Merge pull request #1056 from borglab/feature/dt_threshold

release/4.3a0
Frank Dellaert 2022-01-22 21:36:35 -05:00 committed by GitHub
commit 3d86bc7294
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 461 additions and 450 deletions

View File

@ -18,8 +18,13 @@
#pragma once
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
namespace gtsam {
/**
@ -27,10 +32,11 @@ namespace gtsam {
* Just has some nice constructors and some syntactic sugar
* TODO: consider eliminating this class altogether?
*/
template<typename L>
class GTSAM_EXPORT AlgebraicDecisionTree: public DecisionTree<L, double> {
template <typename L>
class GTSAM_EXPORT AlgebraicDecisionTree : public DecisionTree<L, double> {
/**
* @brief Default method used by `labelFormatter` or `valueFormatter` when printing.
* @brief Default method used by `labelFormatter` or `valueFormatter` when
* printing.
*
* @param x The value passed to format.
* @return std::string
@ -42,17 +48,12 @@ namespace gtsam {
}
public:
using Base = DecisionTree<L, double>;
/** The Real ring with addition and multiplication */
struct Ring {
static inline double zero() {
return 0.0;
}
static inline double one() {
return 1.0;
}
static inline double zero() { return 0.0; }
static inline double one() { return 1.0; }
static inline double add(const double& a, const double& b) {
return a + b;
}
@ -65,39 +66,35 @@ namespace gtsam {
static inline double div(const double& a, const double& b) {
return a / b;
}
static inline double id(const double& x) {
return x;
}
static inline double id(const double& x) { return x; }
};
AlgebraicDecisionTree() :
Base(1.0) {
}
AlgebraicDecisionTree() : Base(1.0) {}
AlgebraicDecisionTree(const Base& add) :
Base(add) {
}
// Explicitly non-explicit constructor
AlgebraicDecisionTree(const Base& add) : Base(add) {}
/** Create a new leaf function splitting on a variable */
AlgebraicDecisionTree(const L& label, double y1, double y2) :
Base(label, y1, y2) {
}
AlgebraicDecisionTree(const L& label, double y1, double y2)
: Base(label, y1, y2) {}
/** Create a new leaf function splitting on a variable */
AlgebraicDecisionTree(const typename Base::LabelC& labelC, double y1, double y2) :
Base(labelC, y1, y2) {
}
AlgebraicDecisionTree(const typename Base::LabelC& labelC, double y1,
double y2)
: Base(labelC, y1, y2) {}
/** Create from keys and vector table */
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs, const std::vector<double>& ys) {
this->root_ = Base::create(labelCs.begin(), labelCs.end(), ys.begin(),
ys.end());
(const std::vector<typename Base::LabelC>& labelCs,
const std::vector<double>& ys) {
this->root_ =
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/** Create from keys and string table */
AlgebraicDecisionTree //
(const std::vector<typename Base::LabelC>& labelCs, const std::string& table) {
(const std::vector<typename Base::LabelC>& labelCs,
const std::string& table) {
// Convert string to doubles
std::vector<double> ys;
std::istringstream iss(table);
@ -105,14 +102,14 @@ namespace gtsam {
std::istream_iterator<double>(), std::back_inserter(ys));
// now call recursive Create
this->root_ = Base::create(labelCs.begin(), labelCs.end(), ys.begin(),
ys.end());
this->root_ =
Base::create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/** Create a new function splitting on a variable */
template<typename Iterator>
AlgebraicDecisionTree(Iterator begin, Iterator end, const L& label) :
Base(nullptr) {
template <typename Iterator>
AlgebraicDecisionTree(Iterator begin, Iterator end, const L& label)
: Base(nullptr) {
this->root_ = compose(begin, end, label);
}
@ -122,7 +119,7 @@ namespace gtsam {
* @param other: The AlgebraicDecisionTree with label type M to convert.
* @param map: Map from label type M to label type L.
*/
template<typename M>
template <typename M>
AlgebraicDecisionTree(const AlgebraicDecisionTree<M>& other,
const std::map<M, L>& map) {
// Functor for label conversion so we can use `convertFrom`.
@ -177,8 +174,8 @@ namespace gtsam {
return Base::equals(other, compare);
}
};
// AlgebraicDecisionTree
template<typename T> struct traits<AlgebraicDecisionTree<T>> : public Testable<AlgebraicDecisionTree<T>> {};
}
// namespace gtsam
template <typename T>
struct traits<AlgebraicDecisionTree<T>>
: public Testable<AlgebraicDecisionTree<T>> {};
} // namespace gtsam

View File

@ -21,42 +21,44 @@
#include <gtsam/discrete/DecisionTree.h>
#include <algorithm>
#include <boost/assign/std/vector.hpp>
#include <boost/format.hpp>
#include <boost/make_shared.hpp>
#include <boost/noncopyable.hpp>
#include <boost/optional.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits/has_dereference.hpp>
#include <boost/unordered_set.hpp>
#include <boost/make_shared.hpp>
#include <cmath>
#include <fstream>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
using boost::assign::operator+=;
namespace gtsam {
/*********************************************************************************/
/****************************************************************************/
// Node
/*********************************************************************************/
/****************************************************************************/
#ifdef DT_DEBUG_MEMORY
template<typename L, typename Y>
int DecisionTree<L, Y>::Node::nrNodes = 0;
#endif
/*********************************************************************************/
/****************************************************************************/
// Leaf
/*********************************************************************************/
template<typename L, typename Y>
class DecisionTree<L, Y>::Leaf: public DecisionTree<L, Y>::Node {
/****************************************************************************/
template <typename L, typename Y>
struct DecisionTree<L, Y>::Leaf : public DecisionTree<L, Y>::Node {
/** constant stored in this leaf */
Y constant_;
public:
/** Constructor from constant */
Leaf(const Y& constant) :
constant_(constant) {}
@ -96,7 +98,7 @@ namespace gtsam {
std::string value = valueFormatter(constant_);
if (showZero || value.compare("0"))
os << "\"" << this->id() << "\" [label=\"" << value
<< "\", shape=box, rank=sink, height=0.35, fixedsize=true]\n"; // width=0.55,
<< "\", shape=box, rank=sink, height=0.35, fixedsize=true]\n";
}
/** evaluate */
@ -136,15 +138,13 @@ namespace gtsam {
}
bool isLeaf() const override { return true; }
}; // Leaf
/*********************************************************************************/
/****************************************************************************/
// Choice
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
class DecisionTree<L, Y>::Choice: public DecisionTree<L, Y>::Node {
struct DecisionTree<L, Y>::Choice: public DecisionTree<L, Y>::Node {
/** the label of the variable on which we split */
L label_;
@ -158,10 +158,10 @@ namespace gtsam {
using ChoicePtr = boost::shared_ptr<const Choice>;
public:
~Choice() override {
#ifdef DT_DEBUG_MEMORY
std::std::cout << Node::nrNodes << " destructing (Choice) " << this->id() << std::std::endl;
std::std::cout << Node::nrNodes << " destructing (Choice) " << this->id()
<< std::std::endl;
#endif
}
@ -172,7 +172,8 @@ namespace gtsam {
assert(f->branches().size() > 0);
NodePtr f0 = f->branches_[0];
assert(f0->isLeaf());
NodePtr newLeaf(new Leaf(boost::dynamic_pointer_cast<const Leaf>(f0)->constant()));
NodePtr newLeaf(
new Leaf(boost::dynamic_pointer_cast<const Leaf>(f0)->constant()));
return newLeaf;
} else
#endif
@ -192,7 +193,6 @@ namespace gtsam {
*/
Choice(const Choice& f, const Choice& g, const Binary& op) :
allSame_(true) {
// Choose what to do based on label
if (f.label() > g.label()) {
// f higher than g
@ -318,10 +318,8 @@ namespace gtsam {
*/
Choice(const L& label, const Choice& f, const Unary& op) :
label_(label), allSame_(true) {
branches_.reserve(f.branches_.size()); // reserve space
for (const NodePtr& branch: f.branches_)
push_back(branch->apply(op));
for (const NodePtr& branch : f.branches_) push_back(branch->apply(op));
}
/** apply unary operator */
@ -364,8 +362,7 @@ namespace gtsam {
/** choose a branch, recursively */
NodePtr choose(const L& label, size_t index) const override {
if (label_ == label)
return branches_[index]; // choose branch
if (label_ == label) return branches_[index]; // choose branch
// second case, not label of interest, just recurse
auto r = boost::make_shared<Choice>(label_, branches_.size());
@ -373,12 +370,11 @@ namespace gtsam {
r->push_back(branch->choose(label, index));
return Unique(r);
}
}; // Choice
/*********************************************************************************/
/****************************************************************************/
// DecisionTree
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree() {
}
@ -388,13 +384,13 @@ namespace gtsam {
root_(root) {
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const Y& y) {
root_ = NodePtr(new Leaf(y));
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const L& label, const Y& y1, const Y& y2) {
auto a = boost::make_shared<Choice>(label, 2);
@ -404,7 +400,7 @@ namespace gtsam {
root_ = Choice::Unique(a);
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const LabelC& labelC, const Y& y1,
const Y& y2) {
@ -417,7 +413,7 @@ namespace gtsam {
root_ = Choice::Unique(a);
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const std::vector<LabelC>& labelCs,
const std::vector<Y>& ys) {
@ -425,11 +421,10 @@ namespace gtsam {
root_ = create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const std::vector<LabelC>& labelCs,
const std::string& table) {
// Convert std::string to values of type Y
std::vector<Y> ys;
std::istringstream iss(table);
@ -440,14 +435,14 @@ namespace gtsam {
root_ = create(labelCs.begin(), labelCs.end(), ys.begin(), ys.end());
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
template<typename Iterator> DecisionTree<L, Y>::DecisionTree(
Iterator begin, Iterator end, const L& label) {
root_ = compose(begin, end, label);
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const L& label,
const DecisionTree& f0, const DecisionTree& f1) {
@ -456,7 +451,7 @@ namespace gtsam {
root_ = compose(functions.begin(), functions.end(), label);
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
template <typename X, typename Func>
DecisionTree<L, Y>::DecisionTree(const DecisionTree<L, X>& other,
@ -466,7 +461,7 @@ namespace gtsam {
root_ = convertFrom<L, X>(other.root_, L_of_L, Y_of_X);
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
template <typename M, typename X, typename Func>
DecisionTree<L, Y>::DecisionTree(const DecisionTree<M, X>& other,
@ -475,16 +470,16 @@ namespace gtsam {
root_ = convertFrom<M, X>(other.root_, L_of_M, Y_of_X);
}
/*********************************************************************************/
/****************************************************************************/
// Called by two constructors above.
// Takes a label and a corresponding range of decision trees, and creates a new
// decision tree. However, the order of the labels needs to be respected, so we
// cannot just create a root Choice node on the label: if the label is not the
// highest label, we need to do a complicated and expensive recursive call.
template<typename L, typename Y> template<typename Iterator>
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::compose(Iterator begin,
Iterator end, const L& label) const {
// Takes a label and a corresponding range of decision trees, and creates a
// new decision tree. However, the order of the labels needs to be respected,
// so we cannot just create a root Choice node on the label: if the label is
// not the highest label, we need a complicated/ expensive recursive call.
template <typename L, typename Y>
template <typename Iterator>
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::compose(
Iterator begin, Iterator end, const L& label) const {
// find highest label among branches
boost::optional<L> highestLabel;
size_t nrChoices = 0;
@ -527,7 +522,7 @@ namespace gtsam {
}
}
/*********************************************************************************/
/****************************************************************************/
// "create" is a bit of a complicated thing, but very useful.
// It takes a range of labels and a corresponding range of values,
// and creates a decision tree, as follows:
@ -552,7 +547,6 @@ namespace gtsam {
template<typename It, typename ValueIt>
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::create(
It begin, It end, ValueIt beginY, ValueIt endY) const {
// get crucial counts
size_t nrChoices = begin->second;
size_t size = endY - beginY;
@ -564,7 +558,11 @@ namespace gtsam {
// Create a simple choice node with values as leaves.
if (size != nrChoices) {
std::cout << "Trying to create DD on " << begin->first << std::endl;
std::cout << boost::format("DecisionTree::create: expected %d values but got %d instead") % nrChoices % size << std::endl;
std::cout << boost::format(
"DecisionTree::create: expected %d values but got %d "
"instead") %
nrChoices % size
<< std::endl;
throw std::invalid_argument("DecisionTree::create invalid argument");
}
auto choice = boost::make_shared<Choice>(begin->first, endY - beginY);
@ -585,7 +583,7 @@ namespace gtsam {
return compose(functions.begin(), functions.end(), begin->first);
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
template <typename M, typename X>
typename DecisionTree<L, Y>::NodePtr DecisionTree<L, Y>::convertFrom(
@ -594,8 +592,8 @@ namespace gtsam {
std::function<Y(const X&)> Y_of_X) const {
using LY = DecisionTree<L, Y>;
// ugliness below because apparently we can't have templated virtual functions
// If leaf, apply unary conversion "op" and create a unique leaf
// ugliness below because apparently we can't have templated virtual
// functions If leaf, apply unary conversion "op" and create a unique leaf
using MXLeaf = typename DecisionTree<M, X>::Leaf;
if (auto leaf = boost::dynamic_pointer_cast<const MXLeaf>(f))
return NodePtr(new Leaf(Y_of_X(leaf->constant())));
@ -612,18 +610,18 @@ namespace gtsam {
// put together via Shannon expansion otherwise not sorted.
std::vector<LY> functions;
for(auto && branch: choice->branches()) {
for (auto&& branch : choice->branches()) {
functions.emplace_back(convertFrom<M, X>(branch, L_of_M, Y_of_X));
}
return LY::compose(functions.begin(), functions.end(), newLabel);
}
/*********************************************************************************/
/****************************************************************************/
// Functor performing depth-first visit without Assignment<L> argument.
template <typename L, typename Y>
struct Visit {
using F = std::function<void(const Y&)>;
Visit(F f) : f(f) {} ///< Construct from folding function.
explicit Visit(F f) : f(f) {} ///< Construct from folding function.
F f; ///< folding function object.
/// Do a depth-first visit on the tree rooted at node.
@ -647,13 +645,13 @@ namespace gtsam {
visit(root_);
}
/*********************************************************************************/
/****************************************************************************/
// Functor performing depth-first visit with Assignment<L> argument.
template <typename L, typename Y>
struct VisitWith {
using Choices = Assignment<L>;
using F = std::function<void(const Choices&, const Y&)>;
VisitWith(F f) : f(f) {} ///< Construct from folding function.
explicit VisitWith(F f) : f(f) {} ///< Construct from folding function.
Choices choices; ///< Assignment, mutating through recursion.
F f; ///< folding function object.
@ -681,7 +679,7 @@ namespace gtsam {
visit(root_);
}
/*********************************************************************************/
/****************************************************************************/
// fold is just done with a visit
template <typename L, typename Y>
template <typename Func, typename X>
@ -690,7 +688,7 @@ namespace gtsam {
return x0;
}
/*********************************************************************************/
/****************************************************************************/
// labels is just done with a visit
template <typename L, typename Y>
std::set<L> DecisionTree<L, Y>::labels() const {
@ -702,7 +700,7 @@ namespace gtsam {
return unique;
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
bool DecisionTree<L, Y>::equals(const DecisionTree& other,
const CompareFunc& compare) const {
@ -736,7 +734,7 @@ namespace gtsam {
return DecisionTree(root_->apply(op));
}
/*********************************************************************************/
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y> DecisionTree<L, Y>::apply(const DecisionTree& g,
const Binary& op) const {
@ -752,7 +750,7 @@ namespace gtsam {
return result;
}
/*********************************************************************************/
/****************************************************************************/
// The way this works:
// We have an ADT, picture it as a tree.
// At a certain depth, we have a branch on "label".
@ -772,7 +770,7 @@ namespace gtsam {
return result;
}
/*********************************************************************************/
/****************************************************************************/
template <typename L, typename Y>
void DecisionTree<L, Y>::dot(std::ostream& os,
const LabelFormatter& labelFormatter,
@ -790,9 +788,11 @@ namespace gtsam {
bool showZero) const {
std::ofstream os((name + ".dot").c_str());
dot(os, labelFormatter, valueFormatter, showZero);
int result = system(
("dot -Tpdf " + name + ".dot -o " + name + ".pdf >& /dev/null").c_str());
if (result==-1) throw std::runtime_error("DecisionTree::dot system call failed");
int result =
system(("dot -Tpdf " + name + ".dot -o " + name + ".pdf >& /dev/null")
.c_str());
if (result == -1)
throw std::runtime_error("DecisionTree::dot system call failed");
}
template <typename L, typename Y>
@ -804,8 +804,6 @@ namespace gtsam {
return ss.str();
}
/*********************************************************************************/
} // namespace gtsam
/******************************************************************************/
} // namespace gtsam

