diff --git a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp index 25c5c69a6..0aa061c7a 100644 --- a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp +++ b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp @@ -90,6 +90,49 @@ void LevenbergMarquardtOptimizer::decreaseLambda(double stepQuality){ state_.lambda /= params_.lambdaFactor; } +/* ************************************************************************* */ +GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem( + const GaussianFactorGraph& linear) { + + //Set two parameters as Ceres, will move out later + static const double min_diagonal_ = 1e-6; + static const double max_diagonal_ = 1e32; + + gttic(damp); + if (params_.verbosityLM >= LevenbergMarquardtParams::DAMPED) + cout << "building damped system with lambda " << state_.lambda << endl; + GaussianFactorGraph dampedSystem = linear; + { + double sigma = 1.0 / std::sqrt(state_.lambda); + dampedSystem.reserve(dampedSystem.size() + state_.values.size()); + // Only retrieve diagonal vector when reuse_diagonal = false + if (params_.diagonalDamping && params_.reuse_diagonal_ == false) { + state_.hessianDiagonal = linear.hessianDiagonal(); + } + // for each of the variables, add a prior + BOOST_FOREACH(const Values::KeyValuePair& key_value, state_.values) { + size_t dim = key_value.value.dim(); + Matrix A = Matrix::Identity(dim, dim); + //Replace the identity matrix with diagonal of Hessian + if (params_.diagonalDamping) { + A.diagonal() = state_.hessianDiagonal.at(key_value.key); + for (size_t aa = 0; aa < dim; aa++) { + if (params_.reuse_diagonal_ == false) + A(aa, aa) = std::min(std::max(A(aa, aa), min_diagonal_), + max_diagonal_); + A(aa, aa) = sqrt(A(aa, aa)); + } + } + Vector b = Vector::Zero(dim); + SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma); + dampedSystem += boost::make_shared(key_value.key, A, b, + model); + } + } + gttoc(damp); + return dampedSystem; +} + /* ************************************************************************* */ void LevenbergMarquardtOptimizer::iterate() { @@ -105,51 +148,19 @@ void LevenbergMarquardtOptimizer::iterate() { GaussianFactorGraph::shared_ptr linear = linearize(); double modelFidelity = 0.0; - //Set two parameters as Ceres, will move out later - double min_diagonal_ = 1e-6; - double max_diagonal_ = 1e32; // Keep increasing lambda until we make make progress while (true) { ++state_.totalNumberInnerIterations; - // Add prior-factors - // TODO: replace this dampening with a backsubstitution approach - gttic(damp); - if (lmVerbosity >= LevenbergMarquardtParams::DAMPED) cout << "building damped system" << endl; - GaussianFactorGraph dampedSystem = *linear; - { - double sigma = 1.0 / std::sqrt(state_.lambda); - dampedSystem.reserve(dampedSystem.size() + state_.values.size()); - // for each of the variables, add a prior - // Only retrieve diagonal vector when reuse_diagonal = false - if (params_.diagonalDamping && params_.reuse_diagonal_==false) { - state_.hessianDiagonal = linear->hessianDiagonal(); - } - BOOST_FOREACH(const Values::KeyValuePair& key_value, state_.values) { - size_t dim = key_value.value.dim(); - Matrix A = Matrix::Identity(dim, dim); - //Replace the identity matrix with diagonal of Hessian - if (params_.diagonalDamping) { - A.diagonal() = state_.hessianDiagonal.at(key_value.key); - for (size_t aa=0; aa(key_value.key, A, b, model); - } - } - gttoc(damp); + if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA) + cout << "trying lambda = " << state_.lambda << endl; + + // Build damped system for this lambda (adds prior factors that make it like gradient descent) + GaussianFactorGraph dampedSystem = buildDampedSystem(*linear); // Try solving try { - if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA) - cout << "trying lambda = " << state_.lambda << endl; // Log current error/lambda to file if (!params_.logFile.empty()) { ofstream os(params_.logFile.c_str(), ios::app); diff --git a/gtsam/nonlinear/LevenbergMarquardtOptimizer.h b/gtsam/nonlinear/LevenbergMarquardtOptimizer.h index d9da3e68b..b7fd9966d 100644 --- a/gtsam/nonlinear/LevenbergMarquardtOptimizer.h +++ b/gtsam/nonlinear/LevenbergMarquardtOptimizer.h @@ -21,6 +21,8 @@ #include #include +class NonlinearOptimizerMoreOptimizationTest; + namespace gtsam { class LevenbergMarquardtOptimizer; @@ -248,6 +250,11 @@ public: /// @} protected: + + /** Build a damped system for a specific lambda */ + GaussianFactorGraph buildDampedSystem(const GaussianFactorGraph& linear); + friend class ::NonlinearOptimizerMoreOptimizationTest; + /** Access the parameters (base class version) */ virtual const NonlinearOptimizerParams& _params() const { return params_;