Add CalibratedEssentialMatrix case
parent
874fb5919f
commit
3e14b7194f
|
@ -32,7 +32,7 @@ from gtsam import (
|
|||
K = gtsam.symbol_shorthand.K
|
||||
|
||||
# Methods to compare
|
||||
methods = ["FundamentalMatrix", "SimpleFundamentalMatrix", "EssentialMatrix"]
|
||||
methods = ["FundamentalMatrix", "SimpleFundamentalMatrix", "EssentialMatrix", "CalibratedEssentialMatrix"]
|
||||
|
||||
|
||||
# Formatter function for printing keys
|
||||
|
@ -90,7 +90,7 @@ def compute_ground_truth(method, poses, cal):
|
|||
SF1 = SimpleFundamentalMatrix(E1, f, f, c, c)
|
||||
SF2 = SimpleFundamentalMatrix(E2, f, f, c, c)
|
||||
return SF1, SF2
|
||||
elif method == "EssentialMatrix":
|
||||
elif method == "EssentialMatrix" or method == "CalibratedEssentialMatrix":
|
||||
return E1, E2
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
@ -110,9 +110,18 @@ def build_factor_graph(method, num_cameras, measurements, cal):
|
|||
for i in range(num_cameras):
|
||||
model = gtsam.noiseModel.Isotropic.Sigma(1, 10.0)
|
||||
graph.addPriorCal3f(K(i), cal, model)
|
||||
elif method == "CalibratedEssentialMatrix":
|
||||
FactorClass = gtsam.TransferFactorEssentialMatrix
|
||||
# No priors on calibration needed
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
if method == "CalibratedEssentialMatrix":
|
||||
# Calibrate measurements using ground truth calibration
|
||||
z = [[cal.calibrate(m) for m in cam_measurements] for cam_measurements in measurements]
|
||||
else:
|
||||
z = measurements
|
||||
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras # Next camera
|
||||
c = (a + 2) % num_cameras # Camera after next
|
||||
|
@ -124,9 +133,9 @@ def build_factor_graph(method, num_cameras, measurements, cal):
|
|||
|
||||
# Collect data for the three factors
|
||||
for j in range(len(measurements[0])):
|
||||
tuples1.append((measurements[a][j], measurements[b][j], measurements[c][j]))
|
||||
tuples2.append((measurements[a][j], measurements[c][j], measurements[b][j]))
|
||||
tuples3.append((measurements[c][j], measurements[b][j], measurements[a][j]))
|
||||
tuples1.append((z[a][j], z[b][j], z[c][j]))
|
||||
tuples2.append((z[a][j], z[c][j], z[b][j]))
|
||||
tuples3.append((z[c][j], z[b][j], z[a][j]))
|
||||
|
||||
# Add transfer factors between views a, b, and c.
|
||||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(b, c), tuples1))
|
||||
|
@ -141,7 +150,7 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
|||
initialEstimate = Values()
|
||||
total_dimension = 0
|
||||
|
||||
if method == "FundamentalMatrix" or method == "SimpleFundamentalMatrix":
|
||||
if method in ["FundamentalMatrix", "SimpleFundamentalMatrix"]:
|
||||
F1, F2 = ground_truth
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras # Next camera
|
||||
|
@ -149,7 +158,7 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
|||
initialEstimate.insert(EdgeKey(a, b).key(), F1)
|
||||
initialEstimate.insert(EdgeKey(a, c).key(), F2)
|
||||
total_dimension += F1.dim() + F2.dim()
|
||||
elif method == "EssentialMatrix":
|
||||
elif method in ["EssentialMatrix", "CalibratedEssentialMatrix"]:
|
||||
E1, E2 = ground_truth
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras # Next camera
|
||||
|
@ -157,12 +166,14 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
|||
initialEstimate.insert(EdgeKey(a, b).key(), E1)
|
||||
initialEstimate.insert(EdgeKey(a, c).key(), E2)
|
||||
total_dimension += E1.dim() + E2.dim()
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
if method == "EssentialMatrix":
|
||||
# Insert initial calibrations
|
||||
for i in range(num_cameras):
|
||||
initialEstimate.insert(K(i), cal)
|
||||
total_dimension += cal.dim()
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
print(f"Total dimension of the problem: {total_dimension}")
|
||||
return initialEstimate
|
||||
|
@ -185,15 +196,7 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
|||
"""Compute geodesic distances from ground truth"""
|
||||
distances = []
|
||||
|
||||
if method == "FundamentalMatrix" or method == "SimpleFundamentalMatrix":
|
||||
F1, F2 = ground_truth
|
||||
elif method == "EssentialMatrix":
|
||||
E1, E2 = ground_truth
|
||||
# Convert ground truth EssentialMatrices to FundamentalMatrices
|
||||
F1 = FundamentalMatrix(cal.K(), E1, cal.K())
|
||||
F2 = FundamentalMatrix(cal.K(), E2, cal.K())
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
F1, F2 = ground_truth["FundamentalMatrix"]
|
||||
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras
|
||||
|
@ -201,17 +204,21 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
|||
key_ab = EdgeKey(a, b).key()
|
||||
key_ac = EdgeKey(a, c).key()
|
||||
|
||||
if method in ["EssentialMatrix", "CalibratedEssentialMatrix"]:
|
||||
E_est_ab = result.atEssentialMatrix(key_ab)
|
||||
E_est_ac = result.atEssentialMatrix(key_ac)
|
||||
|
||||
# Compute estimated FundamentalMatrices
|
||||
if method == "FundamentalMatrix":
|
||||
F_est_ab = result.atFundamentalMatrix(key_ab)
|
||||
F_est_ac = result.atFundamentalMatrix(key_ac)
|
||||
elif method == "SimpleFundamentalMatrix":
|
||||
F_est_ab = result.atSimpleFundamentalMatrix(key_ab)
|
||||
F_est_ac = result.atSimpleFundamentalMatrix(key_ac)
|
||||
SF_est_ab = result.atSimpleFundamentalMatrix(key_ab).matrix()
|
||||
SF_est_ac = result.atSimpleFundamentalMatrix(key_ac).matrix()
|
||||
F_est_ab = FundamentalMatrix(SF_est_ab)
|
||||
F_est_ac = FundamentalMatrix(SF_est_ac)
|
||||
elif method == "EssentialMatrix":
|
||||
E_est_ab = result.atEssentialMatrix(key_ab)
|
||||
E_est_ac = result.atEssentialMatrix(key_ac)
|
||||
|
||||
# Retrieve correct calibrations from result:
|
||||
# Retrieve calibrations from result:
|
||||
cal_a = result.atCal3f(K(a))
|
||||
cal_b = result.atCal3f(K(b))
|
||||
cal_c = result.atCal3f(K(c))
|
||||
|
@ -219,6 +226,12 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
|||
# Convert estimated EssentialMatrices to FundamentalMatrices
|
||||
F_est_ab = FundamentalMatrix(cal_a.K(), E_est_ab, cal_b.K())
|
||||
F_est_ac = FundamentalMatrix(cal_a.K(), E_est_ac, cal_c.K())
|
||||
elif method == "CalibratedEssentialMatrix":
|
||||
# Use ground truth calibration
|
||||
F_est_ab = FundamentalMatrix(cal.K(), E_est_ab, cal.K())
|
||||
F_est_ac = FundamentalMatrix(cal.K(), E_est_ac, cal.K())
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
# Compute local coordinates (geodesic distance on the F-manifold)
|
||||
dist_ab = np.linalg.norm(F1.localCoordinates(F_est_ab))
|
||||
|
@ -256,7 +269,7 @@ def plot_results(results):
|
|||
f"{iterations[i]:.1f}",
|
||||
(i, distances[i]),
|
||||
textcoords="offset points",
|
||||
xytext=(20, -5),
|
||||
xytext=(0, 10),
|
||||
ha="center",
|
||||
color=color,
|
||||
)
|
||||
|
@ -309,6 +322,10 @@ def main():
|
|||
# Assert that the initial error is the same for all methods:
|
||||
if method == methods[0]:
|
||||
error0 = graph.error(initial_estimate[method])
|
||||
elif method == "CalibratedEssentialMatrix":
|
||||
current_error = graph.error(initial_estimate[method]) * cal.f() * cal.f()
|
||||
print(error0, current_error)
|
||||
assert np.allclose(error0, current_error), "Initial errors do not match among methods."
|
||||
else:
|
||||
current_error = graph.error(initial_estimate[method])
|
||||
assert np.allclose(error0, current_error), "Initial errors do not match among methods."
|
||||
|
@ -317,10 +334,12 @@ def main():
|
|||
result, iterations = optimize(graph, initial_estimate[method], method)
|
||||
|
||||
# Compute distances from ground truth
|
||||
distances = compute_distances(method, result, ground_truth[method], args.num_cameras, cal)
|
||||
distances = compute_distances(method, result, ground_truth, args.num_cameras, cal)
|
||||
|
||||
# Compute final error
|
||||
final_error = graph.error(result)
|
||||
if method == "CalibratedEssentialMatrix":
|
||||
final_error *= cal.f() * cal.f()
|
||||
|
||||
# Store results
|
||||
results[method]["distances"].extend(distances)
|
||||
|
|
Loading…
Reference in New Issue