View File

@ -26,9 +26,11 @@
#include <functional>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
namespace gtsam {
@ -39,7 +41,6 @@ namespace gtsam {
*/
template<typename L, typename Y>
class DecisionTree {
protected:
/// Default method for comparison of two objects of type Y.
static bool DefaultCompare(const Y& a, const Y& b) {
@ -47,7 +48,6 @@ namespace gtsam {
}
public:
using LabelFormatter = std::function<std::string(L)>;
using ValueFormatter = std::function<std::string(Y)>;
using CompareFunc = std::function<bool(const Y&, const Y&)>;
@ -57,15 +57,14 @@ namespace gtsam {
using Binary = std::function<Y(const Y&, const Y&)>;
/** A label annotated with cardinality */
using LabelC = std::pair<L,size_t>;
using LabelC = std::pair<L, size_t>;
/** DTs consist of Leaf and Choice nodes, both subclasses of Node */
class Leaf;
class Choice;
struct Leaf;
struct Choice;
/** ------------------------ Node base class --------------------------- */
class Node {
public:
struct Node {
using Ptr = boost::shared_ptr<const Node>;
#ifdef DT_DEBUG_MEMORY
@ -75,14 +74,16 @@ namespace gtsam {
// Constructor
Node() {
#ifdef DT_DEBUG_MEMORY
std::cout << ++nrNodes << " constructed " << id() << std::endl; std::cout.flush();
std::cout << ++nrNodes << " constructed " << id() << std::endl;
std::cout.flush();
#endif
}
// Destructor
virtual ~Node() {
#ifdef DT_DEBUG_MEMORY
std::cout << --nrNodes << " destructed " << id() << std::endl; std::cout.flush();
std::cout << --nrNodes << " destructed " << id() << std::endl;
std::cout.flush();
#endif
}
@ -111,7 +112,6 @@ namespace gtsam {
/** ------------------------ Node base class --------------------------- */
public:
/** A function is a shared pointer to the root of a DT */
using NodePtr = typename Node::Ptr;
@ -119,8 +119,9 @@ namespace gtsam {
NodePtr root_;
protected:
/** Internal recursive function to create from keys, cardinalities, and Y values */
/** Internal recursive function to create from keys, cardinalities,
* and Y values
*/
template<typename It, typename ValueIt>
NodePtr create(It begin, It end, ValueIt beginY, ValueIt endY) const;
@ -140,7 +141,6 @@ namespace gtsam {
std::function<Y(const X&)> Y_of_X) const;
public:
/// @name Standard Constructors
/// @{
@ -148,7 +148,7 @@ namespace gtsam {
DecisionTree();
/** Create a constant */
DecisionTree(const Y& y);
explicit DecisionTree(const Y& y);
/** Create a new leaf function splitting on a variable */
DecisionTree(const L& label, const Y& y1, const Y& y2);
@ -167,8 +167,8 @@ namespace gtsam {
DecisionTree(Iterator begin, Iterator end, const L& label);
/** Create DecisionTree from two others */
DecisionTree(const L& label, //
const DecisionTree& f0, const DecisionTree& f1);
DecisionTree(const L& label, const DecisionTree& f0,
const DecisionTree& f1);
/**
* @brief Convert from a different value type.
@ -234,6 +234,8 @@ namespace gtsam {
*
* @param f side-effect taking a value.
*
* @note Due to pruning, leaves might not exhaust choices.
*
* Example:
* int sum = 0;
* auto visitor = [&](int y) { sum += y; };
@ -247,6 +249,8 @@ namespace gtsam {
*
* @param f side-effect taking an assignment and a value.
*
* @note Due to pruning, leaves might not exhaust choices.
*
* Example:
* int sum = 0;
* auto visitor = [&](const Assignment<L>& choices, int y) { sum += y; };
@ -264,6 +268,7 @@ namespace gtsam {
* @return X final value for accumulator.
*
* @note X is always passed by value.
* @note Due to pruning, leaves might not exhaust choices.
*
* Example:
* auto add = [](const double& y, double x) { return y + x; };
@ -289,7 +294,8 @@ namespace gtsam {
}
/** combine subtrees on key with binary operation "op" */
DecisionTree combine(const L& label, size_t cardinality, const Binary& op) const;
DecisionTree combine(const L& label, size_t cardinality,
const Binary& op) const;
/** combine with LabelC for convenience */
DecisionTree combine(const LabelC& labelC, const Binary& op) const {
@ -313,14 +319,13 @@ namespace gtsam {
/// @{
// internal use only
DecisionTree(const NodePtr& root);
explicit DecisionTree(const NodePtr& root);
// internal use only
template<typename Iterator> NodePtr
compose(Iterator begin, Iterator end, const L& label) const;
/// @}
}; // DecisionTree
/** free versions of apply */
@ -340,11 +345,19 @@ namespace gtsam {
return f.apply(g, op);
}
/// unzip a DecisionTree if its leaves are `std::pair`
template<typename L, typename T1, typename T2>
std::pair<DecisionTree<L, T1>, DecisionTree<L, T2> > unzip(const DecisionTree<L, std::pair<T1, T2> > &input) {
return std::make_pair(DecisionTree<L, T1>(input, [](std::pair<T1, T2> i) { return i.first; }),
DecisionTree<L, T2>(input, [](std::pair<T1, T2> i) { return i.second; }));
/**
* @brief unzip a DecisionTree with `std::pair` values.
*
* @param input the DecisionTree with `(T1,T2)` values.
* @return a pair of DecisionTree on T1 and T2, respectively.
*/
template <typename L, typename T1, typename T2>
std::pair<DecisionTree<L, T1>, DecisionTree<L, T2> > unzip(
const DecisionTree<L, std::pair<T1, T2> >& input) {
return std::make_pair(
DecisionTree<L, T1>(input, [](std::pair<T1, T2> i) { return i.first; }),
DecisionTree<L, T2>(input,
[](std::pair<T1, T2> i) { return i.second; }));
}
} // namespace gtsam

