add a smart factor sfm example
parent
afcddf823a
commit
4cc759c0a7
|
@ -0,0 +1,139 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SFMExample_SmartFactor.cpp
|
||||
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Jing Dong
|
||||
*/
|
||||
|
||||
/**
|
||||
* A structure-from-motion example with landmarks
|
||||
* - The landmarks form a 10 meter cube
|
||||
* - The robot rotates around the landmarks, always facing towards the cube
|
||||
*/
|
||||
|
||||
// For loading the data
|
||||
#include "SFMdata.h"
|
||||
|
||||
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
||||
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
||||
// Here we will use Symbols
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'.
|
||||
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
|
||||
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
|
||||
// The calibration should be known.
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
|
||||
// Also, we will initialize the robot at some location using a Prior factor.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
// Finally, once all of the factors have been added to our factor graph, we will want to
|
||||
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
|
||||
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
|
||||
// trust-region method known as Powell's Degleg
|
||||
#include <gtsam/nonlinear/DoglegOptimizer.h>
|
||||
|
||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
|
||||
// nonlinear functions around an initial linearization point, then solve the linear system
|
||||
// to update the linearization point. This happens repeatedly until the solver converges
|
||||
// to a consistent set of variable values. This requires us to specify an initial guess
|
||||
// for each variable, held in a Values container.
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Make the typename short so it looks much cleaner
|
||||
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
|
||||
SmartFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
// Define the camera calibration parameters
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks
|
||||
vector<Point3> points = createPoints();
|
||||
|
||||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
|
||||
|
||||
// Simulated measurements from each camera pose, adding them to the factor graph
|
||||
for (size_t i = 0; i < points.size(); ++i) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
|
||||
for (size_t j = 0; j < poses.size(); ++j) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[j], *K);
|
||||
Point2 measurement = camera.project(points[i]);
|
||||
|
||||
// call add() function to add measurment into a single factor, here we need to add:
|
||||
// 1. the 2D measurement
|
||||
// 2. the corresponding camera's key
|
||||
// 3. camera noise model
|
||||
// 4. camera calibration
|
||||
smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
graph.push_back(smartfactor);
|
||||
}
|
||||
|
||||
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
|
||||
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
|
||||
// Because these two are fixed, the rest poses will be alse fixed.
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
|
||||
|
||||
graph.print("Factor Graph:\n");
|
||||
|
||||
// Create the data structure to hold the initial estimate to the solution
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate;
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
initialEstimate.print("Initial Estimates:\n");
|
||||
|
||||
// Optimize the graph and print results
|
||||
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
|
||||
result.print("Final results:\n");
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
Loading…
Reference in New Issue