Add unit test for optimization a factor graph
parent
22ddab7921
commit
56faf3c4a8
|
@ -75,7 +75,7 @@ class TestCustomFactor(GtsamTestCase):
|
||||||
key0 = this.keys()[0]
|
key0 = this.keys()[0]
|
||||||
key1 = this.keys()[1]
|
key1 = this.keys()[1]
|
||||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||||
error = Pose2(0, 0, 0).localCoordinates(gT1.between(gT2))
|
error = expected.localCoordinates(gT1.between(gT2))
|
||||||
|
|
||||||
if H is not None:
|
if H is not None:
|
||||||
result = gT1.between(gT2)
|
result = gT1.between(gT2)
|
||||||
|
@ -89,7 +89,7 @@ class TestCustomFactor(GtsamTestCase):
|
||||||
v.insert(0, gT1)
|
v.insert(0, gT1)
|
||||||
v.insert(1, gT2)
|
v.insert(1, gT2)
|
||||||
|
|
||||||
bf = gtsam.BetweenFactorPose2(0, 1, Pose2(0, 0, 0), noise_model)
|
bf = gtsam.BetweenFactorPose2(0, 1, expected, noise_model)
|
||||||
|
|
||||||
gf = cf.linearize(v)
|
gf = cf.linearize(v)
|
||||||
gf_b = bf.linearize(v)
|
gf_b = bf.linearize(v)
|
||||||
|
@ -136,7 +136,7 @@ class TestCustomFactor(GtsamTestCase):
|
||||||
key0 = this.keys()[0]
|
key0 = this.keys()[0]
|
||||||
key1 = this.keys()[1]
|
key1 = this.keys()[1]
|
||||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||||
error = Pose2(0, 0, 0).localCoordinates(gT1.between(gT2))
|
error = expected.localCoordinates(gT1.between(gT2))
|
||||||
|
|
||||||
self.assertTrue(H is None) # Should be true if we only request the error
|
self.assertTrue(H is None) # Should be true if we only request the error
|
||||||
|
|
||||||
|
@ -152,12 +152,56 @@ class TestCustomFactor(GtsamTestCase):
|
||||||
v.insert(0, gT1)
|
v.insert(0, gT1)
|
||||||
v.insert(1, gT2)
|
v.insert(1, gT2)
|
||||||
|
|
||||||
bf = gtsam.BetweenFactorPose2(0, 1, Pose2(0, 0, 0), noise_model)
|
bf = gtsam.BetweenFactorPose2(0, 1, expected, noise_model)
|
||||||
|
|
||||||
e_cf = cf.error(v)
|
e_cf = cf.error(v)
|
||||||
e_bf = bf.error(v)
|
e_bf = bf.error(v)
|
||||||
np.testing.assert_allclose(e_cf, e_bf)
|
np.testing.assert_allclose(e_cf, e_bf)
|
||||||
|
|
||||||
|
def test_optimization(self):
|
||||||
|
"""Tests if a factor graph with a CustomFactor can be properly optimized"""
|
||||||
|
gT1 = Pose2(1, 2, np.pi / 2)
|
||||||
|
gT2 = Pose2(-1, 4, np.pi)
|
||||||
|
|
||||||
|
expected = Pose2(2, 2, np.pi / 2)
|
||||||
|
|
||||||
|
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||||
|
"""
|
||||||
|
Error function that mimics a BetweenFactor
|
||||||
|
:param this: reference to the current CustomFactor being evaluated
|
||||||
|
:param v: Values object
|
||||||
|
:param H: list of references to the Jacobian arrays
|
||||||
|
:return: the non-linear error
|
||||||
|
"""
|
||||||
|
key0 = this.keys()[0]
|
||||||
|
key1 = this.keys()[1]
|
||||||
|
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||||
|
error = expected.localCoordinates(gT1.between(gT2))
|
||||||
|
|
||||||
|
if H is not None:
|
||||||
|
result = gT1.between(gT2)
|
||||||
|
H[0] = -result.inverse().AdjointMap()
|
||||||
|
H[1] = np.eye(3)
|
||||||
|
return error
|
||||||
|
|
||||||
|
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||||
|
cf = CustomFactor(noise_model, [0, 1], error_func)
|
||||||
|
|
||||||
|
fg = gtsam.NonlinearFactorGraph()
|
||||||
|
fg.add(cf)
|
||||||
|
fg.add(gtsam.PriorFactorPose2(0, gT1, noise_model))
|
||||||
|
|
||||||
|
v = Values()
|
||||||
|
v.insert(0, Pose2(0, 0, 0))
|
||||||
|
v.insert(1, Pose2(0, 0, 0))
|
||||||
|
|
||||||
|
params = gtsam.LevenbergMarquardtParams()
|
||||||
|
optimizer = gtsam.LevenbergMarquardtOptimizer(fg, v, params)
|
||||||
|
result = optimizer.optimize()
|
||||||
|
|
||||||
|
self.gtsamAssertEquals(result.atPose2(0), gT1, tol=1e-5)
|
||||||
|
self.gtsamAssertEquals(result.atPose2(1), gT2, tol=1e-5)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
|
Loading…
Reference in New Issue