a numerical derivative version for DiscreteEulerPoincare'Factor, but currently disabled.
							parent
							
								
									9e2b11800a
								
							
						
					
					
						commit
						444ab957c4
					
				| 
						 | 
				
			
			@ -7,6 +7,7 @@
 | 
			
		|||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/base/numericalDerivative.h>
 | 
			
		||||
#include <gtsam/geometry/Pose3.h>
 | 
			
		||||
#include <gtsam/base/LieVector.h>
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
			
		||||
| 
						 | 
				
			
			@ -20,6 +21,8 @@ namespace gtsam {
 | 
			
		|||
 *      \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
 | 
			
		||||
 * It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
 | 
			
		||||
 * \f$ \xi_k \f$ as a variable. So it is a three-way factor.
 | 
			
		||||
 * Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
 | 
			
		||||
 *  in sequential update method.
 | 
			
		||||
 */
 | 
			
		||||
class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, LieVector>  {
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -149,6 +152,52 @@ public:
 | 
			
		|||
    return hx;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
  Vector computeError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk) const {
 | 
			
		||||
    Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
 | 
			
		||||
    Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
 | 
			
		||||
 | 
			
		||||
    Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
 | 
			
		||||
    Vector f_ext = Vector_(6, 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
 | 
			
		||||
 | 
			
		||||
    Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
 | 
			
		||||
 | 
			
		||||
    return hx;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Vector evaluateError(const LieVector& xik, const LieVector& xik_1, const Pose3& gk,
 | 
			
		||||
      boost::optional<Matrix&> H1 = boost::none,
 | 
			
		||||
      boost::optional<Matrix&> H2 = boost::none,
 | 
			
		||||
      boost::optional<Matrix&> H3 = boost::none) const {
 | 
			
		||||
    if (H1) {
 | 
			
		||||
      (*H1) = numericalDerivative31(
 | 
			
		||||
          boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
 | 
			
		||||
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
			
		||||
          ),
 | 
			
		||||
          xik, xik_1, gk, 1e-5
 | 
			
		||||
      );
 | 
			
		||||
    }
 | 
			
		||||
    if (H2) {
 | 
			
		||||
      (*H2) = numericalDerivative32(
 | 
			
		||||
          boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
 | 
			
		||||
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
			
		||||
          ),
 | 
			
		||||
          xik, xik_1, gk, 1e-5
 | 
			
		||||
      );
 | 
			
		||||
    }
 | 
			
		||||
    if (H3) {
 | 
			
		||||
      (*H3) = numericalDerivative33(
 | 
			
		||||
          boost::function<Vector(const LieVector&, const LieVector&, const Pose3&)>(
 | 
			
		||||
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
			
		||||
          ),
 | 
			
		||||
          xik, xik_1, gk, 1e-5
 | 
			
		||||
      );
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return computeError(xik, xik_1, gk);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue