diff --git a/gtsam/hybrid/tests/TinyHybridExample.h b/gtsam/hybrid/tests/TinyHybridExample.h index c9633ec55..a427d2042 100644 --- a/gtsam/hybrid/tests/TinyHybridExample.h +++ b/gtsam/hybrid/tests/TinyHybridExample.h @@ -33,15 +33,15 @@ const DiscreteKey mode{M(0), 2}; /** * Create a tiny two variable hybrid model which represents * the generative probability P(z,x,mode) = P(z|x,mode)P(x)P(mode). - * numMeasurements is the number of measurements of the continuous variable x0. + * num_measurements is the number of measurements of the continuous variable x0. * If manyModes is true, then we introduce one mode per measurement. */ -inline HybridBayesNet createHybridBayesNet(int numMeasurements = 1, +inline HybridBayesNet createHybridBayesNet(int num_measurements = 1, bool manyModes = false) { HybridBayesNet bayesNet; // Create Gaussian mixture z_i = x0 + noise for each measurement. - for (int i = 0; i < numMeasurements; i++) { + for (int i = 0; i < num_measurements; i++) { const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode; GaussianMixture gm({Z(i)}, {X(0)}, {mode_i}, {GaussianConditional::sharedMeanAndStddev( @@ -56,7 +56,7 @@ inline HybridBayesNet createHybridBayesNet(int numMeasurements = 1, GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5)); // Add prior on mode. - const size_t nrModes = manyModes ? numMeasurements : 1; + const size_t nrModes = manyModes ? num_measurements : 1; for (int i = 0; i < nrModes; i++) { bayesNet.emplaceDiscrete(DiscreteKey{M(i), 2}, "4/6"); } @@ -67,13 +67,13 @@ inline HybridBayesNet createHybridBayesNet(int numMeasurements = 1, * Create a tiny two variable hybrid factor graph which represents a discrete * mode and a continuous variable x0, given a number of measurements of the * continuous variable x0. If no measurements are given, they are sampled from - * the generative Bayes net model HybridBayesNet::Example(numMeasurements) + * the generative Bayes net model HybridBayesNet::Example(num_measurements) */ inline HybridGaussianFactorGraph createHybridGaussianFactorGraph( - int numMeasurements = 1, + int num_measurements = 1, boost::optional measurements = boost::none, bool manyModes = false) { - auto bayesNet = createHybridBayesNet(numMeasurements, manyModes); + auto bayesNet = createHybridBayesNet(num_measurements, manyModes); if (measurements) { // Use the measurements to create a hybrid factor graph. return bayesNet.toFactorGraph(*measurements); diff --git a/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp b/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp index 0fd94b300..cc4571875 100644 --- a/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp +++ b/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp @@ -621,9 +621,9 @@ TEST(HybridGaussianFactorGraph, ErrorAndProbPrimeTree) { // assignment. TEST(HybridGaussianFactorGraph, assembleGraphTree) { using symbol_shorthand::Z; - const int numMeasurements = 1; + const int num_measurements = 1; auto fg = tiny::createHybridGaussianFactorGraph( - numMeasurements, VectorValues{{Z(0), Vector1(5.0)}}); + num_measurements, VectorValues{{Z(0), Vector1(5.0)}}); EXPECT_LONGS_EQUAL(3, fg.size()); // Assemble graph tree: @@ -662,9 +662,9 @@ TEST(HybridGaussianFactorGraph, assembleGraphTree) { // Check that eliminating tiny net with 1 measurement yields correct result. TEST(HybridGaussianFactorGraph, EliminateTiny1) { using symbol_shorthand::Z; - const int numMeasurements = 1; + const int num_measurements = 1; auto fg = tiny::createHybridGaussianFactorGraph( - numMeasurements, VectorValues{{Z(0), Vector1(5.0)}}); + num_measurements, VectorValues{{Z(0), Vector1(5.0)}}); EXPECT_LONGS_EQUAL(3, fg.size()); // Create expected Bayes Net: @@ -696,9 +696,9 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) { TEST(HybridGaussianFactorGraph, EliminateTiny2) { // Create factor graph with 2 measurements such that posterior mean = 5.0. using symbol_shorthand::Z; - const int numMeasurements = 2; + const int num_measurements = 2; auto fg = tiny::createHybridGaussianFactorGraph( - numMeasurements, + num_measurements, VectorValues{{Z(0), Vector1(4.0)}, {Z(1), Vector1(6.0)}}); EXPECT_LONGS_EQUAL(4, fg.size()); @@ -731,11 +731,11 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) { TEST(HybridGaussianFactorGraph, EliminateTiny22) { // Create factor graph with 2 measurements such that posterior mean = 5.0. using symbol_shorthand::Z; - const int numMeasurements = 2; + const int num_measurements = 2; const bool manyModes = true; // Create Bayes net and convert to factor graph. - auto bn = tiny::createHybridBayesNet(numMeasurements, manyModes); + auto bn = tiny::createHybridBayesNet(num_measurements, manyModes); const VectorValues measurements{{Z(0), Vector1(4.0)}, {Z(1), Vector1(6.0)}}; auto fg = bn.toFactorGraph(measurements); EXPECT_LONGS_EQUAL(5, fg.size());