View File

@ -17,9 +17,9 @@
* @author Frank Dellaert
*/
#include <gtsam/base/FastSet.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/base/FastSet.h>
#include <boost/make_shared.hpp>
#include <boost/format.hpp>
@ -29,42 +29,42 @@ using namespace std;
namespace gtsam {
/* ******************************************************************************** */
DecisionTreeFactor::DecisionTreeFactor() {
}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor() {}
/* ******************************************************************************** */
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const ADT& potentials) :
DiscreteFactor(keys.indices()), ADT(potentials),
cardinalities_(keys.cardinalities()) {
}
const ADT& potentials)
: DiscreteFactor(keys.indices()),
ADT(potentials),
cardinalities_(keys.cardinalities()) {}
/* *************************************************************************/
DecisionTreeFactor::DecisionTreeFactor(const DiscreteConditional& c) :
DiscreteFactor(c.keys()), AlgebraicDecisionTree<Key>(c), cardinalities_(c.cardinalities_) {
}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteConditional& c)
: DiscreteFactor(c.keys()),
AlgebraicDecisionTree<Key>(c),
cardinalities_(c.cardinalities_) {}
/* ************************************************************************* */
bool DecisionTreeFactor::equals(const DiscreteFactor& other, double tol) const {
if(!dynamic_cast<const DecisionTreeFactor*>(&other)) {
/* ************************************************************************ */
bool DecisionTreeFactor::equals(const DiscreteFactor& other,
double tol) const {
if (!dynamic_cast<const DecisionTreeFactor*>(&other)) {
return false;
}
else {
} else {
const auto& f(static_cast<const DecisionTreeFactor&>(other));
return ADT::equals(f, tol);
}
}
/* ************************************************************************* */
double DecisionTreeFactor::safe_div(const double &a, const double &b) {
/* ************************************************************************ */
double DecisionTreeFactor::safe_div(const double& a, const double& b) {
// The use for safe_div is when we divide the product factor by the sum
// factor. If the product or sum is zero, we accord zero probability to the
// event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ************************************************************************* */
/* ************************************************************************ */
void DecisionTreeFactor::print(const string& s,
const KeyFormatter& formatter) const {
cout << s;
@ -75,31 +75,32 @@ namespace gtsam {
ADT::print("", formatter);
}
/* ************************************************************************* */
/* ************************************************************************ */
DecisionTreeFactor DecisionTreeFactor::apply(const DecisionTreeFactor& f,
ADT::Binary op) const {
map<Key,size_t> cs; // new cardinalities
map<Key, size_t> cs; // new cardinalities
// make unique key-cardinality map
for(Key j: keys()) cs[j] = cardinality(j);
for(Key j: f.keys()) cs[j] = f.cardinality(j);
for (Key j : keys()) cs[j] = cardinality(j);
for (Key j : f.keys()) cs[j] = f.cardinality(j);
// Convert map into keys
DiscreteKeys keys;
for(const std::pair<const Key,size_t>& key: cs)
keys.push_back(key);
for (const std::pair<const Key, size_t>& key : cs) keys.push_back(key);
// apply operand
ADT result = ADT::apply(f, op);
// Make a new factor
return DecisionTreeFactor(keys, result);
}
/* ************************************************************************* */
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(size_t nrFrontals,
ADT::Binary op) const {
if (nrFrontals > size()) throw invalid_argument(
/* ************************************************************************ */
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(
size_t nrFrontals, ADT::Binary op) const {
if (nrFrontals > size())
throw invalid_argument(
(boost::format(
"DecisionTreeFactor::combine: invalid number of frontal keys %d, nr.keys=%d")
% nrFrontals % size()).str());
"DecisionTreeFactor::combine: invalid number of frontal "
"keys %d, nr.keys=%d") %
nrFrontals % size())
.str());
// sum over nrFrontals keys
size_t i;
@ -113,20 +114,21 @@ namespace gtsam {
DiscreteKeys dkeys;
for (; i < keys().size(); i++) {
Key j = keys()[i];
dkeys.push_back(DiscreteKey(j,cardinality(j)));
dkeys.push_back(DiscreteKey(j, cardinality(j)));
}
return boost::make_shared<DecisionTreeFactor>(dkeys, result);
}
/* ************************************************************************* */
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(const Ordering& frontalKeys,
ADT::Binary op) const {
if (frontalKeys.size() > size()) throw invalid_argument(
/* ************************************************************************ */
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(
const Ordering& frontalKeys, ADT::Binary op) const {
if (frontalKeys.size() > size())
throw invalid_argument(
(boost::format(
"DecisionTreeFactor::combine: invalid number of frontal keys %d, nr.keys=%d")
% frontalKeys.size() % size()).str());
"DecisionTreeFactor::combine: invalid number of frontal "
"keys %d, nr.keys=%d") %
frontalKeys.size() % size())
.str());
// sum over nrFrontals keys
size_t i;
@ -137,20 +139,22 @@ namespace gtsam {
}
// create new factor, note we collect keys that are not in frontalKeys
// TODO: why do we need this??? result should contain correct keys!!!
// TODO(frank): why do we need this??? result should contain correct keys!!!
DiscreteKeys dkeys;
for (i = 0; i < keys().size(); i++) {
Key j = keys()[i];
// TODO: inefficient!
if (std::find(frontalKeys.begin(), frontalKeys.end(), j) != frontalKeys.end())
// TODO(frank): inefficient!
if (std::find(frontalKeys.begin(), frontalKeys.end(), j) !=
frontalKeys.end())
continue;
dkeys.push_back(DiscreteKey(j,cardinality(j)));
dkeys.push_back(DiscreteKey(j, cardinality(j)));
}
return boost::make_shared<DecisionTreeFactor>(dkeys, result);
}
/* ************************************************************************* */
std::vector<std::pair<DiscreteValues, double>> DecisionTreeFactor::enumerate() const {
/* ************************************************************************ */
std::vector<std::pair<DiscreteValues, double>> DecisionTreeFactor::enumerate()
const {
// Get all possible assignments
std::vector<std::pair<Key, size_t>> pairs;
for (auto& key : keys()) {
@ -168,7 +172,7 @@ namespace gtsam {
return result;
}
/* ************************************************************************* */
/* ************************************************************************ */
DiscreteKeys DecisionTreeFactor::discreteKeys() const {
DiscreteKeys result;
for (auto&& key : keys()) {
@ -180,7 +184,7 @@ namespace gtsam {
return result;
}
/* ************************************************************************* */
/* ************************************************************************ */
static std::string valueFormatter(const double& v) {
return (boost::format("%4.2g") % v).str();
}
@ -206,7 +210,7 @@ namespace gtsam {
}
// Print out header.
/* ************************************************************************* */
/* ************************************************************************ */
string DecisionTreeFactor::markdown(const KeyFormatter& keyFormatter,
const Names& names) const {
stringstream ss;
@ -271,17 +275,19 @@ namespace gtsam {
return ss.str();
}
/* ************************************************************************* */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys &keys, const vector<double> &table) :
DiscreteFactor(keys.indices()), AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {
}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const vector<double>& table)
: DiscreteFactor(keys.indices()),
AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {}
/* ************************************************************************* */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys &keys, const string &table) :
DiscreteFactor(keys.indices()), AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {
}
/* ************************************************************************ */
DecisionTreeFactor::DecisionTreeFactor(const DiscreteKeys& keys,
const string& table)
: DiscreteFactor(keys.indices()),
AlgebraicDecisionTree<Key>(keys, table),
cardinalities_(keys.cardinalities()) {}
/* ************************************************************************* */
/* ************************************************************************ */
} // namespace gtsam

View File

@ -18,16 +18,18 @@
#pragma once
#include <gtsam/discrete/AlgebraicDecisionTree.h>
#include <gtsam/discrete/DiscreteFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/AlgebraicDecisionTree.h>
#include <gtsam/inference/Ordering.h>
#include <algorithm>
#include <boost/shared_ptr.hpp>
#include <vector>
#include <exception>
#include <map>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace gtsam {
@ -36,10 +38,9 @@ namespace gtsam {
/**
* A discrete probabilistic factor
*/
class GTSAM_EXPORT DecisionTreeFactor: public DiscreteFactor, public AlgebraicDecisionTree<Key> {
class GTSAM_EXPORT DecisionTreeFactor : public DiscreteFactor,
public AlgebraicDecisionTree<Key> {
public:
// typedefs needed to play nice with gtsam
typedef DecisionTreeFactor This;
typedef DiscreteFactor Base; ///< Typedef to base class
@ -47,10 +48,9 @@ namespace gtsam {
typedef AlgebraicDecisionTree<Key> ADT;
protected:
std::map<Key,size_t> cardinalities_;
std::map<Key, size_t> cardinalities_;
public:
/// @name Standard Constructors
/// @{
@ -61,7 +61,8 @@ namespace gtsam {
DecisionTreeFactor(const DiscreteKeys& keys, const ADT& potentials);
/** Constructor from doubles */
DecisionTreeFactor(const DiscreteKeys& keys, const std::vector<double>& table);
DecisionTreeFactor(const DiscreteKeys& keys,
const std::vector<double>& table);
/** Constructor from string */
DecisionTreeFactor(const DiscreteKeys& keys, const std::string& table);
@ -86,7 +87,8 @@ namespace gtsam {
bool equals(const DiscreteFactor& other, double tol = 1e-9) const override;
// print
void print(const std::string& s = "DecisionTreeFactor:\n",
void print(
const std::string& s = "DecisionTreeFactor:\n",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// @}
@ -105,7 +107,7 @@ namespace gtsam {
static double safe_div(const double& a, const double& b);
size_t cardinality(Key j) const { return cardinalities_.at(j);}
size_t cardinality(Key j) const { return cardinalities_.at(j); }
/// divide by factor f (safely)
DecisionTreeFactor operator/(const DecisionTreeFactor& f) const {
@ -113,9 +115,7 @@ namespace gtsam {
}
/// Convert into a decisiontree
DecisionTreeFactor toDecisionTreeFactor() const override {
return *this;
}
DecisionTreeFactor toDecisionTreeFactor() const override { return *this; }
/// Create new factor by summing all values with the same separator values
shared_ptr sum(size_t nrFrontals) const {
@ -164,27 +164,6 @@ namespace gtsam {
*/
shared_ptr combine(const Ordering& keys, ADT::Binary op) const;
// /**
// * @brief Permutes the keys in Potentials and DiscreteFactor
// *
// * This re-implements the permuteWithInverse() in both Potentials
// * and DiscreteFactor by doing both of them together.
// */
//
// void permuteWithInverse(const Permutation& inversePermutation){
// DiscreteFactor::permuteWithInverse(inversePermutation);
// Potentials::permuteWithInverse(inversePermutation);
// }
//
// /**
// * Apply a reduction, which is a remapping of variable indices.
// */
// virtual void reduceWithInverse(const internal::Reduction& inverseReduction) {
// DiscreteFactor::reduceWithInverse(inverseReduction);
// Potentials::reduceWithInverse(inverseReduction);
// }
/// Enumerate all values into a map from values to double.
std::vector<std::pair<DiscreteValues, double>> enumerate() const;
@ -230,11 +209,10 @@ namespace gtsam {
const Names& names = {}) const override;
/// @}
};
// DecisionTreeFactor
};
// traits
template<> struct traits<DecisionTreeFactor> : public Testable<DecisionTreeFactor> {};
template <>
struct traits<DecisionTreeFactor> : public Testable<DecisionTreeFactor> {};
}// namespace gtsam
} // namespace gtsam

View File

@ -25,30 +25,31 @@
#include <gtsam/discrete/DecisionTree-inl.h> // for convert only
#define DISABLE_TIMING
#include <boost/tokenizer.hpp>
#include <boost/assign/std/map.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/tokenizer.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include <gtsam/discrete/Signature.h>
#include <gtsam/base/timing.h>
#include <gtsam/discrete/Signature.h>
using namespace std;
using namespace gtsam;
/* ******************************************************************************** */
/* ************************************************************************** */
typedef AlgebraicDecisionTree<Key> ADT;
// traits
namespace gtsam {
template<> struct traits<ADT> : public Testable<ADT> {};
}
template <>
struct traits<ADT> : public Testable<ADT> {};
} // namespace gtsam
#define DISABLE_DOT
template<typename T>
void dot(const T&f, const string& filename) {
template <typename T>
void dot(const T& f, const string& filename) {
#ifndef DISABLE_DOT
f.dot(filename);
#endif
@ -63,8 +64,8 @@ void dot(const T&f, const string& filename) {
// If second argument of binary op is Leaf
template<typename L>
typename DecisionTree<L, double>::Node::Ptr DecisionTree<L, double>::Choice::apply_fC_op_gL(
Cache& cache, const Leaf& gL, Mul op) const {
typename DecisionTree<L, double>::Node::Ptr DecisionTree<L,
double>::Choice::apply_fC_op_gL( Cache& cache, const Leaf& gL, Mul op) const {
Ptr h(new Choice(label(), cardinality()));
for(const NodePtr& branch: branches_)
h->push_back(branch->apply_f_op_g(cache, gL, op));
@ -72,9 +73,9 @@ void dot(const T&f, const string& filename) {
}
*/
/* ******************************************************************************** */
/* ************************************************************************** */
// instrumented operators
/* ******************************************************************************** */
/* ************************************************************************** */
size_t muls = 0, adds = 0;
double elapsed;
void resetCounts() {
@ -83,8 +84,9 @@ void resetCounts() {
}
void printCounts(const string& s) {
#ifndef DISABLE_TIMING
cout << boost::format("%s: %3d muls, %3d adds, %g ms.") % s % muls % adds
% (1000 * elapsed) << endl;
cout << boost::format("%s: %3d muls, %3d adds, %g ms.") % s % muls % adds %
(1000 * elapsed)
<< endl;
#endif
resetCounts();
}
@ -97,12 +99,11 @@ double add_(const double& a, const double& b) {
return a + b;
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test ADT
TEST(ADT, example3)
{
TEST(ADT, example3) {
// Create labels
DiscreteKey A(0,2), B(1,2), C(2,2), D(3,2), E(4,2);
DiscreteKey A(0, 2), B(1, 2), C(2, 2), D(3, 2), E(4, 2);
// Literals
ADT a(A, 0.5, 0.5);
@ -114,22 +115,21 @@ TEST(ADT, example3)
ADT cnotb = c * notb;
dot(cnotb, "ADT-cnotb");
// a.print("a: ");
// cnotb.print("cnotb: ");
// a.print("a: ");
// cnotb.print("cnotb: ");
ADT acnotb = a * cnotb;
// acnotb.print("acnotb: ");
// acnotb.printCache("acnotb Cache:");
// acnotb.print("acnotb: ");
// acnotb.printCache("acnotb Cache:");
dot(acnotb, "ADT-acnotb");
ADT big = apply(apply(d, note, &mul), acnotb, &add_);
dot(big, "ADT-big");
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Asia Bayes Network
/* ******************************************************************************** */
/* ************************************************************************** */
/** Convert Signature into CPT */
ADT create(const Signature& signature) {
@ -143,9 +143,9 @@ ADT create(const Signature& signature) {
/* ************************************************************************* */
// test Asia Joint
TEST(ADT, joint)
{
DiscreteKey A(0, 2), S(1, 2), T(2, 2), L(3, 2), B(4, 2), E(5, 2), X(6, 2), D(7, 2);
TEST(ADT, joint) {
DiscreteKey A(0, 2), S(1, 2), T(2, 2), L(3, 2), B(4, 2), E(5, 2), X(6, 2),
D(7, 2);
resetCounts();
gttic_(asiaCPTs);
@ -204,10 +204,9 @@ TEST(ADT, joint)
/* ************************************************************************* */
// test Inference with joint
TEST(ADT, inference)
{
DiscreteKey A(0,2), D(1,2),//
B(2,2), L(3,2), E(4,2), S(5,2), T(6,2), X(7,2);
TEST(ADT, inference) {
DiscreteKey A(0, 2), D(1, 2), //
B(2, 2), L(3, 2), E(4, 2), S(5, 2), T(6, 2), X(7, 2);
resetCounts();
gttic_(infCPTs);
@ -271,9 +270,8 @@ TEST(ADT, inference)
}
/* ************************************************************************* */
TEST(ADT, factor_graph)
{
DiscreteKey B(0,2), L(1,2), E(2,2), S(3,2), T(4,2), X(5,2);
TEST(ADT, factor_graph) {
DiscreteKey B(0, 2), L(1, 2), E(2, 2), S(3, 2), T(4, 2), X(5, 2);
resetCounts();
gttic_(createCPTs);
@ -403,13 +401,14 @@ TEST(ADT, factor_graph)
/* ************************************************************************* */
// test equality
TEST(ADT, equality_noparser)
{
DiscreteKey A(0,2), B(1,2);
TEST(ADT, equality_noparser) {
DiscreteKey A(0, 2), B(1, 2);
Signature::Table tableA, tableB;
Signature::Row rA, rB;
rA += 80, 20; rB += 60, 40;
tableA += rA; tableB += rB;
rA += 80, 20;
rB += 60, 40;
tableA += rA;
tableB += rB;
// Check straight equality
ADT pA1 = create(A % tableA);
@ -425,9 +424,8 @@ TEST(ADT, equality_noparser)
/* ************************************************************************* */
// test equality
TEST(ADT, equality_parser)
{
DiscreteKey A(0,2), B(1,2);
TEST(ADT, equality_parser) {
DiscreteKey A(0, 2), B(1, 2);
// Check straight equality
ADT pA1 = create(A % "80/20");
ADT pA2 = create(A % "80/20");
@ -440,12 +438,11 @@ TEST(ADT, equality_parser)
EXPECT(pAB2.equals(pAB1));
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Factor graph construction
// test constructor from strings
TEST(ADT, constructor)
{
DiscreteKey v0(0,2), v1(1,3);
TEST(ADT, constructor) {
DiscreteKey v0(0, 2), v1(1, 3);
DiscreteValues x00, x01, x02, x10, x11, x12;
x00[0] = 0, x00[1] = 0;
x01[0] = 0, x01[1] = 1;
@ -470,11 +467,10 @@ TEST(ADT, constructor)
EXPECT_DOUBLES_EQUAL(3, f2(x11), 1e-9);
EXPECT_DOUBLES_EQUAL(5, f2(x12), 1e-9);
DiscreteKey z0(0,5), z1(1,4), z2(2,3), z3(3,2);
DiscreteKey z0(0, 5), z1(1, 4), z2(2, 3), z3(3, 2);
vector<double> table(5 * 4 * 3 * 2);
double x = 0;
for(double& t: table)
t = x++;
for (double& t : table) t = x++;
ADT f3(z0 & z1 & z2 & z3, table);
DiscreteValues assignment;
assignment[0] = 0;
@ -487,9 +483,8 @@ TEST(ADT, constructor)
/* ************************************************************************* */
// test conversion to integer indices
// Only works if DiscreteKeys are binary, as size_t has binary cardinality!
TEST(ADT, conversion)
{
DiscreteKey X(0,2), Y(1,2);
TEST(ADT, conversion) {
DiscreteKey X(0, 2), Y(1, 2);
ADT fDiscreteKey(X & Y, "0.2 0.5 0.3 0.6");
dot(fDiscreteKey, "conversion-f1");
@ -513,11 +508,10 @@ TEST(ADT, conversion)
EXPECT_DOUBLES_EQUAL(0.6, fIndexKey(x11), 1e-9);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test operations in elimination
TEST(ADT, elimination)
{
DiscreteKey A(0,2), B(1,3), C(2,2);
TEST(ADT, elimination) {
DiscreteKey A(0, 2), B(1, 3), C(2, 2);
ADT f1(A & B & C, "1 2 3 4 5 6 1 8 3 3 5 5");
dot(f1, "elimination-f1");
@ -525,7 +519,7 @@ TEST(ADT, elimination)
// sum out lower key
ADT actualSum = f1.sum(C);
ADT expectedSum(A & B, "3 7 11 9 6 10");
CHECK(assert_equal(expectedSum,actualSum));
CHECK(assert_equal(expectedSum, actualSum));
// normalize
ADT actual = f1 / actualSum;
@ -533,14 +527,14 @@ TEST(ADT, elimination)
cpt += 1.0 / 3, 2.0 / 3, 3.0 / 7, 4.0 / 7, 5.0 / 11, 6.0 / 11, //
1.0 / 9, 8.0 / 9, 3.0 / 6, 3.0 / 6, 5.0 / 10, 5.0 / 10;
ADT expected(A & B & C, cpt);
CHECK(assert_equal(expected,actual));
CHECK(assert_equal(expected, actual));
}
{
// sum out lower 2 keys
ADT actualSum = f1.sum(C).sum(B);
ADT expectedSum(A, 21, 25);
CHECK(assert_equal(expectedSum,actualSum));
CHECK(assert_equal(expectedSum, actualSum));
// normalize
ADT actual = f1 / actualSum;
@ -548,15 +542,14 @@ TEST(ADT, elimination)
cpt += 1.0 / 21, 2.0 / 21, 3.0 / 21, 4.0 / 21, 5.0 / 21, 6.0 / 21, //
1.0 / 25, 8.0 / 25, 3.0 / 25, 3.0 / 25, 5.0 / 25, 5.0 / 25;
ADT expected(A & B & C, cpt);
CHECK(assert_equal(expected,actual));
CHECK(assert_equal(expected, actual));
}
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Test non-commutative op
TEST(ADT, div)
{
DiscreteKey A(0,2), B(1,2);
TEST(ADT, div) {
DiscreteKey A(0, 2), B(1, 2);
// Literals
ADT a(A, 8, 16);
@ -567,11 +560,10 @@ TEST(ADT, div)
EXPECT(assert_equal(expected_b_div_a, b / a));
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test zero shortcut
TEST(ADT, zero)
{
DiscreteKey A(0,2), B(1,2);
TEST(ADT, zero) {
DiscreteKey A(0, 2), B(1, 2);
// Literals
ADT a(A, 0, 1);

View File

@ -24,21 +24,21 @@ using namespace boost::assign;
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/Signature.h>
//#define DT_DEBUG_MEMORY
//#define DT_NO_PRUNING
// #define DT_DEBUG_MEMORY
// #define DT_NO_PRUNING
#define DISABLE_DOT
#include <gtsam/discrete/DecisionTree-inl.h>
using namespace std;
using namespace gtsam;
template<typename T>
void dot(const T&f, const string& filename) {
template <typename T>
void dot(const T& f, const string& filename) {
#ifndef DISABLE_DOT
f.dot(filename);
#endif
}
#define DOT(x)(dot(x,#x))
#define DOT(x) (dot(x, #x))
struct Crazy {
int a;
@ -65,14 +65,15 @@ struct CrazyDecisionTree : public DecisionTree<string, Crazy> {
// traits
namespace gtsam {
template<> struct traits<CrazyDecisionTree> : public Testable<CrazyDecisionTree> {};
}
template <>
struct traits<CrazyDecisionTree> : public Testable<CrazyDecisionTree> {};
} // namespace gtsam
GTSAM_CONCEPT_TESTABLE_INST(CrazyDecisionTree)
/* ******************************************************************************** */
/* ************************************************************************** */
// Test string labels and int range
/* ******************************************************************************** */
/* ************************************************************************** */
struct DT : public DecisionTree<string, int> {
using Base = DecisionTree<string, int>;
@ -98,30 +99,21 @@ struct DT : public DecisionTree<string, int> {
// traits
namespace gtsam {
template<> struct traits<DT> : public Testable<DT> {};
}
template <>
struct traits<DT> : public Testable<DT> {};
} // namespace gtsam
GTSAM_CONCEPT_TESTABLE_INST(DT)
struct Ring {
static inline int zero() {
return 0;
}
static inline int one() {
return 1;
}
static inline int id(const int& a) {
return a;
}
static inline int add(const int& a, const int& b) {
return a + b;
}
static inline int mul(const int& a, const int& b) {
return a * b;
}
static inline int zero() { return 0; }
static inline int one() { return 1; }
static inline int id(const int& a) { return a; }
static inline int add(const int& a, const int& b) { return a + b; }
static inline int mul(const int& a, const int& b) { return a * b; }
};
/* ******************************************************************************** */
/* ************************************************************************** */
// test DT
TEST(DecisionTree, example) {
// Create labels
@ -139,20 +131,20 @@ TEST(DecisionTree, example) {
// A
DT a(A, 0, 5);
LONGS_EQUAL(0,a(x00))
LONGS_EQUAL(5,a(x10))
LONGS_EQUAL(0, a(x00))
LONGS_EQUAL(5, a(x10))
DOT(a);
// pruned
DT p(A, 2, 2);
LONGS_EQUAL(2,p(x00))
LONGS_EQUAL(2,p(x10))
LONGS_EQUAL(2, p(x00))
LONGS_EQUAL(2, p(x10))
DOT(p);
// \neg B
DT notb(B, 5, 0);
LONGS_EQUAL(5,notb(x00))
LONGS_EQUAL(5,notb(x10))
LONGS_EQUAL(5, notb(x00))
LONGS_EQUAL(5, notb(x10))
DOT(notb);
// Check supplying empty trees yields an exception
@ -162,34 +154,34 @@ TEST(DecisionTree, example) {
// apply, two nodes, in natural order
DT anotb = apply(a, notb, &Ring::mul);
LONGS_EQUAL(0,anotb(x00))
LONGS_EQUAL(0,anotb(x01))
LONGS_EQUAL(25,anotb(x10))
LONGS_EQUAL(0,anotb(x11))
LONGS_EQUAL(0, anotb(x00))
LONGS_EQUAL(0, anotb(x01))
LONGS_EQUAL(25, anotb(x10))
LONGS_EQUAL(0, anotb(x11))
DOT(anotb);
// check pruning
DT pnotb = apply(p, notb, &Ring::mul);
LONGS_EQUAL(10,pnotb(x00))
LONGS_EQUAL( 0,pnotb(x01))
LONGS_EQUAL(10,pnotb(x10))
LONGS_EQUAL( 0,pnotb(x11))
LONGS_EQUAL(10, pnotb(x00))
LONGS_EQUAL(0, pnotb(x01))
LONGS_EQUAL(10, pnotb(x10))
LONGS_EQUAL(0, pnotb(x11))
DOT(pnotb);
// check pruning
DT zeros = apply(DT(A, 0, 0), notb, &Ring::mul);
LONGS_EQUAL(0,zeros(x00))
LONGS_EQUAL(0,zeros(x01))
LONGS_EQUAL(0,zeros(x10))
LONGS_EQUAL(0,zeros(x11))
LONGS_EQUAL(0, zeros(x00))
LONGS_EQUAL(0, zeros(x01))
LONGS_EQUAL(0, zeros(x10))
LONGS_EQUAL(0, zeros(x11))
DOT(zeros);
// apply, two nodes, in switched order
DT notba = apply(a, notb, &Ring::mul);
LONGS_EQUAL(0,notba(x00))
LONGS_EQUAL(0,notba(x01))
LONGS_EQUAL(25,notba(x10))
LONGS_EQUAL(0,notba(x11))
LONGS_EQUAL(0, notba(x00))
LONGS_EQUAL(0, notba(x01))
LONGS_EQUAL(25, notba(x10))
LONGS_EQUAL(0, notba(x11))
DOT(notba);
// Test choose 0
@ -204,10 +196,10 @@ TEST(DecisionTree, example) {
// apply, two nodes at same level
DT a_and_a = apply(a, a, &Ring::mul);
LONGS_EQUAL(0,a_and_a(x00))
LONGS_EQUAL(0,a_and_a(x01))
LONGS_EQUAL(25,a_and_a(x10))
LONGS_EQUAL(25,a_and_a(x11))
LONGS_EQUAL(0, a_and_a(x00))
LONGS_EQUAL(0, a_and_a(x01))
LONGS_EQUAL(25, a_and_a(x10))
LONGS_EQUAL(25, a_and_a(x11))
DOT(a_and_a);
// create a function on C
@ -219,16 +211,16 @@ TEST(DecisionTree, example) {
// mul notba with C
DT notbac = apply(notba, c, &Ring::mul);
LONGS_EQUAL(125,notbac(x101))
LONGS_EQUAL(125, notbac(x101))
DOT(notbac);
// mul now in different order
DT acnotb = apply(apply(a, c, &Ring::mul), notb, &Ring::mul);
LONGS_EQUAL(125,acnotb(x101))
LONGS_EQUAL(125, acnotb(x101))
DOT(acnotb);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test Conversion of values
bool bool_of_int(const int& y) { return y != 0; };
typedef DecisionTree<string, bool> StringBoolTree;
@ -249,11 +241,9 @@ TEST(DecisionTree, ConvertValuesOnly) {
EXPECT(!f2(x00));
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test Conversion of both values and labels.
enum Label {
U, V, X, Y, Z
};
enum Label { U, V, X, Y, Z };
typedef DecisionTree<Label, bool> LabelBoolTree;
TEST(DecisionTree, ConvertBoth) {
@ -281,7 +271,7 @@ TEST(DecisionTree, ConvertBoth) {
EXPECT(!f2(x11));
}
/* ******************************************************************************** */
/* ************************************************************************** */
// test Compose expansion
TEST(DecisionTree, Compose) {
// Create labels
@ -292,7 +282,7 @@ TEST(DecisionTree, Compose) {
// Create from string
vector<DT::LabelC> keys;
keys += DT::LabelC(A,2), DT::LabelC(B,2);
keys += DT::LabelC(A, 2), DT::LabelC(B, 2);
DT f2(keys, "0 2 1 3");
EXPECT(assert_equal(f2, f1, 1e-9));
@ -302,13 +292,13 @@ TEST(DecisionTree, Compose) {
DOT(f4);
// a bigger tree
keys += DT::LabelC(C,2);
keys += DT::LabelC(C, 2);
DT f5(keys, "0 4 2 6 1 5 3 7");
EXPECT(assert_equal(f5, f4, 1e-9));
DOT(f5);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Check we can create a decision tree of containers.
TEST(DecisionTree, Containers) {
using Container = std::vector<double>;
@ -318,7 +308,7 @@ TEST(DecisionTree, Containers) {
StringContainerTree tree;
// Create small two-level tree
string A("A"), B("B"), C("C");
string A("A"), B("B");
DT stringIntTree(B, DT(A, 0, 1), DT(A, 2, 3));
// Check conversion
@ -330,11 +320,11 @@ TEST(DecisionTree, Containers) {
StringContainerTree converted(stringIntTree, container_of_int);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Test visit.
TEST(DecisionTree, visit) {
// Create small two-level tree
string A("A"), B("B"), C("C");
string A("A"), B("B");
DT tree(B, DT(A, 0, 1), DT(A, 2, 3));
double sum = 0.0;
auto visitor = [&](int y) { sum += y; };
@ -342,11 +332,11 @@ TEST(DecisionTree, visit) {
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Test visit, with Choices argument.
TEST(DecisionTree, visitWith) {
// Create small two-level tree
string A("A"), B("B"), C("C");
string A("A"), B("B");
DT tree(B, DT(A, 0, 1), DT(A, 2, 3));
double sum = 0.0;
auto visitor = [&](const Assignment<string>& choices, int y) { sum += y; };
@ -354,29 +344,29 @@ TEST(DecisionTree, visitWith) {
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9);
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Test fold.
TEST(DecisionTree, fold) {
// Create small two-level tree
string A("A"), B("B"), C("C");
DT tree(B, DT(A, 0, 1), DT(A, 2, 3));
string A("A"), B("B");
DT tree(B, DT(A, 1, 1), DT(A, 2, 3));
auto add = [](const int& y, double x) { return y + x; };
double sum = tree.fold(add, 0.0);
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9);
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9); // Note, not 7, due to pruning!
}
/* ******************************************************************************** */
/* ************************************************************************** */
// Test retrieving all labels.
TEST(DecisionTree, labels) {
// Create small two-level tree
string A("A"), B("B"), C("C");
string A("A"), B("B");
DT tree(B, DT(A, 0, 1), DT(A, 2, 3));
auto labels = tree.labels();
EXPECT_LONGS_EQUAL(2, labels.size());
}
/* ******************************************************************************** */
// Test retrieving all labels.
/* ************************************************************************** */
// Test unzip method.
TEST(DecisionTree, unzip) {
using DTP = DecisionTree<string, std::pair<int, string>>;
using DT1 = DecisionTree<string, int>;
@ -384,10 +374,8 @@ TEST(DecisionTree, unzip) {
// Create small two-level tree
string A("A"), B("B"), C("C");
DTP tree(B,
DTP(A, {0, "zero"}, {1, "one"}),
DTP(A, {2, "two"}, {1337, "l33t"})
);
DTP tree(B, DTP(A, {0, "zero"}, {1, "one"}),
DTP(A, {2, "two"}, {1337, "l33t"}));
DT1 dt1;
DT2 dt2;
@ -400,6 +388,29 @@ TEST(DecisionTree, unzip) {
EXPECT(tree2.equals(dt2));
}
/* ************************************************************************** */
// Test thresholding.
TEST(DecisionTree, threshold) {
// Create three level tree
vector<DT::LabelC> keys;
keys += DT::LabelC("C", 2), DT::LabelC("B", 2), DT::LabelC("A", 2);
DT tree(keys, "0 1 2 3 4 5 6 7");
// Check number of leaves equal to zero
auto count = [](const int& value, int count) {
return value == 0 ? count + 1 : count;
};
EXPECT_LONGS_EQUAL(1, tree.fold(count, 0));
// Now threshold
auto threshold = [](int value) { return value < 5 ? 0 : value; };
DT thresholded(tree, threshold);
// Check number of leaves equal to zero now = 2
// Note: it is 2, because the pruned branches are counted as 1!
EXPECT_LONGS_EQUAL(2, thresholded.fold(count, 0));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -191,20 +191,36 @@ TEST(DiscreteConditional, marginals) {
DiscreteConditional prior(B % "1/2");
DiscreteConditional pAB = prior * conditional;
// P(A=0) = P(A=0|B=0)P(B=0) + P(A=0|B=1)P(B=1) = 1*1 + 2*2 = 5
// P(A=1) = P(A=1|B=0)P(B=0) + P(A=1|B=1)P(B=1) = 2*1 + 1*2 = 4
DiscreteConditional actualA = pAB.marginal(A.first);
DiscreteConditional pA(A % "5/4");
EXPECT(assert_equal(pA, actualA));
EXPECT_LONGS_EQUAL(1, actualA.nrFrontals());
EXPECT(actualA.frontals() == KeyVector{1});
EXPECT_LONGS_EQUAL(0, actualA.nrParents());
KeyVector frontalsA(actualA.beginFrontals(), actualA.endFrontals());
EXPECT((frontalsA == KeyVector{1}));
DiscreteConditional actualB = pAB.marginal(B.first);
EXPECT(assert_equal(prior, actualB));
EXPECT_LONGS_EQUAL(1, actualB.nrFrontals());
EXPECT(actualB.frontals() == KeyVector{0});
EXPECT_LONGS_EQUAL(0, actualB.nrParents());
KeyVector frontalsB(actualB.beginFrontals(), actualB.endFrontals());
EXPECT((frontalsB == KeyVector{0}));
}
/* ************************************************************************* */
// Check calculation of marginals in case branches are pruned
TEST(DiscreteConditional, marginals2) {
DiscreteKey A(0, 2), B(1, 2); // changing keys need to make pruning happen!
DiscreteConditional conditional(A | B = "2/2 3/1");
DiscreteConditional prior(B % "1/2");
DiscreteConditional pAB = prior * conditional;
GTSAM_PRINT(pAB);
// P(A=0) = P(A=0|B=0)P(B=0) + P(A=0|B=1)P(B=1) = 2*1 + 3*2 = 8
// P(A=1) = P(A=1|B=0)P(B=0) + P(A=1|B=1)P(B=1) = 2*1 + 1*2 = 4
DiscreteConditional actualA = pAB.marginal(A.first);
DiscreteConditional pA(A % "8/4");
EXPECT(assert_equal(pA, actualA));
DiscreteConditional actualB = pAB.marginal(B.first);
EXPECT(assert_equal(prior, actualB));
}
/* ************************************************************************* */