clean up plot.py with modern type hints
parent
678d1c7270
commit
68794468f2
|
|
@ -2,22 +2,25 @@
|
||||||
|
|
||||||
# pylint: disable=no-member, invalid-name
|
# pylint: disable=no-member, invalid-name
|
||||||
|
|
||||||
|
from typing import Iterable, Tuple
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from matplotlib import patches
|
from matplotlib import patches
|
||||||
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-import
|
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-import
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
|
from gtsam import Marginals, Point3, Pose2, Values
|
||||||
|
|
||||||
|
|
||||||
def set_axes_equal(fignum):
|
def set_axes_equal(fignum: int) -> None:
|
||||||
"""
|
"""
|
||||||
Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fignum (int): An integer representing the figure number for Matplotlib.
|
fignum: An integer representing the figure number for Matplotlib.
|
||||||
"""
|
"""
|
||||||
fig = plt.figure(fignum)
|
fig = plt.figure(fignum)
|
||||||
ax = fig.gca(projection='3d')
|
ax = fig.gca(projection='3d')
|
||||||
|
|
@ -36,18 +39,20 @@ def set_axes_equal(fignum):
|
||||||
ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
|
ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
|
||||||
|
|
||||||
|
|
||||||
def ellipsoid(rx, ry, rz, n):
|
def ellipsoid(
|
||||||
|
rx: float, ry: float, rz: float, n: int
|
||||||
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
"""
|
"""
|
||||||
Numpy equivalent of Matlab's ellipsoid function.
|
Numpy equivalent of Matlab's ellipsoid function.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
rx (double): Radius of ellipsoid in X-axis.
|
rx: Radius of ellipsoid in X-axis.
|
||||||
ry (double): Radius of ellipsoid in Y-axis.
|
ry: Radius of ellipsoid in Y-axis.
|
||||||
rz (double): Radius of ellipsoid in Z-axis.
|
rz: Radius of ellipsoid in Z-axis.
|
||||||
n (int): The granularity of the ellipsoid plotted.
|
n: The granularity of the ellipsoid plotted.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple[numpy.ndarray]: The points in the x, y and z axes to use for the surface plot.
|
The points in the x, y and z axes to use for the surface plot.
|
||||||
"""
|
"""
|
||||||
u = np.linspace(0, 2*np.pi, n+1)
|
u = np.linspace(0, 2*np.pi, n+1)
|
||||||
v = np.linspace(0, np.pi, n+1)
|
v = np.linspace(0, np.pi, n+1)
|
||||||
|
|
@ -58,7 +63,9 @@ def ellipsoid(rx, ry, rz, n):
|
||||||
return x, y, z
|
return x, y, z
|
||||||
|
|
||||||
|
|
||||||
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
|
def plot_covariance_ellipse_3d(
|
||||||
|
axes, origin: Point3, P, scale: float = 1, n: int = 8, alpha: float = 0.5
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Plots a Gaussian as an uncertainty ellipse
|
Plots a Gaussian as an uncertainty ellipse
|
||||||
|
|
||||||
|
|
@ -68,12 +75,12 @@ def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
axes (matplotlib.axes.Axes): Matplotlib axes.
|
axes (matplotlib.axes.Axes): Matplotlib axes.
|
||||||
origin (gtsam.Point3): The origin in the world frame.
|
origin: The origin in the world frame.
|
||||||
P (numpy.ndarray): The marginal covariance matrix of the 3D point
|
P (numpy.ndarray): The marginal covariance matrix of the 3D point
|
||||||
which will be represented as an ellipse.
|
which will be represented as an ellipse.
|
||||||
scale (float): Scaling factor of the radii of the covariance ellipse.
|
scale: Scaling factor of the radii of the covariance ellipse.
|
||||||
n (int): Defines the granularity of the ellipse. Higher values indicate finer ellipses.
|
n: Defines the granularity of the ellipse. Higher values indicate finer ellipses.
|
||||||
alpha (float): Transparency value for the plotted surface in the range [0, 1].
|
alpha: Transparency value for the plotted surface in the range [0, 1].
|
||||||
"""
|
"""
|
||||||
k = 11.82
|
k = 11.82
|
||||||
U, S, _ = np.linalg.svd(P)
|
U, S, _ = np.linalg.svd(P)
|
||||||
|
|
@ -96,14 +103,16 @@ def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5):
|
||||||
axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
|
axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
|
||||||
|
|
||||||
|
|
||||||
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
|
def plot_pose2_on_axes(
|
||||||
|
axes, pose: Pose2, axis_length: float = 0.1, covariance: np.ndarray = None
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Plot a 2D pose on given axis `axes` with given `axis_length`.
|
Plot a 2D pose on given axis `axes` with given `axis_length`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
axes (matplotlib.axes.Axes): Matplotlib axes.
|
axes (matplotlib.axes.Axes): Matplotlib axes.
|
||||||
pose (gtsam.Pose2): The pose to be plotted.
|
pose: The pose to be plotted.
|
||||||
axis_length (float): The length of the camera axes.
|
axis_length: The length of the camera axes.
|
||||||
covariance (numpy.ndarray): Marginal covariance matrix to plot
|
covariance (numpy.ndarray): Marginal covariance matrix to plot
|
||||||
the uncertainty of the estimation.
|
the uncertainty of the estimation.
|
||||||
"""
|
"""
|
||||||
|
|
@ -136,16 +145,21 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
|
||||||
axes.add_patch(e1)
|
axes.add_patch(e1)
|
||||||
|
|
||||||
|
|
||||||
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None,
|
def plot_pose2(
|
||||||
axis_labels=('X axis', 'Y axis', 'Z axis')):
|
fignum: int,
|
||||||
|
pose: Pose2,
|
||||||
|
axis_length: float = 0.1,
|
||||||
|
covariance: np.ndarray = None,
|
||||||
|
axis_labels=("X axis", "Y axis", "Z axis"),
|
||||||
|
) -> plt.Figure:
|
||||||
"""
|
"""
|
||||||
Plot a 2D pose on given figure with given `axis_length`.
|
Plot a 2D pose on given figure with given `axis_length`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fignum (int): Integer representing the figure number to use for plotting.
|
fignum: Integer representing the figure number to use for plotting.
|
||||||
pose (gtsam.Pose2): The pose to be plotted.
|
pose: The pose to be plotted.
|
||||||
axis_length (float): The length of the camera axes.
|
axis_length: The length of the camera axes.
|
||||||
covariance (numpy.ndarray): Marginal covariance matrix to plot
|
covariance: Marginal covariance matrix to plot
|
||||||
the uncertainty of the estimation.
|
the uncertainty of the estimation.
|
||||||
axis_labels (iterable[string]): List of axis labels to set.
|
axis_labels (iterable[string]): List of axis labels to set.
|
||||||
"""
|
"""
|
||||||
|
|
@ -176,17 +190,17 @@ def plot_point3_on_axes(axes, point, linespec, P=None):
|
||||||
plot_covariance_ellipse_3d(axes, point, P)
|
plot_covariance_ellipse_3d(axes, point, P)
|
||||||
|
|
||||||
|
|
||||||
def plot_point3(fignum, point, linespec, P=None,
|
def plot_point3(fignum: int, point: Point3, linespec: str, P: np.ndarray = None,
|
||||||
axis_labels=('X axis', 'Y axis', 'Z axis')):
|
axis_labels: Iterable[str] = ('X axis', 'Y axis', 'Z axis')) -> plt.Figure:
|
||||||
"""
|
"""
|
||||||
Plot a 3D point on given figure with given `linespec`.
|
Plot a 3D point on given figure with given `linespec`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fignum (int): Integer representing the figure number to use for plotting.
|
fignum: Integer representing the figure number to use for plotting.
|
||||||
point (gtsam.Point3): The point to be plotted.
