release/4.3a0
Frank Dellaert 2021-01-28 23:22:50 -05:00
parent 79d42479d0
commit 46464aa357
1 changed files with 68 additions and 135 deletions

View File

@ -36,89 +36,86 @@ using namespace std;
GTSAM_CONCEPT_TESTABLE_INST(OrientedPlane3)
GTSAM_CONCEPT_MANIFOLD_INST(OrientedPlane3)
using symbol_shorthand::P; //< Planes
using symbol_shorthand::X; //< Pose3
// *************************************************************************
TEST (OrientedPlane3Factor, lm_translation_error) {
TEST(OrientedPlane3Factor, lm_translation_error) {
// Tests one pose, two measurements of the landmark that differ in range only.
// Normal along -x, 3m away
Symbol lm_sym('p', 0);
OrientedPlane3 test_lm0(-1.0, 0.0, 0.0, 3.0);
ISAM2 isam2;
Values new_values;
NonlinearFactorGraph new_graph;
NonlinearFactorGraph graph;
// Init pose and prior. Pose Prior is needed since a single plane measurement does not fully constrain the pose
Symbol init_sym('x', 0);
// Init pose and prior. Pose Prior is needed since a single plane measurement
// does not fully constrain the pose
Pose3 init_pose(Rot3::Ypr(0.0, 0.0, 0.0), Point3(0.0, 0.0, 0.0));
Vector sigmas(6);
Vector6 sigmas;
sigmas << 0.001, 0.001, 0.001, 0.001, 0.001, 0.001;
new_graph.addPrior(
init_sym, init_pose, noiseModel::Diagonal::Sigmas(sigmas));
new_values.insert(init_sym, init_pose);
graph.addPrior(X(0), init_pose, noiseModel::Diagonal::Sigmas(sigmas));
// Add two landmark measurements, differing in range
new_values.insert(lm_sym, test_lm0);
Vector sigmas3(3);
sigmas3 << 0.1, 0.1, 0.1;
Vector test_meas0_mean(4);
test_meas0_mean << -1.0, 0.0, 0.0, 3.0;
OrientedPlane3Factor test_meas0(test_meas0_mean,
noiseModel::Diagonal::Sigmas(sigmas3), init_sym, lm_sym);
new_graph.add(test_meas0);
Vector test_meas1_mean(4);
test_meas1_mean << -1.0, 0.0, 0.0, 1.0;
OrientedPlane3Factor test_meas1(test_meas1_mean,
noiseModel::Diagonal::Sigmas(sigmas3), init_sym, lm_sym);
new_graph.add(test_meas1);
Vector3 sigmas3 {0.1, 0.1, 0.1};
Vector4 measurement0 {-1.0, 0.0, 0.0, 3.0};
OrientedPlane3Factor factor0(
measurement0, noiseModel::Diagonal::Sigmas(sigmas3), X(0), P(0));
graph.add(factor0);
Vector4 measurement1 {-1.0, 0.0, 0.0, 1.0};
OrientedPlane3Factor factor1(
measurement1, noiseModel::Diagonal::Sigmas(sigmas3), X(0), P(0));
graph.add(factor1);
// Initial Estimate
Values values;
values.insert(X(0), init_pose);
values.insert(P(0), test_lm0);
// Optimize
ISAM2Result result = isam2.update(new_graph, new_values);
ISAM2 isam2;
ISAM2Result result = isam2.update(graph, values);
Values result_values = isam2.calculateEstimate();
OrientedPlane3 optimized_plane_landmark = result_values.at<OrientedPlane3>(
lm_sym);
OrientedPlane3 optimized_plane_landmark =
result_values.at<OrientedPlane3>(P(0));
// Given two noisy measurements of equal weight, expect result between the two
OrientedPlane3 expected_plane_landmark(-1.0, 0.0, 0.0, 2.0);
EXPECT(assert_equal(optimized_plane_landmark, expected_plane_landmark));
}
// *************************************************************************
// // *************************************************************************
TEST (OrientedPlane3Factor, lm_rotation_error) {
// Tests one pose, two measurements of the landmark that differ in angle only.
// Normal along -x, 3m away
Symbol lm_sym('p', 0);
OrientedPlane3 test_lm0(-1.0/sqrt(1.01), 0.1/sqrt(1.01), 0.0, 3.0);
ISAM2 isam2;
Values new_values;
NonlinearFactorGraph new_graph;
NonlinearFactorGraph graph;
// Init pose and prior. Pose Prior is needed since a single plane measurement does not fully constrain the pose
Symbol init_sym('x', 0);
Pose3 init_pose(Rot3::Ypr(0.0, 0.0, 0.0), Point3(0.0, 0.0, 0.0));
new_graph.addPrior(init_sym, init_pose,
graph.addPrior(X(0), init_pose,
noiseModel::Diagonal::Sigmas(
(Vector(6) << 0.001, 0.001, 0.001, 0.001, 0.001, 0.001).finished()));
new_values.insert(init_sym, init_pose);
// // Add two landmark measurements, differing in angle
new_values.insert(lm_sym, test_lm0);
Vector test_meas0_mean(4);
test_meas0_mean << -1.0, 0.0, 0.0, 3.0;
OrientedPlane3Factor test_meas0(test_meas0_mean,
noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1)), init_sym, lm_sym);
new_graph.add(test_meas0);
Vector test_meas1_mean(4);
test_meas1_mean << 0.0, -1.0, 0.0, 3.0;
OrientedPlane3Factor test_meas1(test_meas1_mean,
noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1)), init_sym, lm_sym);
new_graph.add(test_meas1);
// Add two landmark measurements, differing in angle
Vector4 measurement0 {-1.0, 0.0, 0.0, 3.0};
OrientedPlane3Factor factor0(measurement0,
noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1)), X(0), P(0));
graph.add(factor0);
Vector4 measurement1 {0.0, -1.0, 0.0, 3.0};
OrientedPlane3Factor factor1(measurement1,
noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1)), X(0), P(0));
graph.add(factor1);
// Initial Estimate
Values values;
values.insert(X(0), init_pose);
values.insert(P(0), test_lm0);
// Optimize
ISAM2Result result = isam2.update(new_graph, new_values);
ISAM2 isam2;
ISAM2Result result = isam2.update(graph, values);
Values result_values = isam2.calculateEstimate();
OrientedPlane3 optimized_plane_landmark = result_values.at<OrientedPlane3>(
lm_sym);
auto optimized_plane_landmark = result_values.at<OrientedPlane3>(P(0));
// Given two noisy measurements of equal weight, expect result between the two
OrientedPlane3 expected_plane_landmark(-sqrt(2.0) / 2.0, -sqrt(2.0) / 2.0,
@ -126,6 +123,7 @@ TEST (OrientedPlane3Factor, lm_rotation_error) {
EXPECT(assert_equal(optimized_plane_landmark, expected_plane_landmark));
}
// *************************************************************************
TEST( OrientedPlane3Factor, Derivatives ) {
// Measurement
OrientedPlane3 p(sqrt(2)/2, -sqrt(2)/2, 0, 5);
@ -163,7 +161,7 @@ TEST( OrientedPlane3DirectionPrior, Constructor ) {
// If pitch and roll are zero for an aerospace frame,
// that means Z is pointing down, i.e., direction of Z = (0,0,-1)
Vector planeOrientation = (Vector(4) << 0.0, 0.0, -1.0, 10.0).finished(); // all vertical planes directly facing the origin
Vector4 planeOrientation = (Vector(4) << 0.0, 0.0, -1.0, 10.0).finished(); // all vertical planes directly facing the origin
// Factor
Key key(1);
@ -171,9 +169,9 @@ TEST( OrientedPlane3DirectionPrior, Constructor ) {
OrientedPlane3DirectionPrior factor(key, planeOrientation, model);
// Create a linearization point at the zero-error point
Vector theta1 = Vector4(0.0, 0.02, -1.2, 10.0);
Vector theta2 = Vector4(0.0, 0.1, -0.8, 10.0);
Vector theta3 = Vector4(0.0, 0.2, -0.9, 10.0);
Vector4 theta1 {0.0, 0.02, -1.2, 10.0};
Vector4 theta2 {0.0, 0.1, -0.8, 10.0};
Vector4 theta3 {0.0, 0.2, -0.9, 10.0};
OrientedPlane3 T1(theta1);
OrientedPlane3 T2(theta2);
@ -204,90 +202,18 @@ TEST( OrientedPlane3DirectionPrior, Constructor ) {
EXPECT(assert_equal(expectedH3, actualH3, 1e-8));
}
/* ************************************************************************* */
// Test by Marco Camurri to debug issue #561
TEST(OrientedPlane3Factor, Issue561) {
// Typedefs
using symbol_shorthand::P; //< Planes
using symbol_shorthand::X; //< Pose3 (x,y,z,r,p,y)
using Plane = OrientedPlane3;
NonlinearFactorGraph graph;
// Setup prior factors
Pose3 x0_prior(
Rot3(0.799903913, -0.564527097, 0.203624376, 0.552537226, 0.82520195,
0.117236322, -0.234214312, 0.0187322547, 0.972004505),
Vector3{-91.7500013, -0.47569366, -2.2});
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.addPrior<Pose3>(X(0), x0_prior, x0_noise);
// Plane p1_prior(0.211098835, 0.214292752, 0.95368543, 26.4269514);
// auto p1_noise =
// noiseModel::Diagonal::Sigmas(Vector3{0.785398163, 0.785398163, 5});
// graph.addPrior<Plane>(P(1), p1_prior, p1_noise);
// ADDING THIS PRIOR MAKES OPTIMIZATION FAIL
// Plane p2_prior(0.301901811, 0.151751467, 0.941183717, 33.4388229);
// auto p2_noise =
// noiseModel::Diagonal::Sigmas(Vector3{0.785398163, 0.785398163, 5});
// graph.addPrior<Plane>(P(2), p2_prior, p2_noise);
// First plane factor
Plane p1_meas = Plane(0.0638967294, 0.0755284627, 0.995094297, 2.55956073);
const auto x0_p1_noise = noiseModel::Isotropic::Sigma(3, 0.0451801);
graph.emplace_shared<OrientedPlane3Factor>(p1_meas.planeCoefficients(),
x0_p1_noise, X(0), P(1));
// Second plane factor
Plane p2_meas = Plane(0.104902077, -0.0275756528, 0.994100165, 1.32765088);
const auto x0_p2_noise = noiseModel::Isotropic::Sigma(3, 0.0322889);
graph.emplace_shared<OrientedPlane3Factor>(p2_meas.planeCoefficients(),
x0_p2_noise, X(0), P(2));
// Optimize
try {
// Initial values
Values initialEstimate;
Plane p1(0.211098835, 0.214292752, 0.95368543, 26.4269514);
Plane p2(0.301901811, 0.151751467, 0.941183717, 33.4388229);
Pose3 x0(
Rot3(0.799903913, -0.564527097, 0.203624376, 0.552537226, 0.82520195,
0.117236322, -0.234214312, 0.0187322547, 0.972004505),
Vector3{-91.7500013, -0.47569366, -2.2});
initialEstimate.insert(P(1), p1);
initialEstimate.insert(P(2), p2);
initialEstimate.insert(X(0), x0);
GaussNewtonParams params;
GTSAM_PRINT(graph);
Ordering ordering = list_of(P(1))(P(2))(X(0)); // make sure P1 eliminated first
params.setOrdering(ordering);
params.setLinearSolverType("SEQUENTIAL_QR"); // abundance of caution
params.setVerbosity("TERMINATION"); // show info about stopping conditions
GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
Values result = optimizer.optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 0.1);
} catch (const IndeterminantLinearSystemException &e) {
std::cerr << "CAPTURED THE EXCEPTION: " << DefaultKeyFormatter(e.nearbyVariable()) << std::endl;
EXPECT(false); // fail if this happens
}
}
/* ************************************************************************* */
// Simplified version of the test by Marco Camurri to debug issue #561
TEST(OrientedPlane3Factor, Issue561Simplified) {
// Typedefs
using symbol_shorthand::P; //< Planes
using symbol_shorthand::X; //< Pose3 (x,y,z,r,p,y)
using Plane = OrientedPlane3;
NonlinearFactorGraph graph;
// Setup prior factors
Pose3 x0_prior(Rot3::identity(), Vector3(99, 0, 0));
Pose3 x0(Rot3::identity(), Vector3(0, 0, 10));
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.addPrior<Pose3>(X(0), x0_prior, x0_noise);
graph.addPrior<Pose3>(X(0), x0, x0_noise);
// Two horizontal planes with different heights.
const Plane p1(0,0,1,1), p2(0,0,1,2);
@ -300,22 +226,29 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
graph.addPrior<Plane>(P(2), p2, p2_noise);
// First plane factor
auto p1_measured_from_x0 = p1.transform(x0);
const auto x0_p1_noise = noiseModel::Isotropic::Sigma(3, 0.05);
graph.emplace_shared<OrientedPlane3Factor>(p1.planeCoefficients(),
x0_p1_noise, X(0), P(1));
graph.emplace_shared<OrientedPlane3Factor>(
p1_measured_from_x0.planeCoefficients(), x0_p1_noise, X(0), P(1));
// Second plane factor
auto p2_measured_from_x0 = p2.transform(x0);
const auto x0_p2_noise = noiseModel::Isotropic::Sigma(3, 0.05);
graph.emplace_shared<OrientedPlane3Factor>(p2.planeCoefficients(),
x0_p2_noise, X(0), P(2));
graph.emplace_shared<OrientedPlane3Factor>(
p2_measured_from_x0.planeCoefficients(), x0_p2_noise, X(0), P(2));
GTSAM_PRINT(graph);
// Initial values
// Just offset the initial pose by 1m. This is what we are trying to optimize.
Values initialEstimate;
Pose3 x0 = x0_prior.compose(Pose3(Rot3::identity(), Vector3(1,0,0)));
Pose3 x0_initial = x0.compose(Pose3(Rot3::identity(), Vector3(1,0,0)));
initialEstimate.insert(P(1), p1);
initialEstimate.insert(P(2), p2);
initialEstimate.insert(X(0), x0);
initialEstimate.insert(X(0), x0_initial);
// Print Jacobian
cout << graph.linearize(initialEstimate)->augmentedJacobian() << endl << endl;
// For testing only
HessianFactor::shared_ptr hessianFactor = graph.linearizeToHessianFactor(initialEstimate);
@ -364,7 +297,7 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
Values result = optimizer.optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 0.1);
EXPECT(x0_prior.equals(result.at<Pose3>(X(0))));
EXPECT(x0.equals(result.at<Pose3>(X(0))));
EXPECT(p1.equals(result.at<Plane>(P(1))));
EXPECT(p2.equals(result.at<Plane>(P(2))));
} catch (const IndeterminantLinearSystemException &e) {