Modernize ExmapTranslation
parent
b11387167d
commit
2aa36d4f7a
|
@ -164,22 +164,22 @@ Pose3 Pose3::interpolateRt(const Pose3& T, double t) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** Modified from Murray94book version (which assumes w and v normalized?) */
|
||||
Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi) {
|
||||
// Get angular velocity omega and translational velocity v from twist xi
|
||||
const Vector3 w = xi.head<3>(), v = xi.tail<3>();
|
||||
|
||||
// Compute rotation using Expmap
|
||||
Matrix3 Jw;
|
||||
Rot3 R = Rot3::Expmap(w, Hxi ? &Jw : nullptr);
|
||||
Matrix3 Jr;
|
||||
Rot3 R = Rot3::Expmap(w, Hxi ? &Jr : nullptr);
|
||||
|
||||
// Compute translation and optionally its Jacobian in w
|
||||
// Compute translation and optionally its Jacobian Q in w
|
||||
// The Jacobian in v is the right Jacobian Jr of SO(3), which we already have.
|
||||
Matrix3 Q;
|
||||
const Vector3 t = ExpmapTranslation(w, v, Hxi ? &Q : nullptr, R);
|
||||
const Vector3 t = ExpmapTranslation(w, v, Hxi ? &Q : nullptr);
|
||||
|
||||
if (Hxi) {
|
||||
*Hxi << Jw, Z_3x3,
|
||||
Q, Jw;
|
||||
*Hxi << Jr, Z_3x3, //
|
||||
Q, Jr;
|
||||
}
|
||||
|
||||
return Pose3(R, t);
|
||||
|
@ -251,35 +251,39 @@ Matrix3 Pose3::ComputeQforExpmapDerivative(const Vector6& xi,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// NOTE(Frank): t = applyLeftJacobian(v) does the same as the intuitive formulas
|
||||
// t_parallel = w * w.dot(v); // translation parallel to axis
|
||||
// w_cross_v = w.cross(v); // translation orthogonal to axis
|
||||
// t = (w_cross_v - Rot3::Expmap(w) * w_cross_v + t_parallel) / theta2;
|
||||
// but functor does not need R, deals automatically with the case where theta2
|
||||
// is near zero, and also gives us the machinery for the Jacobians.
|
||||
Vector3 Pose3::ExpmapTranslation(const Vector3& w, const Vector3& v,
|
||||
OptionalJacobian<3, 3> Q,
|
||||
const std::optional<Rot3>& R,
|
||||
OptionalJacobian<3, 3> J,
|
||||
double nearZeroThreshold) {
|
||||
const double theta2 = w.dot(w);
|
||||
bool nearZero = (theta2 <= nearZeroThreshold);
|
||||
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
so3::DexpFunctor local(w, nearZero);
|
||||
|
||||
// Call applyLeftJacobian which is faster than local.leftJacobian() * v if you
|
||||
// don't need Jacobians, and returns Jacobian of t with respect to w if asked.
|
||||
Matrix3 H;
|
||||
Vector t = local.applyLeftJacobian(v, Q ? &H : nullptr);
|
||||
|
||||
// We return Jacobians for use in Expmap, so we multiply with X, that
|
||||
// translates from left to right for our right expmap convention:
|
||||
if (Q) {
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
so3::DexpFunctor local(w, nearZero);
|
||||
// X translate from left to right for our right expmap convention:
|
||||
Matrix3 X = local.rightJacobian() * local.leftJacobianInverse();
|
||||
Matrix3 H;
|
||||
Vector t = local.applyLeftJacobian(v, H);
|
||||
*Q = X * H;
|
||||
return t;
|
||||
} else if (nearZero) {
|
||||
// (I_3x3 + B * W + C * WW) * v with B->0.5, C->1/6
|
||||
Vector3 Wv = w.cross(v);
|
||||
return v + 0.5 * Wv + w.cross(Wv) * so3::DexpFunctor::one_sixth;
|
||||
} else {
|
||||
// NOTE(Frank): if Q is not asked we use formulas below instead of calling
|
||||
// applyLeftJacobian(v), as they convey geometric insight and are faster.
|
||||
Vector3 t_parallel = w * w.dot(v); // translation parallel to axis
|
||||
Vector3 w_cross_v = w.cross(v); // translation orthogonal to axis
|
||||
Rot3 rotation = R.value_or(Rot3::Expmap(w));
|
||||
Vector3 t = (w_cross_v - rotation * w_cross_v + t_parallel) / theta2;
|
||||
return t;
|
||||
}
|
||||
|
||||
if (J) {
|
||||
*J = local.rightJacobian(); // = X * local.leftJacobian();
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -223,17 +223,19 @@ public:
|
|||
const Vector6& xi, double nearZeroThreshold = 1e-5);
|
||||
|
||||
/**
|
||||
* Compute the translation part of the exponential map, with derivative.