|
point: The point to be plotted.
|
||||||
linespec (string): String representing formatting options for Matplotlib.
|
linespec: String representing formatting options for Matplotlib.
|
||||||
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
|
P: Marginal covariance matrix to plot the uncertainty of the estimation.
|
||||||
axis_labels (iterable[string]): List of axis labels to set.
|
axis_labels: List of axis labels to set.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
fig: The matplotlib figure.
|
fig: The matplotlib figure.
|
||||||
|
|
@ -308,18 +322,24 @@ def plot_pose3(fignum, pose, axis_length=0.1, P=None,
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
|
|
||||||
def plot_trajectory(fignum, values, scale=1, marginals=None,
|
def plot_trajectory(
|
||||||
title="Plot Trajectory", axis_labels=('X axis', 'Y axis', 'Z axis')):
|
fignum: int,
|
||||||
|
values: Values,
|
||||||
|
scale: float = 1,
|
||||||
|
marginals: Marginals = None,
|
||||||
|
title: str = "Plot Trajectory",
|
||||||
|
axis_labels: Iterable[str] = ("X axis", "Y axis", "Z axis"),
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Plot a complete 2D/3D trajectory using poses in `values`.
|
Plot a complete 2D/3D trajectory using poses in `values`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fignum (int): Integer representing the figure number to use for plotting.
|
fignum: Integer representing the figure number to use for plotting.
|
||||||
values (gtsam.Values): Values containing some Pose2 and/or Pose3 values.
|
values: Values containing some Pose2 and/or Pose3 values.
|
||||||
scale (float): Value to scale the poses by.
|
scale: Value to scale the poses by.
|
||||||
marginals (gtsam.Marginals): Marginalized probability values of the estimation.
|
marginals: Marginalized probability values of the estimation.
|
||||||
Used to plot uncertainty bounds.
|
Used to plot uncertainty bounds.
|
||||||
title (string): The title of the plot.
|
title: The title of the plot.
|
||||||
axis_labels (iterable[string]): List of axis labels to set.
|
axis_labels (iterable[string]): List of axis labels to set.
|
||||||
"""
|
"""
|
||||||
fig = plt.figure(fignum)
|
fig = plt.figure(fignum)
|
||||||
|
|
@ -357,20 +377,25 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
|
||||||
fig.canvas.set_window_title(title.lower())
|
fig.canvas.set_window_title(title.lower())
|
||||||
|
|
||||||
|
|
||||||
def plot_incremental_trajectory(fignum, values, start=0,
|
def plot_incremental_trajectory(
|
||||||
scale=1, marginals=None,
|
fignum: int,
|
||||||
time_interval=0.0):
|
values: Values,
|
||||||
|
start: int = 0,
|
||||||
|
scale: float = 1,
|
||||||
|
marginals: Marginals = None,
|
||||||
|
time_interval: float = 0.0
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Incrementally plot a complete 3D trajectory using poses in `values`.
|
Incrementally plot a complete 3D trajectory using poses in `values`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fignum (int): Integer representing the figure number to use for plotting.
|
fignum: Integer representing the figure number to use for plotting.
|
||||||
values (gtsam.Values): Values dict containing the poses.
|
values: Values dict containing the poses.
|
||||||
start (int): Starting index to start plotting from.
|
start: Starting index to start plotting from.
|
||||||
scale (float): Value to scale the poses by.
|
scale: Value to scale the poses by.
|
||||||
marginals (gtsam.Marginals): Marginalized probability values of the estimation.
|
marginals: Marginalized probability values of the estimation.
|
||||||
Used to plot uncertainty bounds.
|
Used to plot uncertainty bounds.
|
||||||
time_interval (float): Time in seconds to pause between each rendering.
|
time_interval: Time in seconds to pause between each rendering.
|
||||||
Used to create animation effect.
|
Used to create animation effect.
|
||||||
"""
|
"""
|
||||||
fig = plt.figure(fignum)
|
fig = plt.figure(fignum)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue