Add jacobian tests for retract of Unit3 & OrientedPlane3
							parent
							
								
									65be6e77a9
								
							
						
					
					
						commit
						5d87e68097
					
				|  | @ -161,6 +161,42 @@ TEST (OrientedPlane3, error2) { | |||
|   EXPECT(assert_equal(expectedH2, actualH2, 1e-9)); | ||||
| } | ||||
| 
 | ||||
| //*******************************************************************************
 | ||||
| // Wrapper to make retract return a Vector3 so we can test numerical derivatives.
 | ||||
| Vector4 RetractTest(const OrientedPlane3& plane, const Vector3& v, | ||||
|                     OptionalJacobian<4, 3> H) { | ||||
|   OrientedPlane3 plane_retract = plane.retract(v, H); | ||||
|   return Vector4(plane_retract.normal().point3().x(), | ||||
|                  plane_retract.normal().point3().y(), | ||||
|                  plane_retract.normal().point3().z(), | ||||
|                  plane_retract.distance()); | ||||
| } | ||||
| 
 | ||||
| //*******************************************************************************
 | ||||
| TEST (OrientedPlane3, jacobian_retract) { | ||||
|   OrientedPlane3 plane(-1, 0.1, 0.2, 5); | ||||
|   Matrix43 H; | ||||
|   { | ||||
|       Vector3 v (-0.1, 0.2, 0.3); | ||||
|       plane.retract(v, H); | ||||
|       // Test that jacobian is numerically as expected.
 | ||||
|       boost::function<Vector4(const OrientedPlane3&, const Vector3&)> f = | ||||
|           boost::bind(RetractTest, _1, _2, boost::none); | ||||
|       Matrix43 H_expected_numerical = numericalDerivative22(f, plane, v); | ||||
|       EXPECT(assert_equal(H_expected_numerical, H, 1e-9)); | ||||
|   } | ||||
|   { | ||||
|       Matrix43 H; | ||||
|       Vector3 v (0, 0, 0); | ||||
|       plane.retract(v, H); | ||||
|       // Test that jacobian is numerically as expected.
 | ||||
|       boost::function<Vector4(const OrientedPlane3&, const Vector3&)> f = | ||||
|           boost::bind(RetractTest, _1, _2, boost::none); | ||||
|       Matrix43 H_expected_numerical = numericalDerivative22(f, plane, v); | ||||
|       EXPECT(assert_equal(H_expected_numerical, H, 1e-9)); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| int main() { | ||||
|   srand(time(NULL)); | ||||
|  |  | |||
|  | @ -371,6 +371,41 @@ TEST(Unit3, retract) { | |||
|   } | ||||
| } | ||||
| 
 | ||||
| //*******************************************************************************
 | ||||
| // Wrapper to make retract return a Vector3 so we can test numerical derivatives.
 | ||||
| Vector3 RetractTest(const Unit3&p, const Vector2& v, OptionalJacobian<3, 2> H) { | ||||
|   Unit3 p_retract = p.retract(v, H); | ||||
|   return p_retract.point3(); | ||||
| } | ||||
| 
 | ||||
| //*******************************************************************************
 | ||||
| TEST (OrientedPlane3, jacobian_retract) { | ||||
|   Unit3 p; | ||||
|   { | ||||
|       Vector2 v (-0.2, 0.1); | ||||
|       Matrix32 H; | ||||
|       p.retract(v, H); | ||||
| 
 | ||||
|       // Test that jacobian is numerically as expected.
 | ||||
|       boost::function<Vector3(const Unit3&, const Vector2&)> f = | ||||
|           boost::bind(RetractTest, _1, _2, boost::none); | ||||
|       Matrix32 H_expected_numerical = numericalDerivative22(f, p, v); | ||||
|       EXPECT(assert_equal(H_expected_numerical, H, 1e-9)); | ||||
|   } | ||||
|   { | ||||
|       Vector2 v (0, 0); | ||||
|       Matrix32 H; | ||||
|       p.retract(v, H); | ||||
| 
 | ||||
|       // Test that jacobian is numerically as expected.
 | ||||
|       boost::function<Vector3(const Unit3&, const Vector2&)> f = | ||||
|           boost::bind(RetractTest, _1, _2, boost::none); | ||||
|       Matrix32 H_expected_numerical = numericalDerivative22(f, p, v); | ||||
|       EXPECT(assert_equal(H_expected_numerical, H, 1e-9)); | ||||
| 
 | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| //*******************************************************************************
 | ||||
| TEST(Unit3, retract_expmap) { | ||||
|   Unit3 p; | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue