New add_factors method

release/4.3a0
Frank Dellaert 2019-06-01 16:46:52 -04:00
parent da1b7f92f2
commit 495a840921
3 changed files with 243 additions and 203 deletions

View File

@ -26,74 +26,105 @@
#include <boost/bind.hpp>
#include <stdio.h>
#include <algorithm>
#include <iostream> // for cout :-(
#include <sstream>
#include <iostream> // for cout :-(
#include <string>
namespace gtsam {
/* ************************************************************************* */
template<class FACTOR>
void FactorGraph<FACTOR>::print(const std::string& s, const KeyFormatter& formatter) const {
std::cout << s << std::endl;
std::cout << "size: " << size() << std::endl;
for (size_t i = 0; i < factors_.size(); i++) {
std::stringstream ss;
ss << "factor " << i << ": ";
if (factors_[i])
factors_[i]->print(ss.str(), formatter);
/* ************************************************************************* */
template <class FACTOR>
void FactorGraph<FACTOR>::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << std::endl;
std::cout << "size: " << size() << std::endl;
for (size_t i = 0; i < factors_.size(); i++) {
std::stringstream ss;
ss << "factor " << i << ": ";
if (factors_[i]) factors_[i]->print(ss.str(), formatter);
}
}
/* ************************************************************************* */
template <class FACTOR>
bool FactorGraph<FACTOR>::equals(const This& fg, double tol) const {
// check whether the two factor graphs have the same number of factors.
if (factors_.size() != fg.size()) return false;
// check whether the factors are the same, in same order.
for (size_t i = 0; i < factors_.size(); i++) {
sharedFactor f1 = factors_[i], f2 = fg.factors_[i];
if (f1 == NULL && f2 == NULL) continue;
if (f1 == NULL || f2 == NULL) return false;
if (!f1->equals(*f2, tol)) return false;
}
return true;
}
/* ************************************************************************* */
template <class FACTOR>
size_t FactorGraph<FACTOR>::nrFactors() const {
size_t size_ = 0;
for (const sharedFactor& factor : factors_)
if (factor) size_++;
return size_;
}
/* ************************************************************************* */
template <class FACTOR>
KeySet FactorGraph<FACTOR>::keys() const {
KeySet keys;
for (const sharedFactor& factor : this->factors_) {
if (factor) keys.insert(factor->begin(), factor->end());
}
return keys;
}
/* ************************************************************************* */
template <class FACTOR>
KeyVector FactorGraph<FACTOR>::keyVector() const {
KeyVector keys;
keys.reserve(2 * size()); // guess at size
for (const sharedFactor& factor : factors_)
if (factor) keys.insert(keys.end(), factor->begin(), factor->end());
std::sort(keys.begin(), keys.end());
auto last = std::unique(keys.begin(), keys.end());
keys.erase(last, keys.end());
return keys;
}
/* ************************************************************************* */
template <class FACTOR>
template <typename CONTAINER, typename>
FactorIndices FactorGraph<FACTOR>::add_factors(const CONTAINER& factors,
bool useEmptySlots) {
const size_t num_factors = factors.size();
FactorIndices newFactorIndices(num_factors);
if (useEmptySlots) {
size_t i = 0;
for (size_t j = 0; j < num_factors; ++j) {
// Loop to find the next available factor slot
do {
if (i >= size())
// Make room for remaining factors, happens only once.
resize(size() + num_factors - j);
else if (at(i))
++i; // Move on to the next slot or past end.
else
break; // We found an empty slot, break to fill it.
