Merge remote-tracking branch 'origin/develop' into feature/sam_sfm_directories

release/4.3a0
Frank Dellaert 2015-07-11 16:56:55 -07:00
commit 3fae6178e8
5 changed files with 136 additions and 136 deletions

View File

@ -15,12 +15,12 @@
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @author Zhaoyang Lv
* @brief The Unit3 class - basically a point on a unit sphere
*/
#include <gtsam/geometry/Unit3.h>
#include <gtsam/geometry/Point2.h>
#include <boost/random/mersenne_twister.hpp>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#ifdef __clang__
@ -62,12 +62,10 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
boost::uniform_on_sphere<double> randomDirection(3);
// This variate_generator object is required for versions of boost somewhere
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> >
generator(rng, randomDirection);
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> > generator(
rng, randomDirection);
vector<double> d = generator();
Unit3 result;
result.p_ = Point3(d[0], d[1], d[2]);
return result;
return Unit3(d[0], d[1], d[2]);
}
#ifdef GTSAM_USE_TBB
@ -85,26 +83,24 @@ const Matrix32& Unit3::basis() const {
return *B_;
// Get the axis of rotation with the minimum projected length of the point
Point3 axis;
Vector3 axis;
double mx = fabs(p_.x()), my = fabs(p_.y()), mz = fabs(p_.z());
if ((mx <= my) && (mx <= mz))
axis = Point3(1.0, 0.0, 0.0);
axis = Vector3(1.0, 0.0, 0.0);
else if ((my <= mx) && (my <= mz))
axis = Point3(0.0, 1.0, 0.0);
axis = Vector3(0.0, 1.0, 0.0);
else if ((mz <= mx) && (mz <= my))
axis = Point3(0.0, 0.0, 1.0);
axis = Vector3(0.0, 0.0, 1.0);
else
assert(false);
// Create the two basis vectors
Point3 b1 = p_.cross(axis);
b1 = b1 / b1.norm();
Point3 b2 = p_.cross(b1);
b2 = b2 / b2.norm();
Vector3 b1 = p_.cross(axis).normalized();
Vector3 b2 = p_.cross(b1).normalized();
// Create the basis matrix
B_.reset(Matrix32());
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
(*B_) << b1, b2;
return *B_;
}
@ -122,10 +118,9 @@ Matrix3 Unit3::skew() const {
/* ************************************************************************* */
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
Matrix23 Bt = basis().transpose();
Vector2 xi = Bt * q.p_.vector();
Vector2 xi = basis().transpose() * q.p_;
if (H)
*H = Bt * q.basis();
*H = basis().transpose() * q.basis();
return xi;
}
@ -142,44 +137,34 @@ double Unit3::distance(const Unit3& q, OptionalJacobian<1,2> H) const {
/* ************************************************************************* */
Unit3 Unit3::retract(const Vector2& v) const {
// Get the vector form of the point and the basis matrix
Vector3 p = p_.vector();
Matrix32 B = basis();
// Compute the 3D xi_hat vector
Vector3 xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
Vector3 xi_hat = basis() * v;
double xi_hat_norm = xi_hat.norm();
// Avoid nan
if (xi_hat_norm == 0.0) {
if (v.norm() == 0.0)
return Unit3(point3());
else
return Unit3(-point3());
// When v is the so small and approximate as a direction
if (xi_hat_norm < 1e-8) {
return Unit3(cos(xi_hat_norm) * p_ + xi_hat);
}
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p_
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
return Unit3(exp_p_xi_hat);
}
/* ************************************************************************* */
Vector2 Unit3::localCoordinates(const Unit3& y) const {
Vector3 p = p_.vector(), q = y.p_.vector();
double dot = p.dot(q);
double dot = p_.dot(y.p_);
// Check for special cases
if (std::abs(dot - 1.0) < 1e-16)
return Vector2(0, 0);
return Vector2(0.0, 0.0);
else if (std::abs(dot + 1.0) < 1e-16)
return Vector2(M_PI, 0);
return Vector2(M_PI, 0.0);
else {
// no special case
double theta = acos(dot);
Vector3 result_hat = (theta / sin(theta)) * (q - p * dot);
const double theta = acos(dot);
Vector3 result_hat = (theta / sin(theta)) * (y.p_ - p_ * dot);
return basis().transpose() * result_hat;
}
}

View File

@ -20,11 +20,16 @@
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/base/Manifold.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/dllexport.h>
#include <boost/random/mersenne_twister.hpp>
#include <boost/optional.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/serialization/nvp.hpp>
#include <string>
namespace gtsam {
@ -33,7 +38,7 @@ class GTSAM_EXPORT Unit3 {
private:
Point3 p_; ///< The location of the point on the unit sphere
Vector3 p_; ///< The location of the point on the unit sphere
mutable boost::optional<Matrix32> B_; ///< Cached basis
public:
@ -52,18 +57,18 @@ public:
/// Construct from point
explicit Unit3(const Point3& p) :
p_(p / p.norm()) {
p_(p.vector().normalized()) {
}
/// Construct from a vector3
explicit Unit3(const Vector3& p) :
p_(p / p.norm()) {
p_(p.normalized()) {
}
/// Construct from x,y,z
Unit3(double x, double y, double z) :
p_(x, y, z) {
p_ = p_ / p_.norm();
p_.normalize();
}
/// Named constructor from Point3 with optional Jacobian
@ -83,7 +88,7 @@ public:
/// The equals function with tolerance
bool equals(const Unit3& s, double tol = 1e-9) const {
return p_.equals(s.p_, tol);
return equal_with_abs_tol(p_, s.p_, tol);
}
/// @}
@ -101,22 +106,22 @@ public:
Matrix3 skew() const;
/// Return unit-norm Point3
const Point3& point3(OptionalJacobian<3, 2> H = boost::none) const {
Point3 point3(OptionalJacobian<3, 2> H = boost::none) const {
if (H)
*H = basis();
return Point3(p_);
}
/// Return unit-norm Vector
const Vector3& unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return p_;
}
/// Return unit-norm Vector
Vector3 unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return (p_.vector());
}
/// Return scaled direction as Point3
friend Point3 operator*(double s, const Unit3& d) {
return s * d.p_;
return Point3(s * d.p_);
}
/// Signed, vector-valued error between two directions

View File

@ -41,6 +41,7 @@ GTSAM_CONCEPT_MANIFOLD_INST(Unit3)
Point3 point3_(const Unit3& p) {
return p.point3();
}
TEST(Unit3, point3) {
vector<Point3> ps;
ps += Point3(1, 0, 0), Point3(0, 1, 0), Point3(0, 0, 1), Point3(1, 1, 0)
@ -66,7 +67,7 @@ TEST(Unit3, rotate) {
Unit3 actual = R * p;
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
// Use numerical derivatives to calculate the expected Jacobian
{
expectedH = numericalDerivative21(rotate_, R, p);
R.rotate(p, actualH, boost::none);
@ -90,8 +91,8 @@ TEST(Unit3, unrotate) {
Unit3 expected = Unit3(1, 1, 0);
Unit3 actual = R.unrotate(p);
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
// Use numerical derivatives to calculate the expected Jacobian
{
expectedH = numericalDerivative21(unrotate_, R, p);
R.unrotate(p, actualH, boost::none);
@ -113,7 +114,6 @@ TEST(Unit3, error) {
EXPECT(assert_equal((Vector)(Vector2(0.717356, 0)), p.error(r), 1e-5));
Matrix actual, expected;
// Use numerical derivatives to calculate the expected Jacobian
{
expected = numericalDerivative11<Vector2,Unit3>(
boost::bind(&Unit3::error, &p, _1, boost::none), q);
@ -153,31 +153,44 @@ TEST(Unit3, distance) {
}
//*******************************************************************************
TEST(Unit3, localCoordinates0) {
Unit3 p;
Vector actual = p.localCoordinates(p);
EXPECT(assert_equal(zero(2), actual, 1e-8));
}
//*******************************************************************************
TEST(Unit3, localCoordinates1) {
Unit3 p, q(1, 6.12385e-21, 0);
Vector actual = p.localCoordinates(q);
CHECK(assert_equal(zero(2), actual, 1e-8));
}
TEST(Unit3, localCoordinates) {
{
Unit3 p;
Vector2 actual = p.localCoordinates(p);
EXPECT(assert_equal(zero(2), actual, 1e-8));
}
{
Unit3 p, q(1, 6.12385e-21, 0);
Vector2 actual = p.localCoordinates(q);
CHECK(assert_equal(zero(2), actual, 1e-8));
}
{
Unit3 p, q(-1, 0, 0);
Vector2 expected(M_PI, 0);
Vector2 actual = p.localCoordinates(q);
CHECK(assert_equal(expected, actual, 1e-8));
}
//*******************************************************************************
TEST(Unit3, localCoordinates2) {
Unit3 p, q(-1, 0, 0);
Vector expected = (Vector(2) << M_PI, 0).finished();
Vector actual = p.localCoordinates(q);
CHECK(assert_equal(expected, actual, 1e-8));
double twist = 1e-4;
{
Unit3 p(0, 1, 0), q(0 - twist, -1 + twist, 0);
Vector2 actual = p.localCoordinates(q);
EXPECT(actual(0) < 1e-2);
EXPECT(actual(1) > M_PI - 1e-2)
}
{
Unit3 p(0, 1, 0), q(0 + twist, -1 - twist, 0);
Vector2 actual = p.localCoordinates(q);
EXPECT(actual(0) < 1e-2);
EXPECT(actual(1) < -M_PI + 1e-2)
}
}
//*******************************************************************************
TEST(Unit3, basis) {
Unit3 p;
Matrix expected(3, 2);
Matrix32 expected;
expected << 0, 0, 0, -1, 1, 0;
Matrix actual = p.basis();
EXPECT(assert_equal(expected, actual, 1e-8));
@ -185,20 +198,27 @@ TEST(Unit3, basis) {
//*******************************************************************************
TEST(Unit3, retract) {
Unit3 p;
Vector v(2);
v << 0.5, 0;
Unit3 expected(0.877583, 0, 0.479426);
Unit3 actual = p.retract(v);
EXPECT(assert_equal(expected, actual, 1e-6));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
{
Unit3 p;
Vector2 v(0.5, 0);
Unit3 expected(0.877583, 0, 0.479426);
Unit3 actual = p.retract(v);
EXPECT(assert_equal(expected, actual, 1e-6));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
}
{
Unit3 p;
Vector2 v(0, 0);
Unit3 actual = p.retract(v);
EXPECT(assert_equal(p, actual, 1e-6));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
}
}
//*******************************************************************************
TEST(Unit3, retract_expmap) {
Unit3 p;
Vector v(2);
v << (M_PI / 2.0), 0;
Vector2 v((M_PI / 2.0), 0);
Unit3 expected(Point3(0, 0, 1));
Unit3 actual = p.retract(v);
EXPECT(assert_equal(expected, actual, 1e-8));
@ -228,9 +248,11 @@ inline static Vector randomVector(const Vector& minLimits,
TEST(Unit3, localCoordinates_retract) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
Vector3(1.0, 1.0, 1.0);
Vector minXiLimit = Vector2(-1.0, -1.0), maxXiLimit = Vector2(1.0, 1.0);
Vector3 minSphereLimit(-1.0, -1.0, -1.0);
Vector3 maxSphereLimit(1.0, 1.0, 1.0);
Vector2 minXiLimit(-1.0, -1.0);
Vector2 maxXiLimit(1.0, 1.0);
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
@ -246,9 +268,9 @@ TEST(Unit3, localCoordinates_retract) {
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
EXPECT(assert_equal(v12, actual_v12, 1e-8));
Unit3 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
EXPECT(assert_equal(s2, actual_s2, 1e-8));
}
}
@ -258,30 +280,26 @@ TEST(Unit3, localCoordinates_retract) {
TEST(Unit3, localCoordinates_retract_expmap) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
Vector3(1.0, 1.0, 1.0);
Vector minXiLimit = (Vector(2) << -M_PI, -M_PI).finished(), maxXiLimit = (Vector(2) << M_PI, M_PI).finished();
Vector3 minSphereLimit = Vector3(-1.0, -1.0, -1.0);
Vector3 maxSphereLimit = Vector3(1.0, 1.0, 1.0);
Vector2 minXiLimit = Vector2(-M_PI, -M_PI);
Vector2 maxXiLimit = Vector2(M_PI, M_PI);
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
// boost::this_thread::sleep(boost::posix_time::milliseconds(0));
// Create the two Unit3s.
// Unlike the above case, we can use any two Unit3's.
Unit3 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
// Unit3 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
Vector v12 = randomVector(minXiLimit, maxXiLimit);
Vector v = randomVector(minXiLimit, maxXiLimit);
// Magnitude of the rotation can be at most pi
if (v12.norm() > M_PI)
v12 = v12 / M_PI;
Unit3 s2 = s1.retract(v12);
if (v.norm() > M_PI)
v = v / M_PI;
Unit3 s2 = s1.retract(v);
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
Unit3 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
EXPECT(assert_equal(v, s1.localCoordinates(s1.retract(v)), 1e-6));
EXPECT(assert_equal(s2, s1.retract(s1.localCoordinates(s2)), 1e-6));
}
}

View File

@ -20,6 +20,7 @@
#include <gtsam/base/Testable.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/dllexport.h>
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/extended_type_info.hpp>
@ -241,7 +242,7 @@ namespace gtsam {
virtual Matrix R() const { return thisR();}
/// Compute information matrix
virtual Matrix information() const { return thisR().transpose() * thisR(); }
virtual Matrix information() const { return R().transpose() * R(); }
/// Compute covariance matrix
virtual Matrix covariance() const { return information().inverse(); }

View File

@ -33,19 +33,12 @@ using namespace gtsam;
using namespace noiseModel;
using namespace boost::assign;
static const double kSigma = 2, s_1=1.0/kSigma, kVariance = kSigma*kSigma, prc = 1.0/kVariance;
static const Matrix R = (Matrix(3, 3) <<
s_1, 0.0, 0.0,
0.0, s_1, 0.0,
0.0, 0.0, s_1).finished();
static const Matrix kCovariance = (Matrix(3, 3) <<
kVariance, 0.0, 0.0,
0.0, kVariance, 0.0,
0.0, 0.0, kVariance).finished();
static const double kSigma = 2, kInverseSigma = 1.0 / kSigma,
kVariance = kSigma * kSigma, prc = 1.0 / kVariance;
static const Matrix R = Matrix3::Identity() * kInverseSigma;
static const Matrix kCovariance = Matrix3::Identity() * kVariance;
static const Vector3 kSigmas(kSigma, kSigma, kSigma);
//static double inf = numeric_limits<double>::infinity();
/* ************************************************************************* */
TEST(NoiseModel, constructors)
{
@ -58,8 +51,8 @@ TEST(NoiseModel, constructors)
m.push_back(Gaussian::Covariance(kCovariance,false));
m.push_back(Gaussian::Information(kCovariance.inverse(),false));
m.push_back(Diagonal::Sigmas(kSigmas,false));
m.push_back(Diagonal::Variances((Vector(3) << kVariance, kVariance, kVariance).finished(),false));
m.push_back(Diagonal::Precisions((Vector(3) << prc, prc, prc).finished(),false));
m.push_back(Diagonal::Variances((Vector3(kVariance, kVariance, kVariance)),false));
m.push_back(Diagonal::Precisions(Vector3(prc, prc, prc),false));
m.push_back(Isotropic::Sigma(3, kSigma,false));
m.push_back(Isotropic::Variance(3, kVariance,false));
m.push_back(Isotropic::Precision(3, prc,false));
@ -82,25 +75,23 @@ TEST(NoiseModel, constructors)
DOUBLES_EQUAL(distance,mi->Mahalanobis(unwhitened),1e-9);
// test R matrix
Matrix expectedR((Matrix(3, 3) <<
s_1, 0.0, 0.0,
0.0, s_1, 0.0,
0.0, 0.0, s_1).finished());
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
EXPECT(assert_equal(expectedR,mi->R()));
EXPECT(assert_equal(R,mi->R()));
// test covariance
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
EXPECT(assert_equal(kCovariance,mi->covariance()));
// test covariance
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
EXPECT(assert_equal(kCovariance.inverse(),mi->information()));
// test Whiten operator
Matrix H((Matrix(3, 4) <<
0.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 1.0,
1.0, 0.0, 0.0, 1.0).finished());
Matrix expected((Matrix(3, 4) <<
0.0, 0.0, s_1, s_1,
0.0, s_1, 0.0, s_1,
s_1, 0.0, 0.0, s_1).finished());
Matrix expected = kInverseSigma * H;
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
EXPECT(assert_equal(expected,mi->Whiten(H)));
@ -122,7 +113,7 @@ TEST(NoiseModel, equals)
{
Gaussian::shared_ptr g1 = Gaussian::SqrtInformation(R),
g2 = Gaussian::SqrtInformation(eye(3,3));
Diagonal::shared_ptr d1 = Diagonal::Sigmas((Vector(3) << kSigma, kSigma, kSigma).finished()),
Diagonal::shared_ptr d1 = Diagonal::Sigmas(Vector3(kSigma, kSigma, kSigma)),
d2 = Diagonal::Sigmas(Vector3(0.1, 0.2, 0.3));
Isotropic::shared_ptr i1 = Isotropic::Sigma(3, kSigma),
i2 = Isotropic::Sigma(3, 0.7);
@ -141,7 +132,7 @@ TEST(NoiseModel, equals)
///* ************************************************************************* */
//TEST(NoiseModel, ConstrainedSmart )
//{
// Gaussian::shared_ptr nonconstrained = Constrained::MixedSigmas((Vector(3) << sigma, 0.0, sigma), true);
// Gaussian::shared_ptr nonconstrained = Constrained::MixedSigmas((Vector3(sigma, 0.0, sigma), true);
// Diagonal::shared_ptr n1 = boost::dynamic_pointer_cast<Diagonal>(nonconstrained);
// Constrained::shared_ptr n2 = boost::dynamic_pointer_cast<Constrained>(nonconstrained);
// EXPECT(n1);
@ -160,8 +151,8 @@ TEST(NoiseModel, ConstrainedConstructors )
Constrained::shared_ptr actual;
size_t d = 3;
double m = 100.0;
Vector sigmas = (Vector(3) << kSigma, 0.0, 0.0).finished();
Vector mu = Vector3(200.0, 300.0, 400.0);
Vector3 sigmas(kSigma, 0.0, 0.0);
Vector3 mu(200.0, 300.0, 400.0);
actual = Constrained::All(d);
// TODO: why should this be a thousand ??? Dummy variable?
EXPECT(assert_equal(gtsam::repeat(d, 1000.0), actual->mu()));
@ -187,7 +178,7 @@ TEST(NoiseModel, ConstrainedMixed )
{
Vector feasible = Vector3(1.0, 0.0, 1.0),
infeasible = Vector3(1.0, 1.0, 1.0);
Diagonal::shared_ptr d = Constrained::MixedSigmas((Vector(3) << kSigma, 0.0, kSigma).finished());
Diagonal::shared_ptr d = Constrained::MixedSigmas(Vector3(kSigma, 0.0, kSigma));
// NOTE: we catch constrained variables elsewhere, so whitening does nothing
EXPECT(assert_equal(Vector3(0.5, 1.0, 0.5),d->whiten(infeasible)));
EXPECT(assert_equal(Vector3(0.5, 0.0, 0.5),d->whiten(feasible)));
@ -346,7 +337,7 @@ TEST(NoiseModel, robustNoise)
{
const double k = 10.0, error1 = 1.0, error2 = 100.0;
Matrix A = (Matrix(2, 2) << 1.0, 10.0, 100.0, 1000.0).finished();
Vector b = (Vector(2) << error1, error2).finished();
Vector b = Vector2(error1, error2);
const Robust::shared_ptr robust = Robust::Create(
mEstimator::Huber::Create(k, mEstimator::Huber::Scalar),
Unit::Create(2));