update HybridSmoother to be more like HybridISAM, compute ordering if not given

release/4.3a0
Varun Agrawal 2023-03-17 17:58:31 -04:00
parent 29b245d1dc
commit 488dd7838f
3 changed files with 19 additions and 41 deletions

View File

@ -57,8 +57,16 @@ Ordering HybridSmoother::getOrdering(
/* ************************************************************************* */
void HybridSmoother::update(HybridGaussianFactorGraph graph,
const Ordering &ordering,
std::optional<size_t> maxNrLeaves) {
std::optional<size_t> maxNrLeaves,
const std::optional<Ordering> given_ordering) {
Ordering ordering;
// If no ordering provided, then we compute one
if (!given_ordering.has_value()) {
ordering = this->getOrdering(graph);
} else {
ordering = *given_ordering;
}
// Add the necessary conditionals from the previous timestep(s).
std::tie(graph, hybridBayesNet_) =
addConditionals(graph, hybridBayesNet_, ordering);

View File

@ -44,13 +44,14 @@ class HybridSmoother {
* corresponding to the pruned choices.
*
* @param graph The new factors, should be linear only
* @param ordering The ordering for elimination, only continuous vars are
* allowed
* @param maxNrLeaves The maximum number of leaves in the new discrete factor,
* if applicable
* @param given_ordering The (optional) ordering for elimination, only
* continuous variables are allowed
*/
void update(HybridGaussianFactorGraph graph, const Ordering& ordering,
std::optional<size_t> maxNrLeaves = {});
void update(HybridGaussianFactorGraph graph,
std::optional<size_t> maxNrLeaves = {},
const std::optional<Ordering> given_ordering = {});
Ordering getOrdering(const HybridGaussianFactorGraph& newFactors);
@ -74,4 +75,4 @@ class HybridSmoother {
const HybridBayesNet& hybridBayesNet() const;
};
}; // namespace gtsam
} // namespace gtsam

View File

@ -46,35 +46,6 @@ using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::Z;
Ordering getOrdering(HybridGaussianFactorGraph& factors,
const HybridGaussianFactorGraph& newFactors) {
factors.push_back(newFactors);
// Get all the discrete keys from the factors
KeySet allDiscrete = factors.discreteKeySet();
// Create KeyVector with continuous keys followed by discrete keys.
KeyVector newKeysDiscreteLast;
const KeySet newFactorKeys = newFactors.keys();
// Insert continuous keys first.
for (auto& k : newFactorKeys) {
if (!allDiscrete.exists(k)) {
newKeysDiscreteLast.push_back(k);
}
}
// Insert discrete keys at the end
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
const VariableIndex index(factors);
// Get an ordering where the new keys are eliminated last
Ordering ordering = Ordering::ColamdConstrainedLast(
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
true);
return ordering;
}
TEST(HybridEstimation, Full) {
size_t K = 6;
std::vector<double> measurements = {0, 1, 2, 2, 2, 3};
@ -117,7 +88,7 @@ TEST(HybridEstimation, Full) {
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, Incremental) {
TEST(HybridEstimation, IncrementalSmoother) {
size_t K = 15;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
@ -136,7 +107,6 @@ TEST(HybridEstimation, Incremental) {
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized;
HybridGaussianFactorGraph bayesNet;
for (size_t k = 1; k < K; k++) {
// Motion Model
@ -146,11 +116,10 @@ TEST(HybridEstimation, Incremental) {
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
bayesNet = smoother.hybridBayesNet();
linearized = *graph.linearize(initial);
Ordering ordering = getOrdering(bayesNet, linearized);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, ordering, 3);
smoother.update(linearized, 3, ordering);
graph.resize(0);
}