Code from Joel

release/4.3a0
Frank Dellaert 2024-09-20 18:11:47 -07:00
parent 9567006b6b
commit 4b04ae0944
1 changed files with 228 additions and 0 deletions

View File

@ -0,0 +1,228 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
TestCase class with GTSAM assert utils.
Author: Joel Truher & Frank Dellaert
"""
# pylint: disable=C0103,C0114,C0116,E0611,R0913
# mypy: disable-error-code="import-untyped"
# see numericalDerivative.h
# pybind wants to wrap concrete types, which would have been
# a whole lot of them, so i reimplemented the part of this that
# I needed, using the python approach to "generic" typing.
from typing import Callable, TypeVar
import numpy as np
Y = TypeVar("Y")
X = TypeVar("X")
X1 = TypeVar("X1")
X2 = TypeVar("X2")
X3 = TypeVar("X3")
X4 = TypeVar("X4")
X5 = TypeVar("X5")
X6 = TypeVar("X6")
def local(a: Y, b: Y) -> np.ndarray:
if type(a) is not type(b):
raise TypeError(f"a {type(a)} b {type(b)}")
if isinstance(a, np.ndarray):
return b - a
if isinstance(a, (float, int)):
return np.array([[b - a]]) # type:ignore
# there is no common superclass for Y
return a.localCoordinates(b) # type:ignore
def retract(a, b):
if isinstance(a, (np.ndarray, float, int)):
return a + b
return a.retract(b)
def numericalDerivative11(h: Callable[[X], Y], x: X, delta=1e-5) -> np.ndarray:
hx: Y = h(x)
zeroY = local(hx, hx)
m = zeroY.shape[0]
zeroX = local(x, x)
N = zeroX.shape[0]
dx = np.zeros(N)
H = np.zeros((m, N))
factor: float = 1.0 / (2.0 * delta)
for j in range(N):
dx[j] = delta
dy1 = local(hx, h(retract(x, dx)))
dx[j] = -delta
dy2 = local(hx, h(retract(x, dx)))
dx[j] = 0
H[:, j] = (dy1 - dy2) * factor
return H
def numericalDerivative21(
h: Callable[[X1, X2], Y], x1: X1, x2: X2, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x, x2), x1, delta)
def numericalDerivative22(
h: Callable[[X1, X2], Y], x1: X1, x2: X2, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x), x2, delta)
def numericalDerivative31(
h: Callable[[X1, X2, X3], Y], x1: X1, x2: X2, x3: X3, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x, x2, x3), x1, delta)
def numericalDerivative32(
h: Callable[[X1, X2, X3], Y], x1: X1, x2: X2, x3: X3, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x, x3), x2, delta)
def numericalDerivative33(
h: Callable[[X1, X2, X3], Y], x1: X1, x2: X2, x3: X3, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x), x3, delta)
def numericalDerivative41(
h: Callable[[X1, X2, X3, X4], Y], x1: X1, x2: X2, x3: X3, x4: X4, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x, x2, x3, x4), x1, delta)
def numericalDerivative42(
h: Callable[[X1, X2, X3, X4], Y], x1: X1, x2: X2, x3: X3, x4: X4, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x, x3, x4), x2, delta)
def numericalDerivative43(
h: Callable[[X1, X2, X3, X4], Y], x1: X1, x2: X2, x3: X3, x4: X4, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x, x4), x3, delta)
def numericalDerivative44(
h: Callable[[X1, X2, X3, X4], Y], x1: X1, x2: X2, x3: X3, x4: X4, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x), x4, delta)
def numericalDerivative51(
h: Callable[[X1, X2, X3, X4, X5], Y], x1: X1, x2: X2, x3: X3, x4: X4, x5: X5, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x, x2, x3, x4, x5), x1, delta)
def numericalDerivative52(
h: Callable[[X1, X2, X3, X4, X5], Y], x1: X1, x2: X2, x3: X3, x4: X4, x5: X5, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x, x3, x4, x5), x2, delta)
def numericalDerivative53(
h: Callable[[X1, X2, X3, X4, X5], Y], x1: X1, x2: X2, x3: X3, x4: X4, x5: X5, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x, x4, x5), x3, delta)
def numericalDerivative54(
h: Callable[[X1, X2, X3, X4, X5], Y], x1: X1, x2: X2, x3: X3, x4: X4, x5: X5, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x, x5), x4, delta)
def numericalDerivative55(
h: Callable[[X1, X2, X3, X4, X5], Y], x1: X1, x2: X2, x3: X3, x4: X4, x5: X5, delta=1e-5
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x4, x), x5, delta)
def numericalDerivative61(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x, x2, x3, x4, x5, x6), x1, delta)
def numericalDerivative62(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x, x3, x4, x5, x6), x2, delta)
def numericalDerivative63(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x, x4, x5, x6), x3, delta)
def numericalDerivative64(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x, x5, x6), x4, delta)
def numericalDerivative65(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x4, x, x6), x5, delta)
def numericalDerivative66(
h: Callable[[X1, X2, X3, X4, X5, X6], Y],
x1: X1,
x2: X2,
x3: X3,
x4: X4,
x5: X5,
x6: X6,
delta=1e-5,
) -> np.array:
return numericalDerivative11(lambda x: h(x1, x2, x3, x4, x5, x), x6, delta)