diff --git a/matlab/examples/SFMExample.m b/matlab/examples/SFMExample.m index 9821b1478..3f8733fc3 100644 --- a/matlab/examples/SFMExample.m +++ b/matlab/examples/SFMExample.m @@ -36,7 +36,7 @@ measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma); for i=1:length(data.Z) for k=1:length(data.Z{i}) j = data.J{i}{k}; - graph.addMeasurement(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('l',j), data.K); + graph.addMeasurement(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K); end end @@ -44,7 +44,7 @@ end posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas); graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise); pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,pointNoiseSigma); -graph.addPointPrior(symbol('l',1), truth.points{1}, pointPriorNoise); +graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise); %% Print the graph graph.print(sprintf('\nFactor graph:\n')); @@ -55,7 +55,7 @@ for i=1:size(truth.cameras,2) initialEstimate.insertPose(symbol('x',i), truth.cameras{i}.pose); end for j=1:size(truth.points,2) - initialEstimate.insertPoint(symbol('l',j), truth.points{j}); + initialEstimate.insertPoint(symbol('p',j), truth.points{j}); end initialEstimate.print(sprintf('\nInitial estimate:\n ')); @@ -68,8 +68,8 @@ marginals = graph.marginals(result); cla hold on; for j=1:result.nrPoints - P = marginals.marginalCovariance(symbol('l',j)); - point_j = result.point(symbol('l',j)); + P = marginals.marginalCovariance(symbol('p',j)); + point_j = result.point(symbol('p',j)); plot3(point_j.x, point_j.y, point_j.z,'marker','o'); covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P); end