simplify keys
parent
02e2b37b08
commit
69a53f8e00
|
|
@ -10,8 +10,8 @@ from gtsam_examples import SFMdata
|
|||
import gtsam_utils
|
||||
|
||||
# shorthand symbols:
|
||||
X = lambda i: gtsam.Symbol('x', i)
|
||||
L = lambda j: gtsam.Symbol('l', j)
|
||||
X = lambda i: int(gtsam.Symbol('x', i))
|
||||
L = lambda j: int(gtsam.Symbol('l', j))
|
||||
|
||||
def visual_ISAM2_plot(poses, points, result):
|
||||
# VisualISAMPlot plots current state of ISAM2 object
|
||||
|
|
@ -32,13 +32,11 @@ def visual_ISAM2_plot(poses, points, result):
|
|||
gtsam_utils.plot3DPoints(fignum, result, 'rx')
|
||||
|
||||
# Plot cameras
|
||||
M = 0
|
||||
while result.exists(int(X(M))):
|
||||
ii = int(X(M))
|
||||
pose_i = result.pose3_at(ii)
|
||||
i = 0
|
||||
while result.exists(X(i)):
|
||||
pose_i = result.pose3_at(X(i))
|
||||
gtsam_utils.plotPose3(fignum, pose_i, 10)
|
||||
|
||||
M = M + 1
|
||||
i += 1
|
||||
|
||||
# draw
|
||||
ax.set_xlim3d(-40, 40)
|
||||
|
|
@ -82,11 +80,11 @@ def visual_ISAM2_example():
|
|||
for j, point in enumerate(points):
|
||||
camera = gtsam.PinholeCameraCal3_S2(pose, K)
|
||||
measurement = camera.project(point)
|
||||
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, int(X(i)), int(L(j)), K))
|
||||
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, X(i), L(j), K))
|
||||
|
||||
# Add an initial guess for the current pose
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(int(X(i)), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
||||
initialEstimate.insert(X(i), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
||||
|
||||
# If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
# and a prior on the first landmark to set the scale
|
||||
|
|
@ -95,16 +93,16 @@ def visual_ISAM2_example():
|
|||
if(i == 0):
|
||||
# Add a prior on pose x0
|
||||
poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(gtsam.PriorFactorPose3(int(X(0)), poses[0], poseNoise))
|
||||
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], poseNoise))
|
||||
|
||||
# Add a prior on landmark l0
|
||||
pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||
graph.push_back(gtsam.PriorFactorPoint3(int(L(0)), points[0], pointNoise)) # add directly to graph
|
||||
graph.push_back(gtsam.PriorFactorPoint3(L(0), points[0], pointNoise)) # add directly to graph
|
||||
|
||||
# Add initial guesses to all observed landmarks
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
for j, point in enumerate(points):
|
||||
initialEstimate.insert(int(L(j)), point + gtsam.Point3(-0.25, 0.20, 0.15))
|
||||
initialEstimate.insert(L(j), point + gtsam.Point3(-0.25, 0.20, 0.15))
|
||||
else:
|
||||
# Update iSAM with the new factors
|
||||
isam.update(graph, initialEstimate)
|
||||
|
|
@ -116,10 +114,10 @@ def visual_ISAM2_example():
|
|||
print("****************************************************")
|
||||
print("Frame", i, ":")
|
||||
for j in range(i + 1):
|
||||
print(X(j), ":", currentEstimate.pose3_at(int(X(j))))
|
||||
print(X(j), ":", currentEstimate.pose3_at(X(j)))
|
||||
|
||||
for j in range(len(points)):
|
||||
print(L(j), ":", currentEstimate.point3_at(int(L(j))))
|
||||
print(L(j), ":", currentEstimate.point3_at(L(j)))
|
||||
|
||||
visual_ISAM2_plot(poses, points, currentEstimate)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue