Moved to CitySLAM
parent
b32931f879
commit
25ffc8adda
|
|
@ -1,36 +0,0 @@
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
||||||
% Atlanta, Georgia 30332-0415
|
|
||||||
% All Rights Reserved
|
|
||||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
||||||
%
|
|
||||||
% See LICENSE for the license information
|
|
||||||
%
|
|
||||||
% @brief Read graph from file and perform GraphSLAM
|
|
||||||
% @author Frank Dellaert
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
%% Initialize graph, initial estimate, and odometry noise
|
|
||||||
import gtsam.*
|
|
||||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 1*pi/180]);
|
|
||||||
maxID=0;
|
|
||||||
addNoise=false;
|
|
||||||
smart=true;
|
|
||||||
[graph,initial]=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
|
||||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
|
||||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
|
||||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
|
||||||
|
|
||||||
%% Plot Initial Estimate
|
|
||||||
figure(1);clf
|
|
||||||
P=initial.poses;
|
|
||||||
plot(P(:,1),P(:,2),'r-'); axis equal
|
|
||||||
|
|
||||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
||||||
tic
|
|
||||||
result = graph.optimize(initial,1);
|
|
||||||
toc
|
|
||||||
P=result.poses;
|
|
||||||
hold on; plot(P(:,1),P(:,2),'b-')
|
|
||||||
|
|
@ -1,52 +0,0 @@
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
||||||
% Atlanta, Georgia 30332-0415
|
|
||||||
% All Rights Reserved
|
|
||||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
||||||
%
|
|
||||||
% See LICENSE for the license information
|
|
||||||
%
|
|
||||||
% @brief Read graph from file and perform GraphSLAM
|
|
||||||
% @author Frank Dellaert
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
import gtsam.*
|
|
||||||
maxID=0;
|
|
||||||
addNoise=false;
|
|
||||||
smart=true;
|
|
||||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
|
||||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
|
||||||
|
|
||||||
%% Create graph, disregarding translation measurements by setting sigma high
|
|
||||||
model = noiseModel.Diagonal.Sigmas([100000; 100000; 1*pi/180]);
|
|
||||||
[graph,initial]=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
|
||||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
|
||||||
|
|
||||||
%% Plot Initial Estimate
|
|
||||||
figure(1);clf
|
|
||||||
P=initial.poses;
|
|
||||||
plot(P(:,1),P(:,2),'r-'); axis equal
|
|
||||||
|
|
||||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
||||||
tic
|
|
||||||
result1 = graph.optimize(initial,1);
|
|
||||||
toc
|
|
||||||
P=result1.poses;
|
|
||||||
hold on; plot(P(:,1),P(:,2),'g-')
|
|
||||||
|
|
||||||
%% Read again, with correct noise now...
|
|
||||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 1*pi/180]);
|
|
||||||
graph=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
|
||||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
|
||||||
|
|
||||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
||||||
tic
|
|
||||||
result2 = graph.optimize(result1,1);
|
|
||||||
toc
|
|
||||||
P=result2.poses;
|
|
||||||
hold on; plot(P(:,1),P(:,2),'b-')
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue