fixed last test - this is good to go!
							parent
							
								
									9834042040
								
							
						
					
					
						commit
						2f03e588fc
					
				|  | @ -17,6 +17,7 @@ | |||
|  */ | ||||
| 
 | ||||
| #include <gtsam/geometry/CameraSet.h> | ||||
| #include <gtsam/geometry/Cal3_S2.h> | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <gtsam/base/numericalDerivative.h> | ||||
| #include <CppUnitLite/TestHarness.h> | ||||
|  | @ -127,89 +128,86 @@ TEST(CameraSet, Pinhole) { | |||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST(CameraSet, SchurComplementAndRearrangeBlocks) { | ||||
|   typedef PinholePose<Cal3Bundler> Camera; | ||||
|   typedef PinholePose<Cal3_S2> Camera; | ||||
|   typedef CameraSet<Camera> Set; | ||||
|   typedef Point2Vector ZZ; | ||||
| 
 | ||||
|   KeyVector nonuniqueKeys; | ||||
|   nonuniqueKeys.push_back(0); | ||||
|   nonuniqueKeys.push_back(1); | ||||
|   nonuniqueKeys.push_back(1); | ||||
|   nonuniqueKeys.push_back(2); | ||||
|   nonuniqueKeys.push_back(2); | ||||
|   nonuniqueKeys.push_back(0); | ||||
| 
 | ||||
|   KeyVector uniqueKeys; | ||||
|   uniqueKeys.push_back(0); | ||||
|   uniqueKeys.push_back(1); | ||||
|   uniqueKeys.push_back(2); | ||||
| 
 | ||||
|   // this is the (block) Jacobian with respect to the nonuniqueKeys
 | ||||
|   std::vector<Eigen::Matrix<double,2, 12>, | ||||
|             Eigen::aligned_allocator<Eigen::Matrix<double,2,12> > > Fs; | ||||
|   Fs.push_back(1 * Matrix::Ones(2,12)); // corresponding to key pair (0,1)
 | ||||
|   Fs.push_back(2 * Matrix::Ones(2,12)); // corresponding to key pair (1,2)
 | ||||
|   Fs.push_back(3 * Matrix::Ones(2,12)); // corresponding to key pair (2,0)
 | ||||
|   Matrix E = Matrix::Identity(6,3) + Matrix::Ones(6,3); | ||||
|   Matrix34 Et = E.transpose(); | ||||
|   std::vector<Eigen::Matrix<double, 2, 12>, | ||||
|       Eigen::aligned_allocator<Eigen::Matrix<double, 2, 12> > > Fs; | ||||
|   Fs.push_back(1 * Matrix::Ones(2, 12));  // corresponding to key pair (0,1)
 | ||||
|   Fs.push_back(2 * Matrix::Ones(2, 12));  // corresponding to key pair (1,2)
 | ||||
|   Fs.push_back(3 * Matrix::Ones(2, 12));  // corresponding to key pair (2,0)
 | ||||
|   Matrix E = 4 * Matrix::Identity(6, 3) + Matrix::Ones(6, 3); | ||||
|   E(0, 0) = 3; | ||||
|   E(1, 1) = 2; | ||||
|   E(2, 2) = 5; | ||||
|   Matrix Et = E.transpose(); | ||||
|   Matrix P = (Et * E).inverse(); | ||||
|   Vector b = 5*Vector::Ones(6); | ||||
|   Vector b = 5 * Vector::Ones(6); | ||||
| 
 | ||||
| //  { // SchurComplement
 | ||||
| //  // Actual
 | ||||
| //  SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplement<3,12>(Fs,E,P,b);
 | ||||
| //  Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
 | ||||
| //
 | ||||
| //  // Expected
 | ||||
| //  Matrix F = Matrix::Zero(6,3*12);
 | ||||
| //  F.block<2,12>(0,0) = Fs[0];
 | ||||
| //  F.block<2,12>(2,12) = Fs[1];
 | ||||
| //  F.block<2,12>(4,24) = Fs[2];
 | ||||
| //
 | ||||
| //  std::cout << "E \n" << E << std::endl;
 | ||||
| //  std::cout << "P \n" << P << std::endl;
 | ||||
| //  std::cout << "F \n" << F << std::endl;
 | ||||
| //
 | ||||
| //  Matrix Ft = F.transpose();
 | ||||
| //  Matrix H = Ft * F - Ft * E * P * Et * F;
 | ||||
| //  Vector v = Ft * (b - E * P * Et * b);
 | ||||
| //  Matrix expectedAugmentedHessian = Matrix::Zero(3*12+1, 3*12+1);
 | ||||
| //  expectedAugmentedHessian.block<36,36>(0,0) = H;
 | ||||
| //  expectedAugmentedHessian.block<36,1>(0,36) = v;
 | ||||
| //  expectedAugmentedHessian.block<1,36>(36,0) = v.transpose();
 | ||||
| //  expectedAugmentedHessian(36,36) = b.squaredNorm();
 | ||||
| //
 | ||||
| //  EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
 | ||||
| //  }
 | ||||
|   {  // SchurComplement
 | ||||
|      // Actual
 | ||||
|     SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplement<3, 12>(Fs, E, | ||||
|                                                                           P, b); | ||||
|     Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView(); | ||||
| 
 | ||||
| //  { // SchurComplementAndRearrangeBlocks
 | ||||
| //  // Actual
 | ||||
| //  SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplementAndRearrangeBlocks<3,12,6>(
 | ||||
| //        Fs,E,P,b,nonuniqueKeys,uniqueKeys);
 | ||||
| //  Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
 | ||||
| //
 | ||||
| //  // Expected
 | ||||
| //  // we first need to build the Jacobian F according to unique keys
 | ||||
| //  Matrix F = Matrix::Zero(6,18);
 | ||||
| //  F.block<2,6>(0,0) = Fs[0].block<2,6>(0,0);
 | ||||
| //  F.block<2,6>(0,6) = Fs[0].block<2,6>(0,6);
 | ||||
| //  F.block<2,6>(2,6) = Fs[1].block<2,6>(0,0);
 | ||||
| //  F.block<2,6>(2,12) = Fs[1].block<2,6>(0,6);
 | ||||
| //  F.block<2,6>(4,12) = Fs[2].block<2,6>(0,0);
 | ||||
| //  F.block<2,6>(4,0)  = Fs[2].block<2,6>(0,6);
 | ||||
| //
 | ||||
| //  std::cout << "P \n" << P << std::endl;
 | ||||
| //  std::cout << "F \n" << F << std::endl;
 | ||||
| //
 | ||||
| //  Matrix Ft = F.transpose();
 | ||||
| //  Matrix34 Et = E.transpose();
 | ||||
| //  Vector v = Ft * (b - E * P * Et * b);
 | ||||
| //  Matrix H = Ft * F - Ft * E * P * Et * F;
 | ||||
| //  Matrix expectedAugmentedHessian(19, 19);
 | ||||
| //  expectedAugmentedHessian << H, v, v.transpose(), b.squaredNorm();
 | ||||
| //
 | ||||
| //  EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
 | ||||
| //  }
 | ||||
|     // Expected
 | ||||
|     Matrix F = Matrix::Zero(6, 3 * 12); | ||||
|     F.block<2, 12>(0, 0) = 1 * Matrix::Ones(2, 12); | ||||
|     F.block<2, 12>(2, 12) = 2 * Matrix::Ones(2, 12); | ||||
|     F.block<2, 12>(4, 24) = 3 * Matrix::Ones(2, 12); | ||||
| 
 | ||||
|     Matrix Ft = F.transpose(); | ||||
|     Matrix H = Ft * F - Ft * E * P * Et * F; | ||||
|     Vector v = Ft * (b - E * P * Et * b); | ||||
|     Matrix expectedAugmentedHessian = Matrix::Zero(3 * 12 + 1, 3 * 12 + 1); | ||||
|     expectedAugmentedHessian.block<36, 36>(0, 0) = H; | ||||
|     expectedAugmentedHessian.block<36, 1>(0, 36) = v; | ||||
|     expectedAugmentedHessian.block<1, 36>(36, 0) = v.transpose(); | ||||
|     expectedAugmentedHessian(36, 36) = b.squaredNorm(); | ||||
| 
 | ||||
|     EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian)); | ||||
|   } | ||||
| 
 | ||||
|   {  // SchurComplementAndRearrangeBlocks
 | ||||
|     KeyVector nonuniqueKeys; | ||||
|     nonuniqueKeys.push_back(0); | ||||
|     nonuniqueKeys.push_back(1); | ||||
|     nonuniqueKeys.push_back(1); | ||||
|     nonuniqueKeys.push_back(2); | ||||
|     nonuniqueKeys.push_back(2); | ||||
|     nonuniqueKeys.push_back(0); | ||||
| 
 | ||||
|     KeyVector uniqueKeys; | ||||
|     uniqueKeys.push_back(0); | ||||
|     uniqueKeys.push_back(1); | ||||
|     uniqueKeys.push_back(2); | ||||
| 
 | ||||
|     // Actual
 | ||||
|     SymmetricBlockMatrix augmentedHessianBM = | ||||
|         Set::SchurComplementAndRearrangeBlocks<3, 12, 6>(Fs, E, P, b, | ||||
|                                                          nonuniqueKeys, | ||||
|                                                          uniqueKeys); | ||||
|     Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView(); | ||||
| 
 | ||||
|     // Expected
 | ||||
|     // we first need to build the Jacobian F according to unique keys
 | ||||
|     Matrix F = Matrix::Zero(6, 18); | ||||
|     F.block<2, 6>(0, 0) = Fs[0].block<2, 6>(0, 0); | ||||
|     F.block<2, 6>(0, 6) = Fs[0].block<2, 6>(0, 6); | ||||
|     F.block<2, 6>(2, 6) = Fs[1].block<2, 6>(0, 0); | ||||
|     F.block<2, 6>(2, 12) = Fs[1].block<2, 6>(0, 6); | ||||
|     F.block<2, 6>(4, 12) = Fs[2].block<2, 6>(0, 0); | ||||
|     F.block<2, 6>(4, 0) = Fs[2].block<2, 6>(0, 6); | ||||
| 
 | ||||
|     Matrix Ft = F.transpose(); | ||||
|     Vector v = Ft * (b - E * P * Et * b); | ||||
|     Matrix H = Ft * F - Ft * E * P * Et * F; | ||||
|     Matrix expectedAugmentedHessian(19, 19); | ||||
|     expectedAugmentedHessian << H, v, v.transpose(), b.squaredNorm(); | ||||
| 
 | ||||
|     EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian)); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue