Change to using nullptr
parent
866d6b1fa1
commit
3638b3745f
|
@ -19,13 +19,36 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/*
|
||||
* Calculates the unwhitened error by invoking the callback functor (i.e. from Python).
|
||||
*/
|
||||
Vector CustomFactor::unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H) const {
|
||||
if(this->active(x)) {
|
||||
if(H) {
|
||||
/*
|
||||
* In this case, we pass the raw pointer to the `std::vector<Matrix>` object directly to pybind.
|
||||
* As the type `std::vector<Matrix>` has been marked as opaque in `preamble.h`, any changes in
|
||||
* Python will be immediately reflected on the C++ side.
|
||||
*
|
||||
* Example:
|
||||
* ```
|
||||
* def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
* <calculated error>
|
||||
* if not H is None:
|
||||
* <calculate the Jacobian>
|
||||
* H[0] = J1
|
||||
* H[1] = J2
|
||||
* ...
|
||||
* return error
|
||||
* ```
|
||||
*/
|
||||
return this->errorFunction(*this, x, H.get_ptr());
|
||||
} else {
|
||||
JacobianVector dummy;
|
||||
return this->errorFunction(*this, x, &dummy);
|
||||
/*
|
||||
* In this case, we pass the a `nullptr` to pybind, and it will translated to `None` in Python.
|
||||
* Users can check for `None` in their callback to determine if the Jacobian is requested.
|
||||
*/
|
||||
return this->errorFunction(*this, x, nullptr);
|
||||
}
|
||||
} else {
|
||||
return Vector::Zero(this->dim());
|
||||
|
|
|
@ -17,10 +17,9 @@ import numpy as np
|
|||
import gtsam
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
|
||||
class TestCustomFactor(GtsamTestCase):
|
||||
|
||||
def test_new(self):
|
||||
"""Test the creation of a new CustomFactor"""
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
|
@ -28,7 +27,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
cf = CustomFactor(noise_model, gtsam.KeyVector([0]), error_func)
|
||||
|
||||
def test_call(self):
|
||||
|
||||
"""Test if calling the factor works (only error)"""
|
||||
expected_pose = Pose2(1, 1, 0)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]) -> np.ndarray:
|
||||
|
@ -53,14 +52,18 @@ class TestCustomFactor(GtsamTestCase):
|
|||
expected = Pose2(2, 2, np.pi/2)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
# print(f"{this = },\n{v = },\n{len(H) = }")
|
||||
"""
|
||||
the custom error function. One can freely use variables captured
|
||||
from the outside scope. Or the variables can be acquired by indexing `v`.
|
||||
Jacobian is passed by modifying the H array of numpy matrices.
|
||||
"""
|
||||
|
||||
key0 = this.keys()[0]
|
||||
key1 = this.keys()[1]
|
||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||
error = Pose2(0, 0, 0).localCoordinates(gT1.between(gT2))
|
||||
|
||||
if len(H) > 0:
|
||||
if not H is None:
|
||||
result = gT1.between(gT2)
|
||||
H[0] = -result.inverse().AdjointMap()
|
||||
H[1] = np.eye(3)
|
||||
|
@ -82,5 +85,41 @@ class TestCustomFactor(GtsamTestCase):
|
|||
np.testing.assert_allclose(J_cf, J_bf)
|
||||
np.testing.assert_allclose(b_cf, b_bf)
|
||||
|
||||
def test_no_jacobian(self):
|
||||
"""Tests that we will not calculate the Jacobian if not requested"""
|
||||
|
||||
gT1 = Pose2(1, 2, np.pi/2)
|
||||
gT2 = Pose2(-1, 4, np.pi)
|
||||
|
||||
expected = Pose2(2, 2, np.pi/2)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
# print(f"{this = },\n{v = },\n{len(H) = }")
|
||||
|
||||
key0 = this.keys()[0]
|
||||
key1 = this.keys()[1]
|
||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||
error = Pose2(0, 0, 0).localCoordinates(gT1.between(gT2))
|
||||
|
||||
self.assertTrue(H is None) # Should be true if we only request the error
|
||||
|
||||
if not H is None:
|
||||
result = gT1.between(gT2)
|
||||
H[0] = -result.inverse().AdjointMap()
|
||||
H[1] = np.eye(3)
|
||||
return error
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, gtsam.KeyVector([0, 1]), error_func)
|
||||
v = Values()
|
||||
v.insert(0, gT1)
|
||||
v.insert(1, gT2)
|
||||
|
||||
bf = gtsam.BetweenFactorPose2(0, 1, Pose2(0, 0, 0), noise_model)
|
||||
|
||||
e_cf = cf.error(v)
|
||||
e_bf = bf.error(v)
|
||||
np.testing.assert_allclose(e_cf, e_bf)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue