue < 0) {
|
||||
// The largest-magnitude eigenvalue is negative, and therefore also the
|
||||
// minimum eigenvalue, so just return this solution
|
||||
*minEigenValue = lmEigenValue;
|
||||
if (minEigenVector) {
|
||||
*minEigenVector = lmOperator.eigenvectors().col(0);
|
||||
*minEigenVector = lmOperator.eigenvectors();
|
||||
minEigenVector->normalize(); // Ensure that this is a unit vector
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Sparse C = lmEigenValue * Matrix::Identity(A.rows(), A.cols()) - A;
|
||||
PowerFunctor minShiftedOperator(C, S, 1, C.rows(), true);
|
||||
minShiftedOperator.init();
|
||||
AcceleratedPowerMethod<Sparse> minShiftedOperator(C, S.row(0));
|
||||
|
||||
const int minConverged = minShiftedOperator.compute(
|
||||
maxIterations, minEigenvalueNonnegativityTolerance / lmEigenValue);
|
||||
|
||||
if (minConverged != 1) return false;
|
||||
|
||||
*minEigenValue = lmEigenValue - minShiftedOperator.eigenvalues()(0);
|
||||
*minEigenValue = lmEigenValue - minShiftedOperator.eigenvalues();
|
||||
if (minEigenVector) {
|
||||
*minEigenVector = minShiftedOperator.eigenvectors().col(0);
|
||||
*minEigenVector = minShiftedOperator.eigenvectors();
|
||||
minEigenVector->normalize(); // Ensure that this is a unit vector
|
||||
}
|
||||
if (numIterations) *numIterations = minShiftedOperator.num_iterations();
|
||||
if (numIterations) *numIterations = minShiftedOperator.nrIterations();
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -18,38 +18,34 @@
|
|||
* @brief Check eigenvalue and eigenvector computed by power method
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/VectorSpace.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/sfm/PowerMethod.h>
|
||||
#include <gtsam/sfm/ShonanAveraging.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Dense>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
ShonanAveraging3 fromExampleName(
|
||||
const std::string &name,
|
||||
ShonanAveraging3::Parameters parameters = ShonanAveraging3::Parameters()) {
|
||||
string g2oFile = findExampleDataFile(name);
|
||||
return ShonanAveraging3(g2oFile, parameters);
|
||||
}
|
||||
|
||||
static const ShonanAveraging3 kShonan = fromExampleName("toyExample.g2o");
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PowerMethod, powerIteration) {
|
||||
// test power accelerated iteration
|
||||
gtsam::Sparse A(6, 6);
|
||||
// test power iteration, beta is set to 0
|
||||
Sparse A(6, 6);
|
||||
A.coeffRef(0, 0) = 6;
|
||||
Matrix S = Matrix66::Zero();
|
||||
PowerFunctor apf(A, S, 1, A.rows(), true);
|
||||
apf.init();
|
||||
PowerMethod<Sparse> apf(A, S.row(0));
|
||||
apf.compute(20, 1e-4);
|
||||
EXPECT_LONGS_EQUAL(6, apf.eigenvectors().cols());
|
||||
EXPECT_LONGS_EQUAL(1, apf.eigenvectors().cols());
|
||||
EXPECT_LONGS_EQUAL(6, apf.eigenvectors().rows());
|
||||
|
||||
const Vector6 x1 = (Vector(6) << 1.0, 0.0, 0.0, 0.0, 0.0, 0.0).finished();
|
||||
|
|
@ -58,21 +54,52 @@ TEST(PowerMethod, powerIteration) {
|
|||
EXPECT(assert_equal(x1, actual0));
|
||||
|
||||
const double ev1 = 6.0;
|
||||
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalues()(0), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalues(), 1e-5);
|
||||
|
||||
// test power iteration, beta is set to 0
|
||||
PowerFunctor pf(A, S, 1, A.rows());
|
||||
pf.init();
|
||||
// test power accelerated iteration
|
||||
AcceleratedPowerMethod<Sparse> pf(A, S.row(0));
|
||||
pf.compute(20, 1e-4);
|
||||
// for power method, only 5 ritz vectors converge with 20 iteration
|
||||
EXPECT_LONGS_EQUAL(5, pf.eigenvectors().cols());
|
||||
// for power method, only 5 ritz vectors converge with 20 iterations
|
||||
EXPECT_LONGS_EQUAL(1, pf.eigenvectors().cols());
|
||||
EXPECT_LONGS_EQUAL(6, pf.eigenvectors().rows());
|
||||
|
||||
Vector6 actual1 = apf.eigenvectors().col(0);
|
||||
actual1(0) = abs(actual1(0));
|
||||
EXPECT(assert_equal(x1, actual1));
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalues()(0), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalues(), 1e-5);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PowerMethod, useFactorGraph) {
|
||||
// Let's make a scalar synchronization graph with 4 nodes
|
||||
GaussianFactorGraph fg;
|
||||
auto model = noiseModel::Unit::Create(1);
|
||||
for (size_t j = 0; j < 3; j++) {
|
||||
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
|
||||
}
|
||||
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
|
||||
|
||||
// Get eigenvalues and eigenvectors with Eigen
|
||||
auto L = fg.hessian();
|
||||
cout << L.first << endl;
|
||||
Eigen::EigenSolver<Matrix> solver(L.first);
|
||||
cout << solver.eigenvalues() << endl;
|
||||
cout << solver.eigenvectors() << endl;
|
||||
|
||||
// Check that we get zero eigenvalue and "constant" eigenvector
|
||||
EXPECT_DOUBLES_EQUAL(0.0, solver.eigenvalues()[0].real(), 1e-9);
|
||||
auto v0 = solver.eigenvectors().col(0);
|
||||
for (size_t j = 0; j < 3; j++)
|
||||
EXPECT_DOUBLES_EQUAL(-0.5, v0[j].real(), 1e-9);
|
||||
|
||||
// test power iteration, beta is set to 0
|
||||
Matrix S = Matrix44::Zero();
|
||||
// PowerMethod<Matrix> pf(L.first, S.row(0));
|
||||
AcceleratedPowerMethod<Matrix> pf(L.first, S.row(0));
|
||||
pf.compute(20, 1e-4);
|
||||
cout << pf.eigenvalues() << endl;
|
||||
cout << pf.eigenvectors() << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue