translation averaging example

release/4.3a0
Akshay Krishnan 2020-09-20 20:34:10 +00:00
parent 1f5c6b8b4b
commit 565467f2ff
1 changed files with 93 additions and 0 deletions

View File

@ -0,0 +1,93 @@
from collections import Counter
import functools
import operator
import numpy as np
import gtsam
from gtsam.examples import SFMdata
max_1dsfm_projection_directions = 50
outlier_weight_threshold = 0.1
def get_data():
""""Returns data from SfMData.createPoses(). This contains the global rotations and the unit translations directions."""
# Using toy dataset in SfMdata for example.
poses = SFMdata.createPoses(gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0))
rotations = gtsam.Values()
translation_directions = []
for i in range(0, len(poses) - 2):
# Add the rotation
rotations.insert(i, poses[i].rotation())
# Create unit translation measurements with next two poses
for j in range(i+1, i+3):
i_Z_j = gtsam.Unit3(poses[i].rotation().unrotate(poses[j].translation() - poses[i].translation()))
translation_directions.append(gtsam.BinaryMeasurementUnit3(
i, j, i_Z_j, gtsam.noiseModel.Isotropic.Sigma(3, 0.01)))
# Add the last two rotations.
rotations.insert(len(poses) - 1, poses[-1].rotation())
rotations.insert(len(poses) - 2, poses[-2].rotation())
return (rotations, translation_directions)
def estimate_poses_given_rot(measurements: gtsam.BinaryMeasurementsUnit3,
rotations: gtsam.Values):
"""Estimate poses given normalized translation directions and rotations between nodes.
Arguments:
measurements - List of translation direction from the first node to the second node in the coordinate frame of the first node.
rotations {Values} -- Estimated rotations
Returns:
Values -- Estimated poses.
"""
# Convert the translation directions to global frame using the rotations.
w_measurements = gtsam.BinaryMeasurementsUnit3()
for measurement in measurements:
w_measurements.append(gtsam.BinaryMeasurementUnit3(measurement.key1(), measurement.key2(
), gtsam.Unit3(rotations.atRot3(measurement.key1()).rotate(measurement.measured().point3())), measurement.noiseModel()))
# Indices of measurements that are to be used as projection directions. These are randomly chosen.
indices = np.random.choice(len(w_measurements), min(
max_1dsfm_projection_directions, len(w_measurements)), replace=False)
# Sample projection directions from the measurements.
projection_directions = [w_measurements[idx].measured() for idx in indices]
outlier_weights = []
# Find the outlier weights for each direction using MFAS.
for direction in projection_directions:
algorithm = gtsam.MFAS(w_measurements, direction)
outlier_weights.append(algorithm.computeOutlierWeights())
# Compute average of outlier weights.
avg_outlier_weights = {}
for outlier_weight_dict in outlier_weights:
for k, v in outlier_weight_dict.items():
if k in avg_outlier_weights:
avg_outlier_weights[k] += v/len(outlier_weights)
else:
avg_outlier_weights[k] = v/len(outlier_weights)
# Remove measurements that have weight greater than threshold.
inlier_measurements = gtsam.BinaryMeasurementsUnit3()
[inlier_measurements.append(m) for m in w_measurements if avg_outlier_weights[(m.key1(), m.key2())] < outlier_weight_threshold]
# Run the optimizer to obtain translations for normalized directions.
translations = gtsam.TranslationRecovery(inlier_measurements).run()
poses = gtsam.Values()
for key in rotations.keys():
poses.insert(key, gtsam.Pose3(
rotations.atRot3(key), translations.atPoint3(key)))
return poses
def main():
rotations, translation_directions = get_data()
poses = estimate_poses_given_rot(translation_directions, rotations)
print("**** Translation averaging output ****")
print(poses)
print("**************************************")
if __name__ == '__main__':
main()