adding test with regular projection factors for comparison, and bug fixes in SmartFactor test.
parent
587bfd3772
commit
5518007317
|
@ -53,13 +53,13 @@ static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
|
|||
static SharedNoiseModel model(noiseModel::Unit::Create(2));
|
||||
|
||||
// Convenience for named keys
|
||||
//using symbol_shorthand::X;
|
||||
//using symbol_shorthand::L;
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::L;
|
||||
|
||||
//typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
|
||||
|
||||
|
||||
///* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( MultiProjectionFactor, noiseless ){
|
||||
cout << " ************************ MultiProjectionFactor: noiseless ****************************" << endl;
|
||||
Values theta;
|
||||
|
@ -106,7 +106,7 @@ TEST( MultiProjectionFactor, noiseless ){
|
|||
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST( MultiProjectionFactor, noisy ){
|
||||
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
|
||||
|
||||
|
@ -157,7 +157,7 @@ TEST( MultiProjectionFactor, noisy ){
|
|||
}
|
||||
|
||||
|
||||
///* ************************************************************************* */
|
||||
/* ************************************************************************* */
|
||||
TEST( MultiProjectionFactor, 3poses ){
|
||||
cout << " ************************ MultiProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
|
||||
|
||||
|
@ -181,12 +181,12 @@ TEST( MultiProjectionFactor, 3poses ){
|
|||
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
|
||||
SimpleCamera cam3(pose2, *K);
|
||||
SimpleCamera cam3(pose3, *K);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(5, 0, 3.0);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
|
@ -224,12 +224,13 @@ TEST( MultiProjectionFactor, 3poses ){
|
|||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
||||
graph.add(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
||||
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3* noise_pose);
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
|
@ -244,149 +245,77 @@ TEST( MultiProjectionFactor, 3poses ){
|
|||
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, nonStandard ) {
|
||||
// GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, Constructor) {
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
//
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
//
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, ConstructorWithTransform) {
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
//
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
//
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, Equals ) {
|
||||
// // Create two identical factors and make sure they're equal
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
//
|
||||
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
|
||||
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
|
||||
//
|
||||
// CHECK(assert_equal(factor1, factor2));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, EqualsWithTransform ) {
|
||||
// // Create two identical factors and make sure they're equal
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
//
|
||||
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
|
||||
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
|
||||
//
|
||||
// CHECK(assert_equal(factor1, factor2));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, Error ) {
|
||||
// // Create the factor with a measurement that is 3 pixels off in x
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
||||
//
|
||||
// // Set the linearization point
|
||||
// Pose3 pose(Rot3(), Point3(0,0,-6));
|
||||
// Point3 point(0.0, 0.0, 0.0);
|
||||
//
|
||||
// // Use the factor to calculate the error
|
||||
// Vector actualError(factor.evaluateError(pose, point));
|
||||
//
|
||||
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
||||
// Vector expectedError = Vector_(2, -3.0, 0.0);
|
||||
//
|
||||
// // Verify we get the expected error
|
||||
// CHECK(assert_equal(expectedError, actualError, 1e-9));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, ErrorWithTransform ) {
|
||||
// // Create the factor with a measurement that is 3 pixels off in x
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
||||
//
|
||||
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
|
||||
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
|
||||
// Point3 point(0.0, 0.0, 0.0);
|
||||
//
|
||||
// // Use the factor to calculate the error
|
||||
// Vector actualError(factor.evaluateError(pose, point));
|
||||
//
|
||||
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
||||
// Vector expectedError = Vector_(2, -3.0, 0.0);
|
||||
//
|
||||
// // Verify we get the expected error
|
||||
// CHECK(assert_equal(expectedError, actualError, 1e-9));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, Jacobian ) {
|
||||
// // Create the factor with a measurement that is 3 pixels off in x
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
||||
//
|
||||
// // Set the linearization point
|
||||
// Pose3 pose(Rot3(), Point3(0,0,-6));
|
||||
// Point3 point(0.0, 0.0, 0.0);
|
||||
//
|
||||
// // Use the factor to calculate the Jacobians
|
||||
// Matrix H1Actual, H2Actual;
|
||||
// factor.evaluateError(pose, point, H1Actual, H2Actual);
|
||||
//
|
||||
// // The expected Jacobians
|
||||
// Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
|
||||
// Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
|
||||
//
|
||||
// // Verify the Jacobians are correct
|
||||
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
|
||||
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, JacobianWithTransform ) {
|
||||
// // Create the factor with a measurement that is 3 pixels off in x
|
||||
// Key poseKey(X(1));
|
||||
// Key pointKey(L(1));
|
||||
// Point2 measurement(323.0, 240.0);
|
||||
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
||||
//
|
||||
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
|
||||
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
|
||||
// Point3 point(0.0, 0.0, 0.0);
|
||||
//
|
||||
// // Use the factor to calculate the Jacobians
|
||||
// Matrix H1Actual, H2Actual;
|
||||
// factor.evaluateError(pose, point, H1Actual, H2Actual);
|
||||
//
|
||||
// // The expected Jacobians
|
||||
// Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
|
||||
// Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
|
||||
//
|
||||
// // Verify the Jacobians are correct
|
||||
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
|
||||
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
|
||||
//}
|
||||
TEST( MultiProjectionFactor, 3poses_projection_factor ){
|
||||
cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
|
||||
|
||||
Symbol x1('X', 1);
|
||||
Symbol x2('X', 2);
|
||||
Symbol x3('X', 3);
|
||||
|
||||
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
|
||||
|
||||
std::vector<Key> views;
|
||||
views += x1, x2, x3;
|
||||
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
||||
SimpleCamera cam1(pose1, *K);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
|
||||
SimpleCamera cam2(pose2, *K);
|
||||
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
|
||||
pose3.print("Pose3: ");
|
||||
SimpleCamera cam3(pose3, *K);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
|
||||
typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
graph.add(ProjectionFactor(cam1.project(landmark1), noiseProjection, x1, L(1), K));
|
||||
graph.add(ProjectionFactor(cam2.project(landmark1), noiseProjection, x2, L(1), K));
|
||||
graph.add(ProjectionFactor(cam3.project(landmark1), noiseProjection, x3, L(1), K));
|
||||
|
||||
//
|
||||
graph.add(ProjectionFactor(cam1.project(landmark2), noiseProjection, x1, L(2), K));
|
||||
graph.add(ProjectionFactor(cam2.project(landmark2), noiseProjection, x2, L(2), K));
|
||||
graph.add(ProjectionFactor(cam3.project(landmark2), noiseProjection, x3, L(2), K));
|
||||
|
||||
graph.add(ProjectionFactor(cam1.project(landmark3), noiseProjection, x1, L(3), K));
|
||||
graph.add(ProjectionFactor(cam2.project(landmark3), noiseProjection, x2, L(3), K));
|
||||
graph.add(ProjectionFactor(cam3.project(landmark3), noiseProjection, x3, L(3), K));
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
||||
graph.add(PriorFactor<Pose3>(x2, pose2, noisePrior));
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3* noise_pose);
|
||||
values.insert(L(1), landmark1);
|
||||
values.insert(L(2), landmark2);
|
||||
values.insert(L(3), landmark3);
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
// params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
// params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
result.print("Regular Projection Factor: results of 3 camera, 3 landmark optimization \n");
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
|
|
Loading…
Reference in New Issue