diff --git a/gtsam/nonlinear/tests/testNonlinearConjugateGradientOptimizer.cpp b/gtsam/nonlinear/tests/testNonlinearConjugateGradientOptimizer.cpp index d7ca70459..36673c7a0 100644 --- a/gtsam/nonlinear/tests/testNonlinearConjugateGradientOptimizer.cpp +++ b/gtsam/nonlinear/tests/testNonlinearConjugateGradientOptimizer.cpp @@ -1,56 +1,52 @@ /** - * @file NonlinearConjugateGradientOptimizer.cpp - * @brief Test simple CG optimizer + * @file testNonlinearConjugateGradientOptimizer.cpp + * @brief Test nonlinear CG optimizer * @author Yong-Dian Jian + * @author Varun Agrawal * @date June 11, 2012 */ -/** - * @file testGradientDescentOptimizer.cpp - * @brief Small test of NonlinearConjugateGradientOptimizer - * @author Yong-Dian Jian - * @date Jun 11, 2012 - */ - -#include +#include +#include #include #include #include -#include - -#include - +#include using namespace std; using namespace gtsam; // Generate a small PoseSLAM problem std::tuple generateProblem() { - // 1. Create graph container and add factors to it NonlinearFactorGraph graph; // 2a. Add Gaussian prior - Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin - SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas( - Vector3(0.3, 0.3, 0.1)); + Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin + SharedDiagonal priorNoise = + noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); graph.addPrior(1, priorMean, priorNoise); // 2b. Add odometry factors - SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas( - Vector3(0.2, 0.2, 0.1)); - graph.emplace_shared>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise); - graph.emplace_shared>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise); - graph.emplace_shared>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise); - graph.emplace_shared>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise); + SharedDiagonal odometryNoise = + noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); + graph.emplace_shared>(1, 2, Pose2(2.0, 0.0, 0.0), + odometryNoise); + graph.emplace_shared>(2, 3, Pose2(2.0, 0.0, M_PI_2), + odometryNoise); + graph.emplace_shared>(3, 4, Pose2(2.0, 0.0, M_PI_2), + odometryNoise); + graph.emplace_shared>(4, 5, Pose2(2.0, 0.0, M_PI_2), + odometryNoise); // 2c. Add pose constraint - SharedDiagonal constraintUncertainty = noiseModel::Diagonal::Sigmas( - Vector3(0.2, 0.2, 0.1)); + SharedDiagonal constraintUncertainty = + noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); graph.emplace_shared>(5, 2, Pose2(2.0, 0.0, M_PI_2), - constraintUncertainty); + constraintUncertainty); - // 3. Create the data structure to hold the initialEstimate estimate to the solution + // 3. Create the data structure to hold the initialEstimate estimate to the + // solution Values initialEstimate; Pose2 x1(0.5, 0.0, 0.2); initialEstimate.insert(1, x1); @@ -68,16 +64,17 @@ std::tuple generateProblem() { /* ************************************************************************* */ TEST(NonlinearConjugateGradientOptimizer, Optimize) { -const auto [graph, initialEstimate] = generateProblem(); -// cout << "initial error = " << graph.error(initialEstimate) << endl; + const auto [graph, initialEstimate] = generateProblem(); + // cout << "initial error = " << graph.error(initialEstimate) << endl; NonlinearOptimizerParams param; - param.maxIterations = 500; /* requires a larger number of iterations to converge */ + param.maxIterations = + 500; /* requires a larger number of iterations to converge */ param.verbosity = NonlinearOptimizerParams::SILENT; NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param); Values result = optimizer.optimize(); -// cout << "cg final error = " << graph.error(result) << endl; + // cout << "cg final error = " << graph.error(result) << endl; EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4); }