Refactored code paths to cover all 8 cases of H, B_, H_B_ with minimal calculation. Previous version was a bit hard to parse. Assign directly to B (formerly stacked) and jacobian (formerly derivative).
parent
6c09d8681c
commit
540be68b80
|
@ -68,67 +68,72 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|||
/* ************************************************************************* */
|
||||
const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const {
|
||||
#ifdef GTSAM_USE_TBB
|
||||
// NOTE(hayk): At some point it seemed like this reproducably resulted in deadlock. However, I
|
||||
// can't see the reason why and I can no longer reproduce it. It may have been a red herring, or
|
||||
// there is still a latent bug to watch out for.
|
||||
// NOTE(hayk): At some point it seemed like this reproducably resulted in
|
||||
// deadlock. However, I can't see reason why and I can no longer reproduce it.
|
||||
// It may have been a red herring, or there is still a latent bug.
|
||||
tbb::mutex::scoped_lock lock(B_mutex_);
|
||||
#endif
|
||||
|
||||
if (B_ && !H) {
|
||||
// Return cached basis if available and the Jacobian isn't needed.
|
||||
return *B_;
|
||||
} else if (B_ && H && H_B_) {
|
||||
// Return cached basis and derivatives if available.
|
||||
*H = *H_B_;
|
||||
return *B_;
|
||||
} else {
|
||||
// Get the unit vector and derivative wrt this.
|
||||
// NOTE(hayk): We can't call point3(), because it would recursively call basis().
|
||||
const Point3 n(p_);
|
||||
Point3 n, axis;
|
||||
if (!B_ || (H && !H_B_)) {
|
||||
// Get the unit vector
|
||||
// NOTE(hayk): can't call point3(), because would recursively call basis().
|
||||
n = Point3(p_);
|
||||
|
||||
// Get the axis of rotation with the minimum projected length of the point
|
||||
Point3 axis(0, 0, 1);
|
||||
axis = Point3(0, 0, 1);
|
||||
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
|
||||
if ((mx <= my) && (mx <= mz)) {
|
||||
axis = Point3(1.0, 0.0, 0.0);
|
||||
} else if ((my <= mx) && (my <= mz)) {
|
||||
axis = Point3(0.0, 1.0, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
// Choose the direction of the first basis vector b1 in the tangent plane by crossing n with
|
||||
// the chosen axis.
|
||||
Matrix33 H_B1_n;
|
||||
Point3 B1 = gtsam::cross(n, axis, H ? &H_B1_n : nullptr);
|
||||
if (H) {
|
||||
if (!H_B_) {
|
||||
// Compute Jacobian. Possibly recomputes B_
|
||||
|
||||
// Normalize result to get a unit vector: b1 = B1 / |B1|.
|
||||
Matrix33 H_b1_B1;
|
||||
Point3 b1 = normalize(B1, H ? &H_b1_B1 : nullptr);
|
||||
// Choose the direction of the first basis vector b1 in the tangent plane
|
||||
// by crossing n with the chosen axis.
|
||||
Matrix33 H_B1_n;
|
||||
const Point3 B1 = gtsam::cross(n, axis, &H_B1_n);
|
||||
|
||||
// Get the second basis vector b2, which is orthogonal to n and b1, by crossing them.
|
||||
// No need to normalize this, p and b1 are orthogonal unit vectors.
|
||||
Matrix33 H_b2_n, H_b2_b1;
|
||||
Point3 b2 = gtsam::cross(n, b1, H ? &H_b2_n : nullptr, H ? &H_b2_b1 : nullptr);
|
||||
// Normalize result to get a unit vector: b1 = B1 / |B1|.
|
||||
Matrix32 B;
|
||||
Matrix33 H_b1_B1;
|
||||
B.col(0) = normalize(B1, &H_b1_B1);
|
||||
|
||||
// Create the basis by stacking b1 and b2.
|
||||
Matrix32 stacked;
|
||||
stacked << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
B_.reset(stacked);
|
||||
// Get the second basis vector b2, which is orthogonal to n and b1.
|
||||
Matrix33 H_b2_n, H_b2_b1;
|
||||
B.col(1) = gtsam::cross(n, B.col(0), &H_b2_n, &H_b2_b1);
|
||||
|
||||
if (H) {
|
||||
// Chain rule tomfoolery to compute the derivative.
|
||||
const Matrix32& H_n_p = *B_;
|
||||
const Matrix32 H_b1_p = H_b1_B1 * H_B1_n * H_n_p;
|
||||
const Matrix32 H_b2_p = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
|
||||
// Chain rule tomfoolery to compute the jacobian.
|
||||
Matrix62 jacobian;
|
||||
const Matrix32& H_n_p = B;
|
||||
jacobian.block<3, 2>(0, 0) = H_b1_B1 * H_B1_n * H_n_p;
|
||||
auto H_b1_p = jacobian.block<3, 2>(0, 0);
|
||||
jacobian.block<3, 2>(3, 0) = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
|
||||
|
||||
// Cache the derivative and fill the result.
|
||||
Matrix62 derivative;
|
||||
derivative << H_b1_p, H_b2_p;
|
||||
H_B_.reset(derivative);
|
||||
*H = *H_B_;
|
||||
// Cache the result and jacobian
|
||||
B_.reset(B);
|
||||
H_B_.reset(jacobian);
|
||||
}
|
||||
|
||||
return *B_;
|
||||
// Return cached jacobian, possibly computed just above
|
||||
*H = *H_B_;
|
||||
}
|
||||
|
||||
if (!B_) {
|
||||
// Same calculation as above, without derivatives.
|
||||
// Done after H block, as that possibly computes B_ for the first time
|
||||
Matrix32 B;
|
||||
const Point3 B1 = gtsam::cross(n, axis);
|
||||
B.col(0) = normalize(B1);
|
||||
B.col(1) = gtsam::cross(n, B.col(0));
|
||||
B_.reset(B);
|
||||
}
|
||||
|
||||
return *B_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue