Removed SLAM namespaces from OdometryExample

release/4.3a0
Stephen Williams 2012-07-22 05:21:32 +00:00
parent 67e2d832fe
commit 45d1c4f0ed
1 changed files with 73 additions and 44 deletions

View File

@ -15,62 +15,91 @@
* @author Frank Dellaert * @author Frank Dellaert
*/ */
// pull in the 2D PoseSLAM domain with all typedefs and helper functions defined
#include <gtsam/slam/pose2SLAM.h>
// include this for marginals
#include <gtsam/nonlinear/Marginals.h>
#include <iomanip>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace gtsam::noiseModel;
/** /**
* Example of a simple 2D localization example * Example of a simple 2D localization example
* - Robot poses are facing along the X axis (horizontal, to the right in 2D) * - Robot poses are facing along the X axis (horizontal, to the right in 2D)
* - The robot moves 2 meters each step * - The robot moves 2 meters each step
* - We have full odometry between poses * - We have full odometry between poses
*/ */
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
// the robot positions
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use symbols
#include <gtsam/nonlinear/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Between factors for the relative motion described by odometry measurements.
// Also, we will initialize the robot at the origin using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
// Levenberg-Marquardt solver
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// Once the optimized values have been calculated, we can also calculate the marginal covariance
// of desired variables
#include <gtsam/nonlinear/Marginals.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) { int main(int argc, char** argv) {
// create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) // Create a factor graph container
pose2SLAM::Graph graph; NonlinearFactorGraph graph;
// add a Gaussian prior on pose x_1 // Add a prior on the first pose, setting it to the origin
Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin // A prior factor consists of a mean and a noise model (covariance matrix)
SharedDiagonal priorNoise = Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta Pose2 prior(0.0, 0.0, 0.0); // prior at origin
graph.addPosePrior(1, priorMean, priorNoise); // add directly to graph noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(Symbol('x', 1), prior, priorNoise));
// add two odometry factors // Add odometry factors
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) // For simplicity, we will use the same noise model for each odometry factor
SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
graph.addRelativePose(1, 2, odometry, odometryNoise); // Create odometry (Between) factors between consecutive poses
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.add(BetweenFactor<Pose2>(Symbol('x', 1), Symbol('x', 2), Pose2(2.0, 0.0, 0.0), odometryNoise));
graph.add(BetweenFactor<Pose2>(Symbol('x', 2), Symbol('x', 3), Pose2(2.0, 0.0, 0.0), odometryNoise));
graph.print("\nFactor Graph:\n"); // print
// print // Create the data structure to hold the initialEstimate estimate to the solution
graph.print("\nFactor graph:\n"); // For illustrative purposes, these have been deliberately set to incorrect values
Values initialEstimate;
initialEstimate.insert(Symbol('x', 1), Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(Symbol('x', 2), Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(Symbol('x', 3), Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial Estimate:\n"); // print
// create (deliberatly inaccurate) initial estimate // optimize using Levenberg-Marquardt optimization
pose2SLAM::Values initialEstimate; Values result = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); result.print("Final Result:\n");
initialEstimate.insertPose(2, Pose2(2.3, 0.1, -0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial estimate:\n ");
// optimize using Levenberg-Marquardt optimization with an ordering from colamd // Calculate and print marginal covariances for all variables
pose2SLAM::Values result = graph.optimize(initialEstimate); Marginals marginals(graph, result);
result.print("\nFinal result:\n "); cout << "Pose 1 covariance:\n" << marginals.marginalCovariance(Symbol('x', 1)) << endl;
cout << "Pose 2 covariance:\n" << marginals.marginalCovariance(Symbol('x', 2)) << endl;
cout << "Pose 3 covariance:\n" << marginals.marginalCovariance(Symbol('x', 3)) << endl;
// Query the marginals return 0;
cout.precision(2);
Marginals marginals = graph.marginals(result);
cout << "\nP1:\n" << marginals.marginalCovariance(1) << endl;
cout << "\nP2:\n" << marginals.marginalCovariance(2) << endl;
cout << "\nP3:\n" << marginals.marginalCovariance(3) << endl;
return 0;
} }