|
||||
* Compute the translation part of the exponential map, with Jacobians.
|
||||
* @param w 3D angular velocity
|
||||
* @param v 3D velocity
|
||||
* @param Q Optionally, compute 3x3 Jacobian wrpt w
|
||||
* @param R Optionally, precomputed as Rot3::Expmap(w)
|
||||
* @param J Optionally, compute 3x3 Jacobian wrpt v = right Jacobian of SO(3)
|
||||
* @param nearZeroThreshold threshold for small values
|
||||
* Note Q is 3x3 bottom-left block of SE3 Expmap right derivative matrix
|
||||
* @note This function returns Jacobians Q and J corresponding to the bottom
|
||||
* blocks of the SE(3) exponential, and translated from left to right from the
|
||||
* applyLeftJacobian Jacobians.
|
||||
*/
|
||||
static Vector3 ExpmapTranslation(const Vector3& w, const Vector3& v,
|
||||
OptionalJacobian<3, 3> Q = {},
|
||||
const std::optional<Rot3>& R = {},
|
||||
OptionalJacobian<3, 3> J = {},
|
||||
double nearZeroThreshold = 1e-5);
|
||||
|
||||
using LieGroup<Pose3, 6>::inverse; // version with derivative
|
||||
|
|
|
@ -304,6 +304,7 @@ TEST(SO3, JacobianLogmap) {
|
|||
EXPECT(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
namespace test_cases {
|
||||
std::vector<Vector3> small{{0, 0, 0}, //
|
||||
{1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}, //,
|
||||
|
|
|
@ -114,24 +114,23 @@ NavState NavState::inverse() const {
|
|||
|
||||
//------------------------------------------------------------------------------
|
||||
NavState NavState::Expmap(const Vector9& xi, OptionalJacobian<9, 9> Hxi) {
|
||||
// Get angular velocity w, translational velocity v, and acceleration a
|
||||
Vector3 w = xi.head<3>();
|
||||
Vector3 rho = xi.segment<3>(3);
|
||||
Vector3 nu = xi.tail<3>();
|
||||
// Get angular velocity w and components rho and nu from xi
|
||||
Vector3 w = xi.head<3>(), rho = xi.segment<3>(3), nu = xi.tail<3>();
|
||||
|
||||
// Compute rotation using Expmap
|
||||
Rot3 R = Rot3::Expmap(w);
|
||||
Matrix3 Jr;
|
||||
Rot3 R = Rot3::Expmap(w, Hxi ? &Jr : nullptr);
|
||||
|
||||
// Compute translations and optionally their Jacobians
|
||||
// Compute translations and optionally their Jacobians Q in w
|
||||
// The Jacobians with respect to rho and nu are equal to Jr
|
||||
Matrix3 Qt, Qv;
|
||||
Vector3 t = Pose3::ExpmapTranslation(w, rho, Hxi ? &Qt : nullptr, R);
|
||||
Vector3 v = Pose3::ExpmapTranslation(w, nu, Hxi ? &Qv : nullptr, R);
|
||||
Vector3 t = Pose3::ExpmapTranslation(w, rho, Hxi ? &Qt : nullptr);
|
||||
Vector3 v = Pose3::ExpmapTranslation(w, nu, Hxi ? &Qv : nullptr);
|
||||
|
||||
if (Hxi) {
|
||||
const Matrix3 Jw = Rot3::ExpmapDerivative(w);
|
||||
*Hxi << Jw, Z_3x3, Z_3x3,
|
||||
Qt, Jw, Z_3x3,
|
||||
Qv, Z_3x3, Jw;
|
||||
*Hxi << Jr, Z_3x3, Z_3x3, //
|
||||
Qt, Jr, Z_3x3, //
|
||||
Qv, Z_3x3, Jr;
|
||||
}
|
||||
|
||||
return NavState(R, t, v);
|
||||
|
@ -235,8 +234,8 @@ Matrix9 NavState::LogmapDerivative(const NavState& state) {
|
|||
|
||||
Matrix3 Qt, Qv;
|
||||
const Rot3 R = Rot3::Expmap(w);
|
||||
Pose3::ExpmapTranslation(w, rho, Qt, R);
|
||||
Pose3::ExpmapTranslation(w, nu, Qv, R);
|
||||
Pose3::ExpmapTranslation(w, rho, Qt);
|
||||
Pose3::ExpmapTranslation(w, nu, Qv);
|
||||
const Matrix3 Jw = Rot3::LogmapDerivative(w);
|
||||
const Matrix3 Qt2 = -Jw * Qt * Jw;
|
||||
const Matrix3 Qv2 = -Jw * Qv * Jw;
|
||||
|
|
Loading…
Reference in New Issue