} while (true);
// Use the current slot, updating graph and newFactorSlots.
at(i) = factors[j];
newFactorIndices[j] = i;
}
} else {
// We're not looking for unused slots, so just add the factors at the end.
for (size_t i = 0; i < num_factors; ++i) newFactorIndices[i] = i + size();
push_back(factors);
}
return newFactorIndices;
}
/* ************************************************************************* */
template<class FACTOR>
bool FactorGraph<FACTOR>::equals(const This& fg, double tol) const {
/** check whether the two factor graphs have the same number of factors_ */
if (factors_.size() != fg.size()) return false;
/** check whether the factors_ are the same */
for (size_t i = 0; i < factors_.size(); i++) {
// TODO: Doesn't this force order of factor insertion?
sharedFactor f1 = factors_[i], f2 = fg.factors_[i];
if (f1 == NULL && f2 == NULL) continue;
if (f1 == NULL || f2 == NULL) return false;
if (!f1->equals(*f2, tol)) return false;
}
return true;
}
/* ************************************************************************* */
template<class FACTOR>
size_t FactorGraph<FACTOR>::nrFactors() const {
size_t size_ = 0;
for(const sharedFactor& factor: factors_)
if (factor) size_++;
return size_;
}
/* ************************************************************************* */
template<class FACTOR>
KeySet FactorGraph<FACTOR>::keys() const {
KeySet keys;
for(const sharedFactor& factor: this->factors_) {
if(factor)
keys.insert(factor->begin(), factor->end());
}
return keys;
}
/* ************************************************************************* */
template <class FACTOR>
KeyVector FactorGraph<FACTOR>::keyVector() const {
KeyVector keys;
keys.reserve(2 * size()); // guess at size
for (const sharedFactor& factor: factors_)
if (factor)
keys.insert(keys.end(), factor->begin(), factor->end());
std::sort(keys.begin(), keys.end());
auto last = std::unique(keys.begin(), keys.end());
keys.erase(last, keys.end());
return keys;
}
/* ************************************************************************* */
} // namespace gtsam
} // namespace gtsam

View File

@ -273,6 +273,14 @@ class FactorGraph {
bayesTree.addFactorsToGraph(*this);
}
/**
* Add new factors to a factor graph and returns a list of new factor indices,
* optionally finding and reusing empty factor slots.
*/
template <typename CONTAINER, typename = HasDerivedElementType<CONTAINER>>
FactorIndices add_factors(const CONTAINER& factors,
bool useEmptySlots = false);
/// @}
/// @name Testable
/// @{

View File

@ -15,14 +15,16 @@
* @author Christian Potthast
**/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/symbolic/SymbolicBayesNet.h>
#include <gtsam/symbolic/SymbolicBayesTree.h>
#include <gtsam/symbolic/SymbolicConditional.h>
#include <gtsam/symbolic/tests/symbolicExampleGraphs.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/set.hpp>
using namespace std;
@ -46,11 +48,10 @@ TEST(SymbolicFactorGraph, keys2) {
}
/* ************************************************************************* */
TEST(SymbolicFactorGraph, eliminateFullSequential)
{
TEST(SymbolicFactorGraph, eliminateFullSequential) {
// Test with simpleTestGraph1
Ordering order;
order += 0,1,2,3,4;
order += 0, 1, 2, 3, 4;
SymbolicBayesNet actual1 = *simpleTestGraph1.eliminateSequential(order);
EXPECT(assert_equal(simpleTestGraph1BayesNet, actual1));
@ -60,24 +61,20 @@ TEST(SymbolicFactorGraph, eliminateFullSequential)
}
/* ************************************************************************* */
TEST(SymbolicFactorGraph, eliminatePartialSequential)
{
TEST(SymbolicFactorGraph, eliminatePartialSequential) {
// Eliminate 0 and 1
const Ordering order = list_of(0)(1);
const SymbolicBayesNet expectedBayesNet = list_of
(SymbolicConditional(0,1,2))
(SymbolicConditional(1,2,3,4));
const SymbolicBayesNet expectedBayesNet =
list_of(SymbolicConditional(0, 1, 2))(SymbolicConditional(1, 2, 3, 4));
const SymbolicFactorGraph expectedSfg = list_of
(SymbolicFactor(2,3))
(SymbolicFactor(4,5))
(SymbolicFactor(2,3,4));
const SymbolicFactorGraph expectedSfg = list_of(SymbolicFactor(2, 3))(
SymbolicFactor(4, 5))(SymbolicFactor(2, 3, 4));
SymbolicBayesNet::shared_ptr actualBayesNet;
SymbolicFactorGraph::shared_ptr actualSfg;
boost::tie(actualBayesNet, actualSfg) =
simpleTestGraph2.eliminatePartialSequential(Ordering(list_of(0)(1)));
simpleTestGraph2.eliminatePartialSequential(Ordering(list_of(0)(1)));
EXPECT(assert_equal(expectedSfg, *actualSfg));
EXPECT(assert_equal(expectedBayesNet, *actualBayesNet));
@ -85,75 +82,71 @@ TEST(SymbolicFactorGraph, eliminatePartialSequential)
SymbolicBayesNet::shared_ptr actualBayesNet2;
SymbolicFactorGraph::shared_ptr actualSfg2;
boost::tie(actualBayesNet2, actualSfg2) =
simpleTestGraph2.eliminatePartialSequential(list_of(0)(1).convert_to_container<KeyVector >());
simpleTestGraph2.eliminatePartialSequential(
list_of(0)(1).convert_to_container<KeyVector>());
EXPECT(assert_equal(expectedSfg, *actualSfg2));
EXPECT(assert_equal(expectedBayesNet, *actualBayesNet2));
}
/* ************************************************************************* */
TEST(SymbolicFactorGraph, eliminateFullMultifrontal)
{
Ordering ordering; ordering += 0,1,2,3;
SymbolicBayesTree actual1 =
*simpleChain.eliminateMultifrontal(ordering);
TEST(SymbolicFactorGraph, eliminateFullMultifrontal) {
Ordering ordering;
ordering += 0, 1, 2, 3;
SymbolicBayesTree actual1 = *simpleChain.eliminateMultifrontal(ordering);
EXPECT(assert_equal(simpleChainBayesTree, actual1));
SymbolicBayesTree actual2 =
*asiaGraph.eliminateMultifrontal(asiaOrdering);
SymbolicBayesTree actual2 = *asiaGraph.eliminateMultifrontal(asiaOrdering);
EXPECT(assert_equal(asiaBayesTree, actual2));
}
/* ************************************************************************* */
TEST(SymbolicFactorGraph, eliminatePartialMultifrontal)
{
TEST(SymbolicFactorGraph, eliminatePartialMultifrontal) {
SymbolicBayesTree expectedBayesTree;
SymbolicConditional::shared_ptr root = boost::make_shared<SymbolicConditional>(
SymbolicConditional::FromKeys(list_of(4)(5)(1), 2));
expectedBayesTree.insertRoot(boost::make_shared<SymbolicBayesTreeClique>(root));
SymbolicConditional::shared_ptr root =
boost::make_shared<SymbolicConditional>(
SymbolicConditional::FromKeys(list_of(4)(5)(1), 2));
expectedBayesTree.insertRoot(
boost::make_shared<SymbolicBayesTreeClique>(root));
SymbolicFactorGraph expectedFactorGraph = list_of
(SymbolicFactor(0,1))
(SymbolicFactor(0,2))
(SymbolicFactor(1,3))
(SymbolicFactor(2,3))
(SymbolicFactor(1));
SymbolicFactorGraph expectedFactorGraph =
list_of(SymbolicFactor(0, 1))(SymbolicFactor(0, 2))(SymbolicFactor(1, 3))(
SymbolicFactor(2, 3))(SymbolicFactor(1));
SymbolicBayesTree::shared_ptr actualBayesTree;
SymbolicFactorGraph::shared_ptr actualFactorGraph;
boost::tie(actualBayesTree, actualFactorGraph) =
simpleTestGraph2.eliminatePartialMultifrontal(Ordering(list_of(4)(5)));
simpleTestGraph2.eliminatePartialMultifrontal(Ordering(list_of(4)(5)));
EXPECT(assert_equal(expectedFactorGraph, *actualFactorGraph));
EXPECT(assert_equal(expectedBayesTree, *actualBayesTree));
SymbolicBayesTree expectedBayesTree2;
SymbolicBayesTreeClique::shared_ptr root2 = boost::make_shared<SymbolicBayesTreeClique>(
boost::make_shared<SymbolicConditional>(4,1));
SymbolicBayesTreeClique::shared_ptr root2 =
boost::make_shared<SymbolicBayesTreeClique>(
boost::make_shared<SymbolicConditional>(4, 1));
root2->children.push_back(boost::make_shared<SymbolicBayesTreeClique>(
boost::make_shared<SymbolicConditional>(5,4)));
boost::make_shared<SymbolicConditional>(5, 4)));
expectedBayesTree2.insertRoot(root2);
SymbolicBayesTree::shared_ptr actualBayesTree2;
SymbolicFactorGraph::shared_ptr actualFactorGraph2;
boost::tie(actualBayesTree2, actualFactorGraph2) =
simpleTestGraph2.eliminatePartialMultifrontal(list_of<Key>(4)(5).convert_to_container<KeyVector >());
simpleTestGraph2.eliminatePartialMultifrontal(
list_of<Key>(4)(5).convert_to_container<KeyVector>());
EXPECT(assert_equal(expectedFactorGraph, *actualFactorGraph2));
EXPECT(assert_equal(expectedBayesTree2, *actualBayesTree2));
}
/* ************************************************************************* */
TEST(SymbolicFactorGraph, marginalMultifrontalBayesNet)
{
SymbolicBayesNet expectedBayesNet = list_of
(SymbolicConditional(0, 1, 2))
(SymbolicConditional(1, 2, 3))
(SymbolicConditional(2, 3))
(SymbolicConditional(3));
TEST(SymbolicFactorGraph, marginalMultifrontalBayesNet) {
SymbolicBayesNet expectedBayesNet =
list_of(SymbolicConditional(0, 1, 2))(SymbolicConditional(1, 2, 3))(
SymbolicConditional(2, 3))(SymbolicConditional(3));
SymbolicBayesNet actual1 = *simpleTestGraph2.marginalMultifrontalBayesNet(
Ordering(list_of(0)(1)(2)(3)));
Ordering(list_of(0)(1)(2)(3)));
EXPECT(assert_equal(expectedBayesNet, actual1));
}
@ -167,104 +160,75 @@ TEST(SymbolicFactorGraph, eliminate_disconnected_graph) {
// create expected Chordal bayes Net
SymbolicBayesNet expected;
expected.push_back(boost::make_shared<SymbolicConditional>(0,1,2));
expected.push_back(boost::make_shared<SymbolicConditional>(1,2));
expected.push_back(boost::make_shared<SymbolicConditional>(0, 1, 2));
expected.push_back(boost::make_shared<SymbolicConditional>(1, 2));
expected.push_back(boost::make_shared<SymbolicConditional>(2));
expected.push_back(boost::make_shared<SymbolicConditional>(3,4));
expected.push_back(boost::make_shared<SymbolicConditional>(3, 4));
expected.push_back(boost::make_shared<SymbolicConditional>(4));
Ordering order;
order += 0,1,2,3,4;
order += 0, 1, 2, 3, 4;
SymbolicBayesNet actual = *fg.eliminateSequential(order);
EXPECT(assert_equal(expected,actual));
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
//TEST(SymbolicFactorGraph, marginals)
//{
// // Create factor graph
// SymbolicFactorGraph fg;
// fg.push_factor(0, 1);
// fg.push_factor(0, 2);
// fg.push_factor(1, 4);
// fg.push_factor(2, 4);
// fg.push_factor(3, 4);
//
// // eliminate
// SymbolicSequentialSolver solver(fg);
// SymbolicBayesNet::shared_ptr actual = solver.eliminate();
// SymbolicBayesNet expected;
// expected.push_front(boost::make_shared<IndexConditional>(4));
// expected.push_front(boost::make_shared<IndexConditional>(3, 4));
// expected.push_front(boost::make_shared<IndexConditional>(2, 4));
// expected.push_front(boost::make_shared<IndexConditional>(1, 2, 4));
// expected.push_front(boost::make_shared<IndexConditional>(0, 1, 2));
// EXPECT(assert_equal(expected,*actual));
//
// {
// // jointBayesNet
// vector<Index> js;
// js.push_back(0);
// js.push_back(4);
// js.push_back(3);
// SymbolicBayesNet::shared_ptr actualBN = solver.jointBayesNet(js);
// SymbolicBayesNet expectedBN;
// expectedBN.push_front(boost::make_shared<IndexConditional>(3));
// expectedBN.push_front(boost::make_shared<IndexConditional>(4, 3));
// expectedBN.push_front(boost::make_shared<IndexConditional>(0, 4));
// EXPECT( assert_equal(expectedBN,*actualBN));
//
// // jointFactorGraph
// SymbolicFactorGraph::shared_ptr actualFG = solver.jointFactorGraph(js);
// SymbolicFactorGraph expectedFG;
// expectedFG.push_factor(0, 4);
// expectedFG.push_factor(4, 3);
// expectedFG.push_factor(3);
// EXPECT( assert_equal(expectedFG,(SymbolicFactorGraph)(*actualFG)));
// }
//
// {
// // jointBayesNet
// vector<Index> js;
// js.push_back(0);
// js.push_back(2);
// js.push_back(3);
// SymbolicBayesNet::shared_ptr actualBN = solver.jointBayesNet(js);
// SymbolicBayesNet expectedBN;
// expectedBN.push_front(boost::make_shared<IndexConditional>(2));
// expectedBN.push_front(boost::make_shared<IndexConditional>(3, 2));
// expectedBN.push_front(boost::make_shared<IndexConditional>(0, 3, 2));
// EXPECT( assert_equal(expectedBN,*actualBN));
//
// // jointFactorGraph
// SymbolicFactorGraph::shared_ptr actualFG = solver.jointFactorGraph(js);
// SymbolicFactorGraph expectedFG;
// expectedFG.push_factor(0, 3, 2);
// expectedFG.push_factor(3, 2);
// expectedFG.push_factor(2);
// EXPECT( assert_equal(expectedFG,(SymbolicFactorGraph)(*actualFG)));
// }
//
// {
// // conditionalBayesNet
// vector<Index> js;
// js.push_back(0);
// js.push_back(2);
// js.push_back(3);
// size_t nrFrontals = 2;
// SymbolicBayesNet::shared_ptr actualBN = //
// solver.conditionalBayesNet(js, nrFrontals);
// SymbolicBayesNet expectedBN;
// expectedBN.push_front(boost::make_shared<IndexConditional>(2, 3));
// expectedBN.push_front(boost::make_shared<IndexConditional>(0, 2, 3));
// EXPECT( assert_equal(expectedBN,*actualBN));
// }
//}
TEST(SymbolicFactorGraph, marginals) {
// Create factor graph
SymbolicFactorGraph fg;
fg.push_factor(0, 1);
fg.push_factor(0, 2);
fg.push_factor(1, 4);
fg.push_factor(2, 4);
fg.push_factor(3, 4);
// eliminate
Ordering ord(list_of(3)(4)(2)(1)(0));
auto actual = fg.eliminateSequential(ord);
SymbolicBayesNet expected;
expected.emplace_shared<SymbolicConditional>(3, 4);
expected.emplace_shared<SymbolicConditional>(4, 1, 2);
expected.emplace_shared<SymbolicConditional>(2, 0, 1);
expected.emplace_shared<SymbolicConditional>(1, 0);
expected.emplace_shared<SymbolicConditional>(0);
EXPECT(assert_equal(expected, *actual));
{
// jointBayesNet
Ordering ord(list_of(0)(4)(3));
auto actual = fg.eliminatePartialSequential(ord);
SymbolicBayesNet expectedBN;
expectedBN.emplace_shared<SymbolicConditional>(0, 1, 2);
expectedBN.emplace_shared<SymbolicConditional>(4, 1, 2, 3);
expectedBN.emplace_shared<SymbolicConditional>(3, 1, 2);
EXPECT(assert_equal(expectedBN, *(actual.first)));
}
{
// jointBayesNet
Ordering ord(list_of(0)(2)(3));
auto actual = fg.eliminatePartialSequential(ord);
SymbolicBayesNet expectedBN;
expectedBN.emplace_shared<SymbolicConditional>(0, 1, 2);
expectedBN.emplace_shared<SymbolicConditional>(2, 1, 4);
expectedBN.emplace_shared<SymbolicConditional>(3, 4);
EXPECT(assert_equal(expectedBN, *(actual.first)));
}
{
// conditionalBayesNet
Ordering ord(list_of(0)(2));
auto actual = fg.eliminatePartialSequential(ord);
SymbolicBayesNet expectedBN;
expectedBN.emplace_shared<SymbolicConditional>(0, 1, 2);
expectedBN.emplace_shared<SymbolicConditional>(2, 1, 4);
EXPECT(assert_equal(expectedBN, *(actual.first)));
}
}
/* ************************************************************************* */
TEST( SymbolicFactorGraph, constructFromBayesNet )
{
TEST(SymbolicFactorGraph, constructFromBayesNet) {
// create expected factor graph
SymbolicFactorGraph expected;
expected.push_factor(0, 1, 2);
@ -284,8 +248,7 @@ TEST( SymbolicFactorGraph, constructFromBayesNet )
}
/* ************************************************************************* */
TEST( SymbolicFactorGraph, constructFromBayesTree )
{
TEST(SymbolicFactorGraph, constructFromBayesTree) {
// create expected factor graph
SymbolicFactorGraph expected;
expected.push_factor(_E_, _L_, _B_);
@ -300,8 +263,7 @@ TEST( SymbolicFactorGraph, constructFromBayesTree )
}
/* ************************************************************************* */
TEST( SymbolicFactorGraph, push_back )
{
TEST(SymbolicFactorGraph, push_back) {
// Create two factor graphs and expected combined graph
SymbolicFactorGraph fg1, fg2, expected;
@ -321,8 +283,47 @@ TEST( SymbolicFactorGraph, push_back )
actual.push_back(fg1);
actual.push_back(fg2);
CHECK(assert_equal(expected, actual));
// combine in second way
SymbolicFactorGraph actual2 = fg1;
actual2.push_back(fg2);
CHECK(assert_equal(expected, actual2));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
TEST(SymbolicFactorGraph, add_factors) {
SymbolicFactorGraph fg1;
fg1.push_factor(10);
fg1 += SymbolicFactor::shared_ptr(); // empty slot!
fg1.push_factor(11);
SymbolicFactorGraph fg2;
fg2.push_factor(1);
fg2.push_factor(2);
SymbolicFactorGraph expected;
expected.push_factor(10);
expected.push_factor(1);
expected.push_factor(11);
expected.push_factor(2);
const FactorIndices expectedIndices = list_of(1)(3);
const FactorIndices actualIndices = fg1.add_factors(fg2, true);
EXPECT(assert_equal(expected, fg1));
EXPECT(assert_container_equality(expectedIndices, actualIndices));
expected.push_factor(1);
expected.push_factor(2);
const FactorIndices expectedIndices2 = list_of(4)(5);
const FactorIndices actualIndices2 = fg1.add_factors(fg2, false);
EXPECT(assert_equal(expected, fg1));
EXPECT(assert_container_equality(expectedIndices2, actualIndices2));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */