add gtsam namespace
parent
3d3703441c
commit
31d174d640
|
@ -19,8 +19,6 @@
|
|||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using JacobianVector = std::vector<Matrix>;
|
||||
|
|
|
@ -99,11 +99,11 @@ class NonlinearFactorGraph {
|
|||
string dot(
|
||||
const gtsam::Values& values,
|
||||
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter,
|
||||
const GraphvizFormatting& writer = GraphvizFormatting());
|
||||
const gtsam::GraphvizFormatting& writer = gtsam::GraphvizFormatting());
|
||||
void saveGraph(
|
||||
const string& s, const gtsam::Values& values,
|
||||
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter,
|
||||
const GraphvizFormatting& writer = GraphvizFormatting()) const;
|
||||
const gtsam::GraphvizFormatting& writer = gtsam::GraphvizFormatting()) const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
|
@ -135,37 +135,6 @@ virtual class NoiseModelFactor : gtsam::NonlinearFactor {
|
|||
Vector whitenedError(const gtsam::Values& x) const;
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/CustomFactor.h>
|
||||
virtual class CustomFactor : gtsam::NoiseModelFactor {
|
||||
/*
|
||||
* Note CustomFactor will not be wrapped for MATLAB, as there is no supporting
|
||||
* machinery there. This is achieved by adding `gtsam::CustomFactor` to the
|
||||
* ignore list in `matlab/CMakeLists.txt`.
|
||||
*/
|
||||
CustomFactor();
|
||||
/*
|
||||
* Example:
|
||||
* ```
|
||||
* def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
* <calculated error>
|
||||
* if not H is None:
|
||||
* <calculate the Jacobian>
|
||||
* H[0] = J1 # 2-d numpy array for a Jacobian block
|
||||
* H[1] = J2
|
||||
* ...
|
||||
* return error # 1-d numpy array
|
||||
*
|
||||
* cf = CustomFactor(noise_model, keys, error_func)
|
||||
* ```
|
||||
*/
|
||||
CustomFactor(const gtsam::SharedNoiseModel& noiseModel,
|
||||
const gtsam::KeyVector& keys,
|
||||
const gtsam::CustomErrorFunction& errorFunction);
|
||||
|
||||
void print(string s = "",
|
||||
gtsam::KeyFormatter keyFormatter = gtsam::DefaultKeyFormatter);
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
class Values {
|
||||
Values();
|
||||
|
@ -554,7 +523,7 @@ virtual class GncParams {
|
|||
GncParams(const PARAMS& baseOptimizerParams);
|
||||
GncParams();
|
||||
BaseOptimizerParameters baseOptimizerParams;
|
||||
GncLossType lossType;
|
||||
gtsam::GncLossType lossType;
|
||||
size_t maxIterations;
|
||||
double muStep;
|
||||
double relativeCostTol;
|
||||
|
@ -563,12 +532,12 @@ virtual class GncParams {
|
|||
std::vector<size_t> knownInliers;
|
||||
std::vector<size_t> knownOutliers;
|
||||
|
||||
void setLossType(const GncLossType type);
|
||||
void setLossType(const gtsam::GncLossType type);
|
||||
void setMaxIterations(const size_t maxIter);
|
||||
void setMuStep(const double step);
|
||||
void setRelativeCostTol(double value);
|
||||
void setWeightsTol(double value);
|
||||
void setVerbosityGNC(const This::Verbosity value);
|
||||
void setVerbosityGNC(const gtsam::This::Verbosity value);
|
||||
void setKnownInliers(const std::vector<size_t>& knownIn);
|
||||
void setKnownOutliers(const std::vector<size_t>& knownOut);
|
||||
void print(const string& str = "GncParams: ") const;
|
||||
|
@ -900,7 +869,7 @@ template <T = {gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2,
|
|||
gtsam::PinholeCamera<gtsam::Cal3Unified>,
|
||||
gtsam::imuBias::ConstantBias}>
|
||||
virtual class NonlinearEquality2 : gtsam::NoiseModelFactor {
|
||||
NonlinearEquality2(Key key1, Key key2, double mu = 1e4);
|
||||
NonlinearEquality2(gtsam::Key key1, gtsam::Key key2, double mu = 1e4);
|
||||
gtsam::Vector evaluateError(const T& x1, const T& x2);
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue