Documentation and headers
parent
2d5602bbc8
commit
58d83f704f
|
|
@ -15,17 +15,17 @@
|
|||
* @date Dec 8, 2010
|
||||
*/
|
||||
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/inference/VariableSlots.h>
|
||||
#include <gtsam/inference/FactorGraph-inl.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/FastMap.h>
|
||||
#include <gtsam/base/cholesky.h>
|
||||
#include <gtsam/inference/VariableSlots.h>
|
||||
#include <gtsam/inference/FactorGraph-inl.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/format.hpp>
|
||||
|
|
@ -33,6 +33,7 @@
|
|||
#include <boost/lambda/bind.hpp>
|
||||
#include <boost/lambda/lambda.hpp>
|
||||
|
||||
#include <cmath>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
|
||||
|
|
@ -337,8 +338,11 @@ namespace gtsam {
|
|||
// find first column index for this key
|
||||
size_t column_start = columnIndices[*var];
|
||||
for (size_t i = 0; i < (size_t) whitenedA.rows(); i++)
|
||||
for (size_t j = 0; j < (size_t) whitenedA.cols(); j++)
|
||||
entries.push_back(boost::make_tuple(i, column_start+j, whitenedA(i,j)));
|
||||
for (size_t j = 0; j < (size_t) whitenedA.cols(); j++) {
|
||||
double s = whitenedA(i,j);
|
||||
if (std::abs(s) > 1e-12) entries.push_back(
|
||||
boost::make_tuple(i, column_start + j, s));
|
||||
}
|
||||
}
|
||||
|
||||
Vector whitenedb(model_->whiten(getb()));
|
||||
|
|
|
|||
|
|
@ -223,7 +223,7 @@ namespace gtsam {
|
|||
* Return vector of i, j, and s to generate an m-by-n sparse matrix
|
||||
* such that S(i(k),j(k)) = s(k), which can be given to MATLAB's sparse.
|
||||
* As above, the standard deviations are baked into A and b
|
||||
* @param first column index for each variable
|
||||
* @param columnIndices First column index for each variable.
|
||||
*/
|
||||
std::vector<boost::tuple<size_t, size_t, double> >
|
||||
sparse(const std::vector<size_t>& columnIndices) const;
|
||||
|
|
|
|||
Loading…
Reference in New Issue