properly deprecate eliminate functions

release/4.3a0
Varun Agrawal 2021-11-09 18:25:42 -05:00
parent 1bcb44784a
commit 5051f19f30
5 changed files with 40 additions and 30 deletions

View File

@ -78,29 +78,31 @@ namespace gtsam {
}
/* ************************************************************************* */
template<class FACTORGRAPH>
boost::shared_ptr<typename EliminateableFactorGraph<FACTORGRAPH>::BayesTreeType>
EliminateableFactorGraph<FACTORGRAPH>::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate& function,
OptionalVariableIndex variableIndex) const
{
if(!variableIndex) {
// If no VariableIndex provided, compute one and call this function again IMPORTANT: we check
// for no variable index first so that it's always computed if we need to call COLAMD because
// no Ordering is provided. When removing optional from VariableIndex, create VariableIndex
// before creating ordering.
template <class FACTORGRAPH>
boost::shared_ptr<
typename EliminateableFactorGraph<FACTORGRAPH>::BayesTreeType>
EliminateableFactorGraph<FACTORGRAPH>::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate& function,
OptionalVariableIndex variableIndex) const {
if (!variableIndex) {
// If no VariableIndex provided, compute one and call this function again
// IMPORTANT: we check for no variable index first so that it's always
// computed if we need to call COLAMD because no Ordering is provided.
// When removing optional from VariableIndex, create VariableIndex before
// creating ordering.
VariableIndex computedVariableIndex(asDerived());
return eliminateMultifrontal(function, computedVariableIndex, orderingType);
}
else {
// Compute an ordering and call this function again. We are guaranteed to have a
// VariableIndex already here because we computed one if needed in the previous 'if' block.
return eliminateMultifrontal(orderingType, function,
computedVariableIndex);
} else {
// Compute an ordering and call this function again. We are guaranteed to
// have a VariableIndex already here because we computed one if needed in
// the previous 'if' block.
if (orderingType == Ordering::METIS) {
Ordering computedOrdering = Ordering::Metis(asDerived());
return eliminateMultifrontal(computedOrdering, function, variableIndex, orderingType);
return eliminateMultifrontal(computedOrdering, function, variableIndex);
} else {
Ordering computedOrdering = Ordering::Colamd(*variableIndex);
return eliminateMultifrontal(computedOrdering, function, variableIndex, orderingType);
return eliminateMultifrontal(computedOrdering, function, variableIndex);
}
}
}
@ -273,7 +275,7 @@ namespace gtsam {
else
{
// No ordering was provided for the unmarginalized variables, so order them with COLAMD.
return factorGraph->eliminateSequential(function);
return factorGraph->eliminateSequential(Ordering::COLAMD, function);
}
}
}
@ -340,7 +342,7 @@ namespace gtsam {
else
{
// No ordering was provided for the unmarginalized variables, so order them with COLAMD.
return factorGraph->eliminateMultifrontal(function);
return factorGraph->eliminateMultifrontal(Ordering::COLAMD, function);
}
}
}

View File

@ -288,6 +288,7 @@ namespace gtsam {
FactorGraphType& asDerived() { return static_cast<FactorGraphType&>(*this); }
public:
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated ordering and orderingType shouldn't both be specified */
boost::shared_ptr<BayesNetType> eliminateSequential(
const Ordering& ordering,
@ -339,6 +340,7 @@ namespace gtsam {
OptionalVariableIndex variableIndex = boost::none) const {
return marginalMultifrontalBayesTree(variables, function, variableIndex);
}
#endif
};
}

View File

@ -290,10 +290,11 @@ namespace gtsam {
return blocks;
}
/* ************************************************************************* */
/* ************************************************************************ */
VectorValues GaussianFactorGraph::optimize(const Eliminate& function) const {
gttic(GaussianFactorGraph_optimize);
return BaseEliminateable::eliminateMultifrontal(function)->optimize();
return BaseEliminateable::eliminateMultifrontal(Ordering::COLAMD, function)
->optimize();
}
/* ************************************************************************* */

View File

@ -80,11 +80,14 @@ Marginals::Marginals(const GaussianFactorGraph& graph, const VectorValues& solut
/* ************************************************************************* */
void Marginals::computeBayesTree() {
// The default ordering to use.
const Ordering ordering = Ordering::COLAMND;
// Compute BayesTree
if(factorization_ == CHOLESKY)
bayesTree_ = *graph_.eliminateMultifrontal(EliminatePreferCholesky);
else if(factorization_ == QR)
bayesTree_ = *graph_.eliminateMultifrontal(EliminateQR);
if (factorization_ == CHOLESKY)
bayesTree_ =
*graph_.eliminateMultifrontal(ordering, EliminatePreferCholesky);
else if (factorization_ == QR)
bayesTree_ = *graph_.eliminateMultifrontal(ordering, EliminateQR);
}
/* ************************************************************************* */

View File

@ -147,11 +147,13 @@ VectorValues NonlinearOptimizer::solve(const GaussianFactorGraph& gfg,
} else if (params.isSequential()) {
// Sequential QR or Cholesky (decided by params.getEliminationFunction())
if (params.ordering)
delta = gfg.eliminateSequential(*params.ordering, params.getEliminationFunction(),
boost::none, params.orderingType)->optimize();
delta = gfg.eliminateSequential(*params.ordering,
params.getEliminationFunction())
->optimize();
else
delta = gfg.eliminateSequential(params.getEliminationFunction(), boost::none,
params.orderingType)->optimize();
delta = gfg.eliminateSequential(params.orderingType,
params.getEliminationFunction())
->optimize();
} else if (params.isIterative()) {
// Conjugate Gradient -> needs params.iterativeParams
if (!params.iterativeParams)