new iSAM2 alg, still failing...

release/4.3a0
Michael Kaess 2010-07-16 09:06:09 +00:00
parent 89061cd953
commit 5a2e620520
1 changed files with 88 additions and 9 deletions

View File

@ -279,7 +279,6 @@ namespace gtsam {
}
/*
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
@ -289,7 +288,7 @@ namespace gtsam {
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
const list<Symbol> newKeys = newFactors.keys();
Cliques& orphans;
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(newKeys, affectedBayesNet, orphans);
FactorGraph<GaussianFactor> factors(affectedBayesNet);
@ -331,7 +330,23 @@ namespace gtsam {
// Output: BayesTree(this)
}
*/
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::find_all(sharedClique clique, list<Symbol>& keys, const list<Symbol>& marked) {
// does the separator contain any of the variables?
bool found = false;
BOOST_FOREACH(const Symbol& key, clique->separator_) {
if (find(marked.begin(), marked.end(), key) != marked.end())
found = true;
}
if (found) {
// then add this clique
keys.push_back(clique->keys().front());
}
BOOST_FOREACH(const sharedClique& child, clique->children_) {
find_all(child, keys, marked);
}
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
@ -339,7 +354,7 @@ namespace gtsam {
// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
std::list<Symbol> marked;
list<Symbol> marked;
VectorConfig deltaMarked;
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
Symbol key = it->first;
@ -355,10 +370,55 @@ namespace gtsam {
// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
// mark all cliques that involve marked variables
list<Symbol> affectedSymbols(marked); // add all marked
find_all(this->root(), affectedSymbols, marked); // add other cliques that have the marked ones in the separator
// 4. From the leaves to the top, if a clique is marked:
// re-linearize the original factors in \Factors associated with the clique,
// add the cached marginal factors from its children, and re-eliminate.
// todo: for simplicity, currently simply remove the top and recreate it using the original ordering
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(affectedSymbols, affectedBayesNet, orphans);
// remember original ordering
// Ordering original_ordering = affectedBayesNet.ordering();
boost::shared_ptr<GaussianFactorGraph> factors;
// ordering provides all keys in conditionals, there cannot be others because path to root included
set<Symbol> affectedKeys;
list<Symbol> tmp = affectedBayesNet.ordering();
affectedKeys.insert(tmp.begin(), tmp.end());
factors = relinearizeAffectedFactors(affectedKeys);
Ordering original_ordering = factors->getOrdering(); // todo - hack
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors->push_back(cachedBoundary);
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, original_ordering);
// Create Index from ordering
IndexTable<Symbol> index(original_ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
// Output: updated Bayes tree (this), updated linearization point theta_
}
@ -372,29 +432,48 @@ namespace gtsam {
// old algorithm:
Cliques orphans;
this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold, relinearize);
delta_.print();
this->print();
#else
printf("**1\n");fflush(stdout);
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
nonlinearFactors_.push_back(newFactors);
printf("**2\n");fflush(stdout);
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
theta_.insert(newTheta);
printf("**3\n");fflush(stdout);
// 3. Linearize new factor
FactorGraph<GaussianFactor> linearFactors = newFactors.linearize(theta_);
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
printf("**4\n");fflush(stdout);
// 4. Linear iSAM step (alg 3)
linear_update(linearFactors); // in: this
linear_update(*linearFactors); // in: this
printf("**5\n");fflush(stdout);
// 5. Calculate Delta (alg 0)
delta_ = optimize2(*this, wildfire_threshold);
printf("**6\n");fflush(stdout);
// 6. Iterate Algorithm 4 until no more re-linearizations occur
if (relinearize)
fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
// if (relinearize)
// fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
printf("**7\n");fflush(stdout);
// todo: linearization point and delta_ do not fit... have to update delta again
delta_ = optimize2(*this, wildfire_threshold);
printf("**8\n");fflush(stdout);
delta_.print();
this->print();
printf("**9\n");fflush(stdout);
#endif
}